
CMSC 858T—Secure Distributed Computation February 2, 2021

Lecture 3

Lecturer: Jonathan Katz Scribe(s):
Noemi Glaeser
Mackenzie Kong-Sivert

1 Oblivious Transfer (OT)

Definition 1 Let (Gen,Enc,Dec) be a public-key encryption scheme. We say it has oblivious key
sampling if there are efficient algorithms SampKey, SampRand such that

{pk ← Gen(1κ); r ← SampRand(pk) : (r, pk)}

and
{r ← {0, 1}∗; pk := SampKey(1κ; r) : (r, pk)}

are computationally indistinguishable. ♦

The OT protocol works as follows:1

P1(x0, x1) P2(b)

r0, r1 ← {0, 1}∗
(pkb, skb) := Gen(1κ; rb)
pk1−b := SampKey(1κ; r1−b)

P2 sends pk0, pk1 to P1

c0 ← Encpk0(x0)
c1 ← Encpk1(x1) P1 sends c0, c1 to P2 xb := Decskb(cb)

Theorem 1 If the encryption scheme is CPA-secure and has oblivious key sampling,2 then the
above protocol securely realizes OT for semi-honest adversaries.

Proof We present a proof for the case of a corrupted P2. (The case of a corrupted P1 is left as
an exercise.) Define the following simulator S: on input b and xb (which S obtains by sending b to
the trusted party implementing the OT functionality) do:

1. Choose rb ← {0, 1}∗ and compute (pkb, skb) := Gen(1κ; rb).

2. Compute (pk1−b, sk1−b)← Gen(1κ) followed by r1−b ← SampRand(pk1−b).

3. Compute cb ← Encpkb(xb) and c1−b ← Encpk1−b
(0).3

4. Output (r0, r1, c0, c1).

1We use “←” for a randomized algorithm (including sampling uniformly from a set) and “:=” when we want to
emphasize that a step involves a deterministic process.

2As a technical point, note that we require CPA-security and oblivious key sampling even against non-uniform
adversaries. This is a consequence of out non-uniform definition of security computation.

3By ‘0’ we mean a string of 0s of the correct length (which we assume is fixed as part of the protocol).

3-1



Fix some inputs x0, x1, b for the parties. The view of P2 in the real world (executing the protocol
above on these inputs) is distributed as

Real(κ, x0, x1, b) =


rb, r1−b ← {0, 1}∗;

(pkb, skb)← Gen(1κ; rb);
pk1−b ← SampKey(1κ; r1−b);

cb ← Encpkb(xb); c1−b ← Encpk1−b
(x1−b)

: (r0, r1, c0, c1)

 .

The output of S in the ideal world is distributed as

Ideal(κ, x0, x1, b) =


rb ← {0, 1}∗;

(pkb, skb)← Gen(1κ; rb);
(pk1−b, sk1−b)← Gen(1κ); r1−b ← SampRand(pk1−b);

cb ← Encpkb(xb); c1−b ← Encpk1−b
(0)

: (r0, r1, c0, c1)

 .

To show that the ensembles {Real(κ, x0, x1, b)}κ,x0,x1,b and {Ideal(κ, x0, x1, b)}κ,x0,x1,b are computa-
tionally indistinguishable, we consider a hybrid (i.e., intermediate) distribution:

Hybrid(κ, x0, x1, b) =


rb ← {0, 1}∗;

(pkb, skb)← Gen(1κ; rb);
(pk1−b, sk1−b)← Gen(1κ); r1−b ← SampRand(pk1−b);

cb ← Encpkb(xb); c1−b ← Encpk1−b
(x1−b)

: (r0, r1, c0, c1)

 .

Notice that in the hybrid distribution, the random tapes are generated as in the ideal world, while
the ciphertexts are generated as in the real world.

We now show that Hybrid is indistinguishable from both Ideal and Real, which implies that Ideal
and Real are indistinguishable from each other.

Claim 2 If the encryption scheme is CPA-secure, then Hybrid and Ideal are indistinguishable.

