
CMSC 858K — Introduction to Secure Computation Sept 16, 2013

Lecture 5

Lecturer: Jonathan Katz Scribe(s): Andrew Miller

1 Oblivious Transfer Cont.

1.1 Pre-processing Oblivious Transfer

For the pre-processing OT protocol, one round of OT is used to establish keys. Thereafter,
an arbitrary number of OT’s over different messages can be performed for using these keys.

Pre-processing phase

Sender OT Receiver
k0, k1 ← {0, 1}n c← {0, 1}

k0, k1- � c

kc -

Second phase

Sender(m0,m1) Receiver(b)

if z=0 � z = b⊕ c
y0 = m0 ⊕ k0
y1 = m1 ⊕ k1

else
y0 = m0 ⊕ k1
y1 = m1 ⊕ k0 y0, y1 - R learns yb ⊕ kc = mb

Figure 1: Protocol for Pre-processing OT

5-1

1.2 OT Extension

An OT extension protocol turns k OTs on m-bit strings into m OTs on n-bit strings, where
k is the security parameter.

Sender((x1,0, x1,1), . . . , (xm,0, xm,1)) Receiver(r1, . . . , rm)
s← {0, 1}k T ← {0, 1}m×k

run k OTs as receiver run k OTs as sender
using s1, ...sk as inputs using (Tj , Tj ⊕ r) as inputs
S learns Q ∈ {0, 1}m×k | |

Q1 . . . Qk

| |

 | | | |
T1 T1 ⊕ r . . . Tk Tk ⊕ r
| | | |

Let Qi be the ith row of Q

H(Ri)⊕ xi,0-
H(Qi ⊕ s)⊕ xi,1-

R recovers x1,r1 , ..., xm,rm

if ri = 0, R knows Qi = T i

if ri = 1, R knows Qi ⊕ s = T i

Figure 2: Protocol for OT extension

1.2.1 Assumption on Randomness of the Hash Function

For arbitrary T 1, ..., Tm and s, the hash function outputs,H(s⊕T 1),H(s⊕T 2), ...,H(s⊕Tm),
should be indistinguishable from uniform random, even given T 1, ..., Tm.

5-2

1.3 GMW (Goldreich-Micali,Wigderson) Approach to semi-honest two-
party computation

Secure computation of arbitrary circuits from OT. Assume we have a Boolean circuit with
2` inputs, the first half are from P1, the second half are from P2. The gates may have
arbitrary fan-in and fan-out. At the bottom we have some number of output gates, and
both parties learn all the outputs.

The approach is to have 2-out-of-2 secret sharing for every wire value. The protocol
proceeds layer by layer, beginning with the input layer.

5-3

1.3.1 Input Layer

First layer (input wires)
P1(x1, ..., x`) P2(y1, ..., y`)

choose s1, ..., s` ∈ {0, 1} choose r1, ..., r` ∈ {0, 1}
s1, ..., s` -

�
r1, ..., r`

P1 has P2 has
P1’s input wires, P2’s input wires,

and x1 ⊕ s1, ..., x` ⊕ s` and y1 ⊕ r1, ..., y` ⊕ r`
(shares of P2’s inputs) (shares of P1’s inputs)

1.3.2 XOR Gate

No communications are required for an XOR gate - each party can construct the shares of
the output using their existing shares of the inputs.

γ3 = γ1 ⊕ γ2
r1 ⊕ s1 = γ1
r2 ⊕ s2 = γ2

P1 has r1, r2 P2 has s1, s2
define r3 = r1 ⊕ r2 define s3 = s1 ⊕ s2

1.3.3 NOT Gate

NOT gates are easy - just agree that one player (e.g., P1) flips the bit.

5-4

1.3.4 AND Gate

Each AND gate requires an invocation of OT.

γ3 = γ1 ∧ γ2
r1 ⊕ s1 = γ1
r2 ⊕ s2 = γ2

P1 has r1, r2 P2 has s1, s2

choose r3
$← {0, 1} use 1-out-of-4 OT to select

this is P1’s share of γ3 appropriate row from table

s1 s2 s3
0 0 (r1 ∧ r2)⊕ r3
0 1 (r1 ∧ ¬r2)⊕ r3
1 0 (¬r1 ∧ r2)⊕ r3
1 1 (¬r1 ∧ ¬r2)⊕ r3

5-5

