CMSC 858K — Introduction to Secure Computation Sept 18, 2013

Lecture 6

Lecturer: Jonathan Katz Scribe(s): Andrew Miller

1 GMW Protocol, cont’d

Recall that the GMW protocol for securely computing any circuit proceeds in three phases:
1. Input sharing
2. Circuit evaluation (using 1-out-of-4 OT)

3. Output recovery

1.1 Security (in the semi-honest OT-hybrid model)

OT-hybrid model means we have ideal functionalities computing the 1-out-of-4 OT’s. Se-
curity here is information theoretic. To show security, we construct the following two
simulators that simulate respectively each player’s view. A simulator of P{’s view is in-
distinguishable from P;’s view during a correct protocol execution, however it is defined
independently of Po’s private inputs, therefore demonstrating that the protocol leaks no
information. Likewise for Py’s view.
1.1.1 Simq(z1,y1):

e la) generate random values r1,...,ry (P1’s randomness)

e 1b) generate random values s1, ..., sy (initial message)

e 2) for each non-input wire of the circuit, generate random r;

e 3) for each output wire of P; let 71,...,7, be Py’s shares of the wires

let sh; = 7; ®y1,;

place shq,...,shy in the view

1.1.2 Si’mg(xQ,yg) :
e 1) same as Sim;

e 2) for each non-input wire of the circuit, choose uniform r; as the output of the
functionality

e 3) same

Note: For Sim1, x1 is P1’s input, while y; is player Py’s output. However, for Sims, o
is P1’s output, and y- is Ps’s input.

6-1



1.2 Randomized Computations

If we can securely compute any deterministic function, then we can securely compute any
randomized functionality. Let g(z,y) be a randomized function; we can construct a deter-
ministic equivalent §(z,y,r) = g(x,y) where the random coins r are chosen uniformly at
random. Then we can securely compute g((x,r1), (y,7r2)) = §(x,y,m1 @© re) using GMW.

e 1) Each player P; chooses uniform r;

e 2) parties compute g on inputs (z,r1) and (y,r2) respectively

2 Yao’s Garbled-Circuits

Motivation: GMW protocol has round complexity linear in the depth of the circuit. Yao’s
garbled-circuit approach has O(1) round complexity, with a pretty small constant.

One party acts as a garbled circuit generator. For each wire, she generates a pair
of symmetric encryption keys, corresponding to a possible value (0 or 1). For each gate
(assume two input wires, one output wire), she constructs a garbled table representing the
truth table for the gate. (Note: the table should be randomly permuted). The following
example is for an AND gate:

label; labels garbled key

0 0 Encg, (Ency (kp))
0 1 Ency, (Ency (k)
1 0 Ency, (Ency (k)
1 1 Ency, (Ency (KY))

Instead of having to decrypt every row, evaluation can be simplified if the garbled cir-
cuit generator also chooses a random bit A\. Thus the label of k; will be A @ b. Then
the circuit evaluator can use the label to immediately access the correct row of the table.

I3 n
% © )

K,
A 'J labely labelg garbled key
¥ 0 0 E"C’@\<E"Ck’>\, (kE;\AA’)@A”’(A/\AI)EB/\/'))
1" ’ 1"
4 by br Bnckagy, (Brew, o Faebacesnex (A0 AN ©b2)) &)



2.1 Garbled-circuit protocol
e 1) Input-preparation phase

e la) P; sends the input-wire keys corresponding to his inputs

1b) P2 obtains the input-wire keys for its inputs using 1-out-of-2 OT

2) Garbled-circuit evaluation

3) Output determination:

- Py send A-values on output wires, Po sends output keys

- P; send A-values on output wires, Ps sends output keys

6-3