To see this, fix some x0, x1, b, and an efficient distinguisher D. We construct the following ad-
versary D′ attacking CPA-security of the encryption scheme: On input a public key pk1−b and a
ciphertext c1−b that is either an encryption (under pk1−b) of x1−b or 0, adversary D′ does:

1. Sample rb ← {0, 1}∗, and compute (pkb, skb)← Gen(1κ; rb) followed by cb ← Encpkb(xb).

2. Compute r1−b ← SampRand(pk1−b).

3. Output D(r0, r1, c0, c1).

Note that if c1−b is an encryption of 0, then the input to D is distributed exactly according to
Ideal(κ, x0, x1, b), whereas if c1−b is an encryption of x1−b, then the input to D is distributed
exactly according to Hybrid(κ, x0, x1, b). It follows from CPA-security of the encryption scheme
that D cannot distinguish these distributions with non-negligible probability.

Claim 3 If the encryption scheme has oblivious key sampling, then Hybrid and Real are indistin-
guishable.

To see this, fix x0, x1, b, and an efficient distinguisher D. We construct the following adversary D′
breaking the oblivious key sampling property. On input (r1−b, pk1−b), adversary D′ does:

3-2



1. Sample rb ← {0, 1}∗, and compute (pkb, skb)← Gen(1κ; rb) followed by cb ← Encpkb(xb).

2. Compute c1−b ← Encpk1−b
(x1−b).

3. Output D(r0, r1, c0, c1).

If (r1−b, pk1−b) are generated by computing pk1−b ← Gen(1κ) and r ← SampRand(pk), then the
input given to D is distributed exactly according to Hybrid(κ, x0, x1, b). On the other hand, if
(r1−b, pk1−b) are generated by choosing r1−b ← {0, 1}∗ and then setting pk := SampKey(1κ; r),
then the input given to D is distributed exactly according to Real(κ, x0, x1, b). It follows from the
oblivious sampling property of the encryption scheme that D cannot distinguish these distributions
with non-negligible probability.

This completes the proof.

It is worth noting that security of the protocol relies strongly on semi-honest behavior of the
adversary. A malicious receiver could easily arrange to learn both inputs of the sender, and a mali-
cious sender could learn something about the receiver’s bit by computing one ciphertext correctly
and the other incorrectly.

2 The GMW Protocol

We now show how to use OT to do secure multi-party computation of arbitrary functionalities.
First, we observe that it suffices to consider deterministic functions. To see this, we show how it

is possible to compute an arbitrary randomized function g if parties have access to an ideal trusted
party computing arbitrary deterministic functions. Given g, define the deterministic function

f((x1, r1), . . . , (xn, rn)) = g(x1, . . . , xn; r1 ⊕ · · · ⊕ rn).

The protocol for securely computing g, when parties hold inputs x1, . . . , xn, is:

1. Each party Pi chooses uniform ri,

2. The parties invoke the ideal functionality computing f , with each party Pi using input (xi, ri).

One can verify that this is a perfectly secure protocol for computing g in the f -hybrid model, even
with n− 1 malicious corruptions.

We next show a protocol due to Goldreich, Micali, and Wigderson (the GMW protocol) for
computing any deterministic function f given access to a trusted functionality computing OT. We
start by expressing f as a boolean circuit consisting of NOT gates and AND/XOR gates of fan-in 2
and arbitrary fan-out. (Any function can be written using these gates.) We describe the protocol
for the case of two parties, and leave the n-party case to next time.

The key idea is for the two parties to set up and maintain the following invariant: for every
wire of the circuit, the parties hold a two-out-of-two sharing of the boolean value on that wire. (A
two-out-of-two sharing of a bit b is a pair of bits (b1, b2) such that b = b1 ⊕ b2.) Moreover, this
sharing will be sufficiently random so that no information is leaked. The parties begin the protocol
by setting up this invariant on the input wires, and then inductively maintain the invariant at each
gate of the circuit. Thus, at a high level, the protocol consists of the three phases:

Input-sharing phase. Say P1 holds the input bit a on some input wire of the circuit. P1 chooses
a uniform bit a1, sets a2 := a⊕ a1, sends a2 to P2, and keeps a1. The parties now have a sharing

3-3



(a1, a2) of the input bit a. The parties each do this for every input wire of the circuit for which
they holds the corresponding input bit.

