
CMSC 858K — Introduction to Secure Computation September 13, 2013

Lecture 4

Lecturer: Jonathan Katz Scribe(s): Aishwarya Thiruvengadam

1 Summary

In this lecture, we present two variants of the Even-Goldreich-Lempel Oblivious Transfer
(OT) protocol we saw in the previous lecture. We show how to do domain extension for OT
(i.e.) go from `-bit string OT to n-bit string OT. We also show how to construct 1-out-of-N
OT from 1-out-of-2 OT.

2 Variants of Even-Goldreich-Lempel OT protocol

We present the following variant of the OT protocol seen in the last lecture. Let E =
(Gen,Enc,Dec) be a CPA secure encryption scheme that has an algorithm Samp that can
sample valid looking ciphertexts.

Sender(x0, x1) Receiver(b)

(pk , sk)← Gen(1n)
pk

-

s0, s1 ← {0, 1}
cb = Encpk (sb)
c1−b ← Samp

�
c0, c1

s0 = Decsk (c0)
s1 = Decsk (c1)

s0 ⊕ x0, s1 ⊕ x1-
xb = sb ⊕ (sb ⊕ xb)

Figure 1: Variant of Even-Goldreich-Lempel OT

The protocol in Figure 1 guarantees information theoretic security against the receiver
and computational security against the sender. This protocol can be instantiated with the
El Gamal encryption scheme.

The next variant is based on the Decisional Diffie-Hellman (DDH) assumption. Con-
sider the group G of order q with generators g0 and g1. The DDH assumption states that,
for r, r′ ∈ Zq, the tuples (g0, g1, g0

r, g1
r) and (g0, g1, g0

r, g1
r′) are computationally indistin-

guishable.
Consider the following protocol with group G of order q and generators g0 and g1.

4-1



Sender(x0, x1) Receiver(b)

choose r ∈ Zq

if b = 0, set h0 = g0
r, h1 = g1

r

if b = 1, set h0 = g0
r, h1 = g1

r+1

�
h0, h1

a0, b0, a1, b1 ← Zq

c0 = (g0
a0g1

b0 , h0
a0h1

b0x0)-

c1 = (g0
a1g1

b1 , h0
a1h1/g1

b1x1)-
Parse cb as (c1, c2)
Compute xb = c2/(c1)

r

Figure 2: OT protocol based on DDH

The protocol in Figure 2 is information theoretically secure against the receiver and
computationally secure against the sender. Intuitively, for the sender, the security can be
reduced to the DDH assumption. If b = 0, then he sees exactly a DDH tuple. If b = 1, the
two exponents are dependent but this can still be reduced to the DDH assumption. For
the receiver, it is possible to recover message xb while he receives no information on x1−b.
Note that k = g0

ag1
b imposes a single linear constraint logg0 k = x + y logg0 g1 on x and y.

And for x1−b, the exponents r and r′ do not match in the ciphertexts. And, k′ = h0
ah′1

b

implying logg0 k
′ = a logg0 h0 + b logg0 h

′
1. Given that r 6= r′ for x1−b, the two equations are

not multiples of each other and hence, the receiver cannot recover x1−b.

3 More constructions using OT hybrid

3.1 Domain Extension

We show a construction of OT for `-bit strings from OT for n-bit strings.
The sender and receiver use the OT protocol for n-bits to choose key kb corresponding

to the receiver’s choice bit from keys k0, k1 held by the sender. The sender sends both `-bit
strings m0,m1 encrypted using the keys k0, k1 respectively. The receiver then recovers the
correct message using his key kb.

The protocol is as described in Figure 3.
Note that n is the security parameter. This protocol cannot be used for small values of

n. For example, when n = 1, the key would be of length 1 and this protocol is no longer
secure.

3.2 Constructing 1-out-of-N OT from 1-out-of-2 OT

Let us show how to construct 1-out-of-N OT (i.e.) the receiver choosing to receive 1 string
among N held by the sender from a 1-out-of-2 OT construction. To illustrate the general
idea, we show a construction of 1-out-of-4 OT from 1-out-of-2 OT.

4-2



Sender(m0,m1 ∈ {0, 1}`) Receiver(b)

k0, k1 ← {0, 1}n
Send k0, k1 to OT Send b to OT

Receive kb from OT
c0 = Enck0(m0), c1 = Enck1(m1)-

mb = Deckb(cb)

Figure 3: OT protocol for `-bit strings

The sender holds two pairs of keys and the receiver chooses one key from each pair
corresponding to the message he wants to receive. Note that the receiver has to hold two
bits here. Let F be a pseudorandom function such that Fk(.) : {0, 1}n → {0, 1}n.

Sender(m00,m01,m10,m11) Receiver(b1b2)

k0, k1, k
′
0, k
′
1 ← {0, 1}n

Send k0, k1 to OT Send b1 to OT
Receive kb1 from OT

Send k′0, k
′
1 to OT Send b2 to OT

Receive k′b2 from OT

c00 = m00 ⊕ Fk0(00)⊕ Fk′0
(00)
-

c01 = m01 ⊕ Fk0(01)⊕ Fk′1
(01)
-

c10 = m10 ⊕ Fk1(10)⊕ Fk′0
(10)
-

c11 = m11 ⊕ Fk1(11)⊕ Fk′1
(11)
-

m = cb1b2 ⊕ Fkb1
(b1b2)⊕ Fk′b2

(b1b2)

Figure 4: 1-out-of-4 OT protocol

Note that using the corresponding keys as pads for each message (i.e.) setting cii′ =
mii′ ⊕ ki ⊕ k′i′ reveals more than just the message chosen by the receiver. This is because
the receiver can xor all the ciphertexts to learn the xor of all the messages.

Another secure construction would be to consider the keys as encryption keys and en-
crypt the messages as cii′ = Encki(Enck′

i′
(mii′)) and let the receiver obtain the correct

message by decrypting the corresponding ciphertext with the keys he received from the
OT.

4-3


