Errata/Typos for “Introduction to Modern Cryptography, second edition”

(Last updated January 21, 2016)

Note: negative line numbers correspond to counting from the bottom of the page.

- Page 5, line 12: The reference to Figure 1.2 should be to Figure 1.1 instead.
- page 11, Figure 1.3: The percentage listed for the letter ‘o’ should be 7.5, not 1.5.
- page 102, Exercise 3.6(a): \([n/2]\) should be \([n/2]\).
- page 146, second displayed equation: \(K(m_0, t_0)\) should be \(K(t_0)\).
- page 210: In the second and third paragraphs on that page, the roles of \(k_1\) and \(k_2\) were confused. These paragraphs should read as follows:

 A better attack is possible by noting that individual bits of the output depend on only part of the master key. Fix some given input/output pair \((x, y)\) as before. Now, the adversary will enumerate over all possible values for the first byte of \(k_1\). It can XOR each such value with the first byte of \(x\) to obtain a candidate value for the input of the first \(S\)-box. Evaluating this \(S\)-box, the attacker learns a candidate value for the output of that \(S\)-box. Since the output of that \(S\)-box is XOR’d with 8 bits of \(k_2\) to give 8 bits of \(y\) (where the positions of those bits depend on the mixing permutation and are known to the attacker), this yields a candidate value for 8 bits of \(k_2\).

 To summarize: for each candidate value for the first byte of \(k_1\), there is a unique possible corresponding value for some 8 bits of \(k_2\). . . .

 (The rest of the second paragraph is the same, exact that \(k_2\) should be replaced with \(k_1\).)

- page 255, line -12: \(\mathcal{A}(x, r \oplus e^i)\) should be \(\mathcal{A}(f(x), r \oplus e^i)\).
- page 459, line -9: \(h\) should be \(y\) (twice).
- page 460, line 3: \(Gm\) should be \(G\).

Thanks to Ali El Kaafarani, Alejandro Mardones, Greg Plaxton, and Jim Tallent for informing us about some of the above typos.