
CMSC 858K — Introduction to Secure Computation Sept 18, 2013

Lecture 6

Lecturer: Jonathan Katz Scribe(s): Andrew Miller

1 GMW Protocol, cont’d

Recall that the GMW protocol for securely computing any circuit proceeds in three phases:

1. Input sharing

2. Circuit evaluation (using 1-out-of-4 OT)

3. Output recovery

1.1 Security (in the semi-honest OT-hybrid model)

OT-hybrid model means we have ideal functionalities computing the 1-out-of-4 OT’s. Se-
curity here is information theoretic. To show security, we construct the following two
simulators that simulate respectively each player’s view. A simulator of P1’s view is in-
distinguishable from P1’s view during a correct protocol execution, however it is defined
independently of P2’s private inputs, therefore demonstrating that the protocol leaks no
information. Likewise for P2’s view.

1.1.1 Sim1(x1, y1):

• 1a) generate random values r1, . . . , r` (P1’s randomness)

• 1b) generate random values s1, . . . , s` (initial message)

• 2) for each non-input wire of the circuit, generate random ri

• 3) for each output wire of P1 let r̂1, . . . , r̂` be P1’s shares of the wires

• let shi = r̂i ⊕ y1,i

• place sh1, . . . , sh` in the view

1.1.2 Sim2(x2, y2) :

• 1) same as Sim1

• 2) for each non-input wire of the circuit, choose uniform ri as the output of the
functionality

• 3) same

Note: For Sim1, x1 is P1’s input, while y1 is player P2’s output. However, for Sim2, x2
is P1’s output, and y2 is P2’s input.

6-1



1.2 Randomized Computations

If we can securely compute any deterministic function, then we can securely compute any
randomized functionality. Let g(x, y) be a randomized function; we can construct a deter-
ministic equivalent ĝ(x, y, r) = g(x, y) where the random coins r are chosen uniformly at
random. Then we can securely compute g((x, r1), (y, r2)) = ĝ(x, y, r1 ⊕ r2) using GMW.

• 1) Each player Pi chooses uniform ri

• 2) parties compute g on inputs (x, r1) and (y, r2) respectively

2 Yao’s Garbled-Circuits

Motivation: GMW protocol has round complexity linear in the depth of the circuit. Yao’s
garbled-circuit approach has O(1) round complexity, with a pretty small constant.

One party acts as a garbled circuit generator. For each wire, she generates a pair
of symmetric encryption keys, corresponding to a possible value (0 or 1). For each gate
(assume two input wires, one output wire), she constructs a garbled table representing the
truth table for the gate. (Note: the table should be randomly permuted). The following
example is for an AND gate:

label1 label2 garbled key
0 0 Enck0(Enck′0(k′′0))

0 1 Enck0(Enck′1(k′′0))

1 0 Enck1(Enck′0(k′′0))

1 1 Enck1(Enck′1(k′′1))

Instead of having to decrypt every row, evaluation can be simplified if the garbled cir-
cuit generator also chooses a random bit λ. Thus the label of kb will be λ ⊕ b. Then
the circuit evaluator can use the label to immediately access the correct row of the table.

label1 label2 garbled key
0 0 Enckλ

(Enck′
λ′

(k′′
(λ∧λ′)⊕λ′′ , (λ ∧ λ

′)⊕ λ′′))

b1 b2 Enckλ⊕b1
(Enck′

λ′⊕b2
(k′′

((λ⊕b1)∧(λ′⊕b2))⊕λ′′ , ((λ⊕ b1) ∧ (λ′ ⊕ b2))⊕ λ′′)

6-2



2.1 Garbled-circuit protocol

• 1) Input-preparation phase

• 1a) P1 sends the input-wire keys corresponding to his inputs

• 1b) P2 obtains the input-wire keys for its inputs using 1-out-of-2 OT

• 2) Garbled-circuit evaluation

• 3) Output determination:

• - P1 send λ-values on output wires, P2 sends output keys

• - P1 send λ-values on output wires, P2 sends output keys

6-3


