
CMSC 858T—Secure Distributed Computation January 26, 2021

Lecture 1

Lecturer: Jonathan Katz Scribe(s):
Deena Postol
Shilpa Roy

1 Background

Definition 1 A function f : N → {0, 1}∗ is negligible if for all constants c there exists N such
that for κ ≥ N it holds that f(κ) ≤ 1

κc . ♦

Above, κ is the security parameter. Security parameters can represent many things, but one
might think of the security parameter as representing the key length.

A distribution ensemble {X(κ, a)}κ∈N,a∈{0,1}∗ is an infinite set of distributions index by the secu-
rity parameter and also (optionally) parameterized by some values. Two distribution ensembles are
perfectly indistinguishable if for all κ, a we have X(κ, a) ≡ Y (κ, a). They are statistically indistin-
guishable if there is a negligible function ε such that for all κ, a we have SD(X(κ, a), Y (κ, a)) ≤ ε(κ),
where the statistical distance SD between two distributions X,Y is

SD(X,Y) =
1

2

∑
r

|Pr[X = r]− Pr[Y = r]|.

Distribution ensembles are computationally indistinguishable if for all probabilistic, polynomial-time
(PPT) distinguishers D there is a negligible function ε such that for all κ, a, z we have

|Pr[x← X(κ, a) : D(1κ, a, z, x) = 1]− Pr[y ← Y (κ, a) : D(1κ, a, z, y) = 1]| ≤ ε(κ).

The value z here is called auxiliary input, and makes the above definition a non-uniform one (since
z may depend on κ). In layman’s terms, no distinguisher D can differentiate between a sample
from X and a sample from Y , even if it knows the string a that these distributions depend on, and
even if we give D some extra auxiliary information z.

2 Secure Computation

We are interested in multi-party protocols for computing some (possibly randomized) function f .
A randomized function (also called a functionality) taking n inputs and producing n outputs means
that fixing inputs x1, . . . , xn induces a distribution on the output (y1, . . . , yn) ← f(x1, . . . , xn). A
protocol computing f allows a collection of n parties, holding inputs x1, . . . , xn, respectively, to
compute f such that each party learns yi such that, when everyone follows the protocol, the joint
distribution on the outputs y1, . . . , yn matches that defined by f .

What would it mean for such a protocol to be secure? At a minimum, we want correctness and
privacy. Correctness intuitively means that the protocol computes f even if some of the parties
deviate from the protocol, trying to cause it to fail. This is not trivial to define, since any such
definition would have to take into account the fact that deviating parties can always change their
inputs (and then run the protocol honestly). Privacy intuitively means that no subset of the parties

1-1

“learns anything” about the inputs of parties outside that subset. This, too, is not trivial to define
since the evaluation of f itself might leak some information. (Consider the two-party evaluation of
the AND function.) Moreover, we want to ensure both correctness and privacy together.

We address all the above by defining security using the real/ideal paradigm. That is, we define
an “ideal-world” evaluation of f , and then say that a protocol computing f is secure if it is “close”
to such an ideal-world execution. In the ideal world, we imagine the parties have access to a trusted
third party who evaluates f on their behalf; that is, the parties send their inputs to the trusted
third party, who evaluates the function on those inputs and then returns the appropriate output to
each party. To formally define security, then, we need to formally define the real-world execution
of some protocol, the ideal-world evaluation of f , and what it means for those two to be “close.”

2.1 Real-World Execution

Fix some n-party protocol Π. In the real-world execution, the parties are given inputs x1, . . . , xn,
respectively, and then honest parties run Π as instructed. But there are several details of this
execution that need to be specified:

Communication model. How do parties communicate in the course of the protocol? The default
model is that any party can send a message to any other party (i.e., the communication graph is
a complete graph), but one could consider more restricted communication topologies. Typically,
we assume that the communication between any pair of (honest) parties is authenticated, meaning
that the adversary cannot interfere with or spoof such communication. One might also want to
assume that the communication between honest parties is private. Note that privacy and message
integrity can be ensured using standard cryptographic techniques if the parties can share keys in
advance of the protocol execution.

We can also ask what is guaranteed about message delivery. In the synchronous communication
model, execution of the protocol proceeds in rounds and messages sent in a round are guaranteed
to be received by the end of that round. (Here, we typically assume rushing, meaning that in
each round the corrupted parties receive messages sent to them before that have to decide on what
messages they send.) In contrast, in the asynchronous model the only guarantee is that a message
that is sent is eventually delivered, but messages may arrive out of order or be arbitrarily delayed.
(We even allow the adversary to schedule the delivery of messages.) In this class, we will assume
the synchronous model unless stated otherwise.

