| introduction to becare compatition | CMSC 858K - | Introduction | to Secure | Computation |
|------------------------------------|-------------|--------------|-----------|-------------|
|------------------------------------|-------------|--------------|-----------|-------------|

Sept 18, 2013

Lecture 6

Lecturer: Jonathan Katz

Scribe(s): Andrew Miller

# 1 GMW Protocol, cont'd

Recall that the GMW protocol for securely computing any circuit proceeds in three phases:

- 1. Input sharing
- 2. Circuit evaluation (using 1-out-of-4 OT)
- 3. Output recovery

### 1.1 Security (in the semi-honest OT-hybrid model)

OT-hybrid model means we have ideal functionalities computing the 1-out-of-4 OT's. Security here is information theoretic. To show security, we construct the following two simulators that simulate respectively each player's view. A simulator of  $P_1$ 's view is indistinguishable from  $P_1$ 's view during a correct protocol execution, however it is defined independently of  $P_2$ 's private inputs, therefore demonstrating that the protocol leaks no information. Likewise for  $P_2$ 's view.

## **1.1.1** $Sim_1(x_1, y_1)$ :

- 1a) generate random values  $r_1, \ldots, r_\ell$  (P<sub>1</sub>'s randomness)
- 1b) generate random values  $s_1, \ldots, s_\ell$  (initial message)
- 2) for each non-input wire of the circuit, generate random  $r_i$
- 3) for each output wire of  $P_1$  let  $\hat{r}_1, \ldots, \hat{r}_\ell$  be  $P_1$ 's shares of the wires
- let  $sh_i = \hat{r}_i \oplus y_{1,i}$
- place  $sh_1, \ldots, sh_\ell$  in the view
- **1.1.2**  $Sim_2(x_2, y_2)$ :
  - 1) same as  $Sim_1$
  - 2) for each non-input wire of the circuit, choose uniform  $r_i$  as the output of the functionality
  - 3) same

Note: For  $Sim_1$ ,  $x_1$  is P<sub>1</sub>'s input, while  $y_1$  is player P<sub>2</sub>'s output. However, for  $Sim_2$ ,  $x_2$  is P<sub>1</sub>'s output, and  $y_2$  is P<sub>2</sub>'s input.

#### **1.2 Randomized Computations**

If we can securely compute any deterministic function, then we can securely compute any randomized functionality. Let g(x, y) be a randomized function; we can construct a deterministic equivalent  $\hat{g}(x, y, r) = g(x, y)$  where the random coins r are chosen uniformly at random. Then we can securely compute  $\overline{g}((x, r_1), (y, r_2)) = \hat{g}(x, y, r_1 \oplus r_2)$  using GMW.

- 1) Each player  $P_i$  chooses uniform  $r_i$
- 2) parties compute  $\overline{g}$  on inputs  $(x, r_1)$  and  $(y, r_2)$  respectively

# 2 Yao's Garbled-Circuits

Motivation: GMW protocol has round complexity linear in the depth of the circuit. Yao's garbled-circuit approach has O(1) round complexity, with a pretty small constant.

One party acts as a garbled circuit generator. For each wire, she generates a pair of symmetric encryption keys, corresponding to a possible value (0 or 1). For each gate (assume two input wires, one output wire), she constructs a garbled table representing the truth table for the gate. (Note: the table should be randomly permuted). The following example is for an AND gate:



Instead of having to decrypt every row, evaluation can be simplified if the garbled circuit generator also chooses a random bit  $\lambda$ . Thus the label of  $k_b$  will be  $\lambda \oplus b$ . Then the circuit evaluator can use the label to immediately access the correct row of the table.



# 2.1 Garbled-circuit protocol

- 1) Input-preparation phase
- 1a)  $P_1$  sends the input-wire keys corresponding to his inputs
- 1b)  $P_2$  obtains the input-wire keys for its inputs using 1-out-of-2 OT
- 2) Garbled-circuit evaluation
- 3) Output determination:
- -  $P_1$  send  $\lambda$ -values on output wires,  $P_2$  sends output keys
- -  $P_1$  send  $\lambda$ -values on output wires,  $P_2$  sends output keys