GMW vs. Yao

- preprocessing?
 * GMW:
 - preprocess all OTs
 - Online phase:
 - does not involve any crypto
 - has low communication
 - round complexity linear in circuit depth
 - overall computation:
 - 1 OT per gate
 - 4-in-1 H-evaluations per gate
 (using load-balancing)
 * Yao:
 - preprocessing
 - preprocess OTs
 - (preprocess garbled-circuit generation)
 - Online phase:
 - garbled-circuit evaluation
 - GC generation
 - high communication
 - round complexity constant
 - overall computation:
 - cost of generating / evaluating garbled gates
 - 3-in-1 AES operations per gate
Semi-honest 2PC implementations:
- Fairplay (2004)
 - Yao
- Tasty (2010)
 - mixed-mode protocols
 - Yao or homomorphic encryption
- Huang et al. (2011)
 - pipelining
 - significantly more efficient / scalable
 - prog. framework
 - Yao
- Choi et al.
 - GMW
- Schneider-Zohner (2013)
 - GMW vs. Yao
TASTY

hom. enc:

given encryption of a, b
can generate encryption of $a + b$
$[a], [b] \Rightarrow [a+b]$
$[a], r \Rightarrow [r \cdot a]$

Paillier encryption scheme is homomorphic over \mathbb{Z}_N

```
S \quad \text{pk} \quad \frac{G}{(pk, sk) \leftarrow \text{Gen}(1^n)}
4 \quad \text{Enc}_{pk}(Y_i) \rightarrow \text{Enc}_{pk}(Y_i)
[a], [b]
```

choose random r_a, r_b

$[a + r_a], [b + r_b]$
$[r_b \cdot a], [r_a \cdot b]$

\[([a + r_a] \cdot [b + r_b]) \cdot [r_a \cdot b] \cdot [r_b \cdot a] \cdot [-r_a, r_b] \] = $\boxed{[a \cdot b]}$

\[\frac{[2]}{[z + r_z]} \rightarrow \frac{[z]}{z + r_z} \]
\[\Gamma \]

\[\hat{X} : \text{garbled output value} \]

\[\hat{X} = [(k_1, x_1), \ldots, (k_e, x_e)] \]

\[\text{Enc}_{\hat{X}}(x_i): \]

For all \(i \) \{
\[\begin{align*}
& \text{if } \Pi_i = 0 \\
& \quad \text{randomize } C_i \\
& \text{if } \Pi_i = 1 \\
& \quad C_i = C_i^{-1} \\
& \end{align*} \]
\[\hat{x} = \prod_{i=1}^{e} C_i^{x_i} \]

* conversion between modes is expensive