Finally, we may ask whether the parties have access to a broadcast channel. This allows any
party to send a message to all other parties, such that all other parties are assured that they
received the same message. (Note that having a party P send the same message to all other parties
via independent, point-to-point channels does not achieve this, since if P is cheating then it might
send different messages to different parties.)

Adversarial model. Typically, we will have some assumed bound t on the number of parties who
might be corrupted. Corrupted parties are assumed to be controlled by a single adversary who can
pool all those parties’ information together and also control their behavior during the course of
the protocol execution. We can consider two classes of adversaries: semi-honest parties follow the
protocol, but may try to learn disallowed information from the transcript of the protocol execution.
Malicious parties may deviate arbitrarily from the protocol execution. Other models of adversarial
behavior are possible, e.g., a fail-stop adversary who follows the protocol except that it may stop
the protocol early.

1-2

Another question is whether or not we allow the adversary to corrupt parties adatively, i.e.,
during the execution of the protocol, or whether we assume a non-adaptive (or static) adversary
who chooses which parties to corrupt before execution of the protocol begins. In this class we will
generally assume a static adversary.

Output distribution. Once we have fixed our model of the real world, execution of a protocol
Π in the presence of an adversary A when the parties hold some specified inputs x1, . . . , xn is
well-defined. Let realΠ,A(κ, ~x, z) be the distribution ensemble representing the vector of outputs
of all parties after running protocol Π using security parameter κ and inputs ~x = (x1, . . . , xn) (with
party Pi holding xi) in the presence of an adversary A corrupting some of those parties and holding
input z. Honest parties output whatever the protocol dictates, while corrupted parties output their
view of the protocol execution. (A party’s view contains its initial input, its randomness, and the
messages it received during the protocol execution.)

2.2 Ideal-World Execution

The ideal-world evaluation of a functionality f—where parties have access to a trusted entity
computing f on their behalf—proceeds as follows. Each party Pi is given an input xi. An honest
party sends its input to the trusted entity. Some parties may be corrupted (and, as in the real world,
corrupted parties are assumed to be controlled by a single adversary S). In the semi-honest model,
corrupted parties also send their inputs to the trusted entity; in the malicious model, corrupted
parties may change their input and send whatever they like to the trusted entity.1 The trusted party
evaluates f on the inputs it receives (using correctly distributed randomness if f is randomized),
and sends the corresponding outputs to each party.2 Honest parties output whatever they receive
from the trusted entity, while corrupted parties can output an arbitrary function of their view
(which here includes only their original input and the output they receive from the trusted entity).
Let idealf,S(κ, ~x, z) be the distribution ensemble representing the vector of outputs of all parties
in this ideal-world execution using security parameter κ and inputs ~x = (x1, . . . , xn) (with party Pi
holding xi) in the presence of an adversary S corrupting some of those parties and holding input z.

2.3 Defining Security

With the real world and ideal world defined, we can now define what it means for a real-world
protocol Π to securely compute f . Our definition will be to say that Π is secure if any behavior
that an (efficient) adversary A could cause in a real-world execution of Π could also be caused
by an (efficient) adversary S in the ideal-world evaluation of f ; since the ideal world is “as secure
as we could hope for,” this implies security of the real-world execution of Π. More formally (the
definition assumes a static corruption model):

Definition 2 Let Π be an n-party protocol computing an n-input functionality f . Π is t-secure if for
any PPT adversary A corrupting at most t parties there is an expected3 polynomial-time adversary
S corrupting the same parties such that the distribution ensembles {realΠ,A(κ, ~x, z)}κ∈N,~x,z∈{0,1}∗
and {idealf,S(κ, ~x, z)}κ∈N,~x,z∈{0,1}∗ are computationally indistinguishable. ♦

1In the asynchronous setting, corrupted parties may even refuse to send anything to the trusted entity. We assume
a synchronous setting in our current discussion.

2In some settings, a malicious adversary may have the ability to abort the trusted party and thus prevent honest
parties from learning the output; the model must make clear whether this is possible.

3This (slight) generalization is necessary for proving efficient protocols secure against malicious adversaries.

1-3

