Scribes?

lecture recording

no class next week

Broadcast definition

An \(n \)-party protocol run by \(P_1, \ldots, P_n \) with a designated party \(P^* \in \{ P_1, \ldots, P_n \} \) is a broadcast protocol if:

- **Validity**: If \(P^* \) is honest, it has input \(m \), then all honest parties output \(m \).
- **Consistency**: All honest parties output the same value.

Securing realizing \(\overline{\text{FCast}} \) (with full security)

!!

broadcast

(assuming \(t < 2/3 \) corrupted parties)

Last time: \(t \leq \) setup, broadcast is impossible if \(t \geq n/3 \)

Today:

- broadcast is possible if \(t < n/3 \) (w/ setup)
- w/ setup, broadcast is possible for \(t < n \)
Protocol for BA tolerating $T < n/2$ corruptions:

- Construct a phase-King sub-protocol, with designated party called “King”.
- Overall protocol:
 - run phase-King sub-protocol $t+1$ times w/ P, \ldots, P_{t+1} as the successive kings

Phase/King sub-protocol w/ King P_k:

Round 1) Every P_i sends its input v_i to everyone else.
 Each P_i sets $C_{i}^{b} = 1$ iff $\geq n-t$ parties sent it the bit b.

Round 2) Each P_i sends C_{i}^{0}, C_{i}^{1} to everyone else.
 Each P_i sets $D_{i}^{b} = \#$ of parties who sent $C_{i}^{b} = 1$.
 If $D_{i}^{b} > t$, set $v_i = 1$; else $v_i = 0$.

Round 3) P_k sends v_k to all parties.
 Each P_i does: if $D_i^{v_i} < n-t$, then output v_k.
 Else output v_i.
 \Rightarrow output v.

Lemma. If $T < n/2$ and all honest parties begin holding input v, then they all output v.

Lemma. If $T < n/3$ and the King is honest, then all honest parties agree on their output.

Proof. P_k sends the same v_k to everyone.

The only possible way agreement can fail is if some honest P_i does not adopt the King's value.
I.e., if \(D^v_i \geq n-t \).

Claim: if \(D^v_i \geq n-t \), then \(v_i = v_k \)

Case 1 \(v_i = 1 \). Because \(D^v_i \geq n-t \)

\[\Rightarrow \text{any other honest party } p_j \text{ has } D^v_j \geq n-t-t \]

\[\Rightarrow D^c_k > t \Rightarrow v_k = 1 \]

Case 2 \(v_i = 0 \), \(D^v_i \geq n-t \Rightarrow D^0_k \geq n-2t > t \).

\[\Rightarrow \text{at least one honest party sent } C^0 = 1 \text{ in round 1} \]

\[\Rightarrow \text{at least one honest party received } 0 \text{ from } \]

\[\geq n-t \text{ parties in round 1, } t \text{ received } 1 \text{ from } \]

\[\leq t \text{ parties in round 1} \]

\[\Rightarrow \text{every honest party received } 1 \text{ from } \leq 2t \text{ parties in round 1, } 2t < n-t \]

\[\Rightarrow \text{every honest party sends } C^i = C \text{ in round i} \]

\[\Rightarrow \text{every honest party has } D^i \leq t \]

\[\Rightarrow v_k = 0 \]

\[PKI = \text{public key infrastructure} \]

\[\text{every party } p_i \text{ has } (sk_i, pk_i) \text{ for signature scheme} \]

\[\text{every party has the same vector } (pk_1, pk_2, \ldots, pk_n) \]

Dolev–Strong (retro)

Assume \(p_i \) is the sender

\((m, i) \)-valid message is received in round \(i \) if it has the form:

\[m, (\sigma), a_2, \ldots, a_i \text{ by parties different from the receiver} \]
\(m \)-valid message \(\equiv \) \((m, i) \)-valid for some \(i \);

Round 1: \(P_i \) signs \(m \) and sends \(m, s_i \) to everyone.

Round 2, \ldots, n-1: If \(P_i \) received an \(m \)-valid message in the previous round, it appends its signature and sends an \(m \)-valid message in the current round.

Conclusion: Let \(S_i \) denote the set of \(m \) for which \(P_i \) received an \(m \)-valid message.

- If \(|S_i| = 0 \) or \(|S_i| > 1 \), output 1.
- If \(|S_i| = 1 \), then output the value in \(S_i \).

Validity is immediate.

Consistency: Claim: All honest parties agree on the set of \(m \)-valid messages.

Efficiency?

The protocol as described is not necessarily efficient, but can be modified so that it is