
CMSC 858T—Secure Distributed Computation January 26, 2021

Lecture 2

Lecturer: Jonathan Katz Scribe(s):
Hunter Kippen
Wenqing (William) Xu

1 Composition

A natural question to ask is what happens when two or more secure protocols are composed with
each other in various ways.

1.1 Sequential Composition

Assume there exist protocols π1 and π2 that securely compute functionalities f1 and f2, respectively.
Then running π1 followed by π2 securely computes f1 followed by f2; i.e., it emulates an ideal world
in which the parties first use a trusted party to computes f1 followed by using the trusted party to
compute f2. Thus, we say that security is preserved under sequential composition. While clearly
desirable, this is non-trivial to prove, and in fact the presence of auxiliary input in the definition
of secure computation is necessary in order to prove security of sequential composition.

1.2 Modular Composition

Modular composition refers to invoking one protocol invoking other protocols as sub-routines. Mod-
ular composition helps ease the job of a protocol designer, since it is often easier to design a protocol
for some complicated functionality F by breaking down the protocol into smaller sub-components
that can be handled by their own protocols. It also can help simplify the overall proof of security for
a protocol: first prove security of the sub-protocols, and then rely on security of the sub-protocols
to prove security of the entire protocol.

Our overall strategy will be the following. We design a protocol Π computing F in a hybrid
world in which the parties have access to ideal functionalities f1, . . . , fn. That is, the parties
running Π will exchange messages as usual, but now Π may also instruct the parties to send input
to one of the ideal functionalities fi and then do something with the result they get back. (See
Figure 1.) Execution of Π in the presence of an adversary A, where the parties begin holding
security parameter κ and inputs ~x = (x1, . . . , xn), and A also holds auxiliary input z, defines a

random variable hybridf1,...,fmΠ,A (κ, ~x, z) consisting of the outputs of the honest parties and the joint
view of the corrupted parties.

Definition 1 A hybrid-world protocol Π computing F is t-secure if for all PPT adversaries A
corrupting at most t parties, there is a PPT simulator S corrupting the same parties such that:
{hybridf1,...,fmΠ,A (κ, ~x, z)}κ,~x,z and {idealF,S(κ, ~x, z)}κ,~x,z are computationally indistinguishable. ♦

Theorem 1 If π1, . . . , πm are secure (real-world) protocols for computing functionalities f1, . . . , fm,
and if Π is a secure protocol for computing F in the (f1, . . . , fm)-hybrid world, then the composed
(fully real-world) protocol Ππ1,...,πm is a secure protocol for computing F .

2-1



Figure 1: Hybrid-world protocol execution.

1.3 Parallel and Concurrent Composition?

Say π1, π2 are secure protocols computing f1, f2 respectively. What can we say if we have parties
executing π1 and π2 in parallel (i.e., where the rounds of the protocols are run in lockstep) or
concurrently (where the protocol messages may be arbitrarily interleaved)? In the semi-honest
setting, one can show that security is preserved by using the fact that a semi-honest adversary
executes the two protocols independently. In the malicious setting, however, we cannot in general
claim anything about security under parallel or concurrent composition. Later in the course we
will see a stronger definition of security that is preserved under concurrent composition.

2 Oblivious Transfer (OT)

A particularly important functionality is oblivious transfer (OT). While several variants can be
considered, the most widely used is 1-out-of-N OT. Here there one party (the sender) has a vector
of strings x0, . . . , xN−1 as input and the other party (the receiver) has an index i ∈ {0, . . . , N − 1};
the receiver should learn xi and nothing else (and the sender should learn nothing). See Figure 2.

2.1 Semi-Honest OT

We show a construction of an OT protocol with semi-honest security. Let (Gen,Enc,Dec) be a CPA-
secure public-key encryption scheme that allows for oblivious key sampling. Informally, this last
property means that it is possible to sample a public key of the scheme without sampling the corre-
sponding secret key. Formally, it means that there are efficient algorithms SampKey,SampRand such
that the distributions {r ← {0, 1}∗; pk ← SampKey(1κ; r) : (r, pk)}κ and {(pk, sk) ← Gen(1κ); r ←
SampRand(pk) : (r, pk)}κ are computationally indistinguishable. Not all encryption schemes have
this property, but some (e.g., El Gamal encryption in certain groups) do.

We describe the OT protocol for the case of N = 2 for simplicity. Here, we represent the index
of the receiver by a bit b. The protocol proceeds as follows:

1. The receiver chooses randomness r0, r1 and generates (pkb, skb) ← Gen(1κ) followed by

2-2



Figure 2: 1-out-of-N OT functionality.

pk1−b ← SampKey(1κ; r1−b). That is, they generate one public key in the regular way (along
with an associated secret key) and another public key obliviously. They send (pk0, pk1) to
the sender.

2. The sender computes c0 ← Encpk0(x0) and c1 ← Encpk1(x1), and sends c0, c1 to the receiver.

3. The receiver computes xb := Decskb(cb).

Theorem 2 If the encryption scheme used is CPA-secure and has oblivious key sampling, then the
above protocol securely computes the OT functionality for semi-honest adversaries.

Proof First consider the case where the sender is corrupted. Note that the sender’s view contains
only its own randomness and the two public keys pk0, pk1 the receiver sends. The oblivious key
sampling property implies that public keys generated using Gen and public keys generated using
SampKey are indistinguishable. We leave a description of a simulator and a full proof of security
in this case as an exercise.

We deal with the case where the receiver is corrupted in the next lecture.

2-3


