- Scribes?
- lecture recording

\[
P(C, w) \quad U(C) \quad C(w) = 1
\]

\[\arrowright\]

Soundness: If \(C \) is not satisfiable, then for any \(\text{PPT} \ p^* \), \(\Pr \left[\langle p^*, U(C) \rangle = \text{accept} \right] \leq \text{negl} \).

Knowledge extraction: For any \(\text{PPT} \ p^* \) and any \(C \), if \(p^* \) convinces \(U(C) \) to accept \(w \) with \(\varepsilon \) then we can extract a witness \(w \) from \(p^* \) s.t. \(C(w) = 1 \) with prob. \(\varepsilon = \text{negl} \).

Genoa - Geneva - Paris - Ravello

SNARK - Succinct non-interactive argument of knowledge

Bilinear maps: two groups \(G, G_T \), cyclic groups, prime order \(q \).

\[e: G \times G \rightarrow G_T \]

\[e(g^a, g^b) = e(g, g)^{ab} \] for all \(a, b \in \mathbb{Z}_q \).
$g^a, g^b \Rightarrow g^{a+b}$

Knowledge assumption

Example: Consider the following problem:

given \begin{bmatrix} g^3, g^{\alpha s} \end{bmatrix}

For uniform $\alpha, s \in \mathbb{Z}_q$

output $P, Q \in G$ s.t. $p^\alpha = Q$

(Note: can check that $e(Q, g^3) = e(P, g^{\alpha s})$)

Can write $Q = P^\beta$ for some β

e(Q, g^3) = e($P, g^{\alpha s}$)

\Rightarrow e(P, g) = e(P, g) = e($P, g^{\alpha s}$) \Rightarrow $\beta = \alpha$

Easy to do as follows: pick arbitrary $c \in \mathbb{Z}_q$,

output $P = (g^a)^c$, $Q = (g^{\alpha s})^c$

Assumption: this is the only way to solve the problem.

More formally: given any PPT algorithm A where $A(X, Y)$
outputs P, Q s.t. $e(Q, X) = e(P, Y)$,

we can extract from A a value c s.t. $P = X^c$, $Q = Y^c$.

More generally: Given $g, g^3, g^{3^2}, \ldots, g^{3^n}$

$g^2, g^{\alpha s}, g^{\alpha s^2}, \ldots, g^{\alpha s^n}$

if an algorithm can output P, Q s.t. $P^\alpha = Q$,

then we can extract c_0, \ldots, c_n s.t.

$P = \Pi(g^{3^{c_i}})$, $Q = \Pi(g^{\alpha s^{c_i}})$;
equivalently, a polynomial \(r(X) \) of degree at most \(n \)
S.t. \(p = g^r(s) \), \(q = g^z \cdot r(s) \)

QAP - quadratic arithmetic program

Given set of polynomials \(\{ v_i \}_{i=0}^n \), \(\{ w_i \}_{i=0}^n \), \(\{ y_i \}_{i=0}^n \) and
c a target polynomial \(t \)
Say this QAP is satisfiable if there exist \(a_1, \ldots, a_n \in \mathbb{Z}_q \)
S.t. \(t(X) \mid (\sum a_i \cdot v_i(X)) \cdot (\sum a_i \cdot w_i(X)) - \sum a_i \cdot y_i(X) \)

Claim: Any arithmetic circuit over \(\mathbb{Z}_q \) can be transformed into a QAP s.t. QAP is satisfiable if circuit is satisfiable

Proof (sketch)

We can convert any arithmetic circuit into a set of quadratic constraints:

\[
(\sum a_i \cdot v_{iq}) \cdot (\sum a_i \cdot w_{iq}) = \sum a_i \cdot y_{iq} \\
q \leq 1, \ldots, N
\]

\(\{ v_{iq}, w_{iq}, y_{iq} \} \) are public - determined by the circuit

The system is satisfiable if \(\exists a_1, \ldots, a_n \) satisfying all equations

System is satisfiable \(\iff \) circuit is satisfiable

\[
a_1 \cdot a_2 = a_6 \\
a_3 \cdot a_7 = a_4 \\
(a_6 + a_7) \cdot a_5 = a_9
\]

Define polynomials \(v_i, w_i, y_i \) as follows
- Pick \(r_1, \ldots, r_N \in \mathbb{Z}_q \)
- Make sure that \(v_i(c_j) = v_i;_j \) for \(j = 1, \ldots, N \)
 \(w_i(c_j) = w_i;_j \)
 \(y_i(c_j) = y_i;_j \)
- Set \(\tau(X) = \prod (X - c_i) \)

Claim: \(\tau(X) \mid (\sum a_i v_i(X)) \cdot (\sum a_i w_i(X)) - \sum a_i y_i(X) \)

\(\iff \) \(\alpha;_i \gamma;_i \) satisfy the \(N \) equations above

Take any QAP \(\{ v_i \}, \{ w_i \}, \{ y_i \}, t \),

\[E(X) = 0 \]

end construct a SNARK as follows:

CRS:

\[\{ E(v_i(s)) \}_{i=1}^{n}, \{ E(w_i(s)) \}_{i=1}^{n}, \{ E(y_i(s)) \}_{i=1}^{n}, \{ E(\alpha v_i(s)) \}, \{ E(\alpha w_i(s)) \}, \{ E(\alpha y_i(s)) \}, \]

\[\{ E(s^i) \}, \quad E(t(s)) \]

\[\{ E(\alpha s^i) \} \]

Proof: Computes \(h(X) \) and \(\alpha;_i \gamma;_i \) s.t.

\[h(X) \cdot \tau(X) = (\sum a_i v_i(X)) \cdot (\sum a_i w_i(X)) - \sum a_i y_i(X) \]

\(\iff \)

\[h(s) \cdot \tau(s) = (\sum a_i v_i(s)) \cdot (\sum a_i w_i(s)) - \sum a_i y_i(s) \]

Output proof:

\[E(\sum a_i v_i(s)), E(\sum a_i w_i(s)), E(\alpha y_i(s)) \quad E(h(s)) \]

\[E(\alpha \sum a_i v_i(s)), E(\alpha \sum a_i w_i(s)), E(\alpha \sum a_i y_i(s)) \]

\[E(\alpha h(s)) \]

Verify: Check that each element in 2nd row is \(\alpha \) times element in first row
Check that:

$$h(s) \cdot f(s) = (\sum a \cdot v_i(s)) \cdot (\sum a \cdot w_i(s)) - \sum a \cdot y_i(s)$$

Soundness?

Knowledge assumption tells us that the only way the power could have generated $E(\sum a \cdot v_i(s)), E(\sum a \cdot w_i(s))$ is if it knows $p, q \Rightarrow$ can extract those values.