Note that after this step the parties have established the desired invariant on the input wires
of the circuit.

Circuit-evaluation phase. We now show how the parties can inductively ensure the invariant at
internal wires of the circuit. There are three types of gates to consider; the first two are easy but
the last is more challenging:

• Consider a NOT gate b = ¬a, where the parties already have a sharing (a1, a2) of a. (We
overload notation, and use a to refer both to the wire and the value on what wire as the
circuit is evaluated.) Parties can generate a sharing of b by simply having one of the parties
flip their share of a. E.g., if P1 sets b1 := ¬a1 and P2 sets b2 := a2 then (b1, b2) is a sharing
of the correct value b.

• Consider an XOR gate c = a ⊕ b, where the parties already have sharings (a1, a2) of a and
(b1, b2) of b. The parties can generate a sharing of c by simply XORing their shares locally.
I.e., P1 sets c1 := a1 ⊕ b1 and P2 sets c2 := a2 ⊕ b2. One can verify that (c1, c2) is a sharing
of the correct value c.

• Finally, consider an AND gate c = a ∧ b, where the parties already have sharings (a1, a2) of
a and (b1, b2) of b. There is no local computation the parties can do that will give them a
sharing of c. (Can you prove this?) Instead, the parties proceed as follows:

1. P1 chooses a random bit c1 that will be its share of c.

2. Now P1 has to determine what P2’s share of c should be. It can reason as follows: if
a2 = 0 and b2 = 0, then c = a1 ∧ b1 and so c2 = (a1 ∧ b1) ⊕ c1. Since P1 knows a1, b1,
this is an explicit value that P1 can compute; call it c002 . Reasoning similarly, P1 can
compute values c012 , c

10
2 , and c112 , where

ca2b22 = ((a1 ⊕ a2) ∧ (b1 ⊕ b2))⊕ c1.

The problem is, P1 does not know what values of a2, b2 are held by P2! Instead, the
parties will use 1-out-of-4 OT to make sure P2 gets (only) the correct value. That is,
P1 will act as the sender with inputs (c002 , c

01
2 , c

10
2 , and c112 , and P2 will act as the sender

with input a2b2 (i.e., a number in the range of 0 to 3, expressed in binary). Using an
invocation of OT, P2 will learn ca2b22 and take that as its share c2 of c. The shares (c1, c2)
held by the parties are a sharing of the correct value c by construction.

Output-reconstruction phase. The above allows the parties the ensure the invariant for the
output wires of the circuit. Say the parties hold a sharing (a1, a2) of an output wire a. If a is an
output wire that P2 is supposed to learn at the end of the protocol, then P1 can simply send a1 to
P2, who can then compute a := a1 ⊕ a2; the parties act analogously when P1 is supposed to learn
the output.

Correctness of the protocol follows by construction. As for security, we have:

Theorem 4 The 2-party GMW protocol securely computes arbitrary functions f against semi-
honest adversaries. In fact, it is perfectly secure in the OT-hybrid model.

3-4



Proof We sketch a simulator S for the case when P2 is corrupted. (The case when P1 is corrupted
is even easier.) S is given both the initial input of P2 as well as the output that P2 learns from
evaluation of f . The simulator S works as follows:

• For each input wire a, choose random share a2. (For input wires that are inputs of P2, this
will correspond to randomness uses by P2; for input input wires that are inputs of P1, this
will correspond to the share sent by P1 to P2.)

• NOT gates and XOR gates involve only local computation, so there is nothing to simulate.
For AND gates, S must only simulate the output of the OT functionality. This is done by
simply setting the output from each invocation of the OT functionality to be a independent,
uniform bit.

• For an output wire a whose value P2 is supposed to learn, and which S knows (since it learned
a from the ideal evaluation of f) let a2 denote P2’s share of that wire. (Note that a2 is defined
by the view of P2 simulated thus far.) Set a1 = a⊕ a2 and include a1 in the view of P2.

The above provides a perfect simulation of the view of P2 in an execution of the GMW protocol in
the OT-hybrid model.

By instantiating the ideal OT functionality with a secure OT protocol, we obtain a (computa-
tionally) secure real-world protocol.

3-5


