Scribes?

OT preprocessing + extension

Malicious security (2-party setting)

WI, 2k, POK

The GMW compiler (2-party setting)

Preprocessing

\[P_1 \xleftarrow{\$} x_0, x \xrightarrow{\text{cOT}} b, x_b \xrightarrow{\$} P_2 \]

\[s_0, s_1 \xrightarrow{\text{b+c}} c \]

\[c_0 = s_0 \oplus x_b \oplus c \quad c_0, c_1 \quad s_c = c_c \oplus x_b \]

\[c_1 = s_1 \oplus x_1 \oplus k \]

\[= (s_c \oplus x_c \oplus k_c) \oplus x_b \]

\[= s_c \oplus x_b \]

\[= s_c \]

OT extension

Parties will generate \(m \) OTs on \(k \)-bit strings from \(K \) OTs on \(m \)-bit strings — base OTs

\[m \gg k \quad k \sim \text{security parameter} \]

Total cost = \(O(k) \) public key operations + \(O(m) \) private key operations
Aside, given k-bit OT, easy to get m-bit OT for any $m > k$

\[\text{Verbal description of the diagram} \]

Diagram Description

- **P_1**
 - X_{i_0}
 - X_{i_1}
 - \vdots
 - X_{n_0}
 - X_{n_1}
 - K

- **P_2**
 - $r = r_i \cdots r_m$

- **Base OT**
 - s_i^r
 - $t_i^r \otimes r$

- **g_1**
 - $f_i \otimes s_i \cdot r$
 - $f_i \otimes s_i \cdot r$

- **g_m**
 - $f_i \otimes s_i \cdot r$

- **$T_i = g_i \otimes c_i \cdot s$**

- **$X_{i_0} \oplus H(g_i)$**
 - C_{i_0}

- **$X_{i_1} \oplus H(g_i)$**
 - C_{i_1}

- **$x_i \oplus c_i \cdot H(T_i)$**
 - C_{i_0}
 - C_{i_1}
Malicious security (2-party)

- Real-world execution of protocol \(T \) wi some adversary \(A \)

 (Output of honest party, view of \(A \))

- Ideal-world evaluation \(\phi \)

\[
\begin{array}{c}
\text{Input} \quad x \quad \text{Output} \quad y \\
\text{Protocol} \quad \Phi \quad (x, y) \\
\text{Randomness} \quad z_1, z_2 \\
\text{Advantage} \quad 0, 1 \\
\end{array}
\]

Zero-knowledge (proofs of knowledge)

NP language \(L \)

\(\text{i.e., there exists an efficient } R \text{ s.t. } x \in L \iff \exists w \text{ s.t. } R(x,w) = 1 \)

\(\text{i.e., } L = \text{SAT} = \{ \text{Boolean formulas } \phi \text{ that are satisfiable} \} \)

\(R_{\text{SAT}}(\phi, x) = 1 \iff \phi(x) = \text{true} \)

\(\text{i.e., } L = \text{HAM} = \{ \text{directed graph } G \text{ s.t. } G \text{ has a Hamiltonian cycle} \} \)

\(R_{\text{HAM}}(G, v_1, v_2, \ldots, v_n) = 1 \iff v_1, \ldots, v_n \text{ is a Hamiltonian cycle in } G \)

\[
\begin{array}{c}
\text{Input} \quad x, w \\
\text{Randomness} \quad z_2 \text{, } k \text{, } z_1 \\
\text{Advantage} \quad 0, 1 \\
\end{array}
\]

\(b = 1 \iff x' = x \quad \text{and } R_L(x', w) = 1 \)
Zero-Knowledge proofs - evaluating \mathcal{D}_{zk} against a malicious V
proofs of Knowledge - evaluating \mathcal{D}_{zk} against a malicious P

ZK POK - securely evaluating \mathcal{D}_{zk}

Show ZK POK protocol for an NP-complete language

\Rightarrow ZK POK protocol for all of NP

Let G be a graph with n vertices and m edges.

1. Choose a random permutation π of $\{0, 1, \ldots, n-1\}$
2. Let G' be the graph obtained by applying π to G.
3. If $b = 0$, prove that A corresponds to G.
4. If $b = 1$, prove that A has an empty Hamiltonian cycle.
5. If $b = 0$, open everything and show isomorphism to G.
6. If $b = 1$, open Hamiltonian cycle only and verify.