Errata/Typos for “Introduction to Modern Cryptography, second edition”

(Last updated April 15, 2017)

Note: negative line numbers correspond to counting from the bottom of the page.

• Page 5, line 12: The reference to Figure 1.2 should be to Figure 1.1 instead.

• page 11, Figure 1.3: The percentage listed for the letter ‘o’ should be 7.5, not 1.5.

• page 102, Exercise 3.6(a): \(\lfloor n/2 \rfloor\) should be \(\lceil n/2 \rceil\).

• page 129, line 12: \(X\) and \(X'\) should be \(X_i\) and \(X_j\), respectively.

• page 129, equation (4.6) should read:

\[Pr[Coll] \leq \sum_{i,j:i<j} Pr[Coll_{i,j}] < \frac{q^2}{2} \cdot \max_{i<j} \{Pr[Coll_{i,j}]\} .\]

• page 129, line 15: \(Coll_{i,j}\) should be \(\max_{i<j} \{Pr[Coll_{i,j}]\}\).

• page 146, second displayed equation: \(K(m_0, t_0)\) should be \(K(t_0)\).

• page 149, Exercise 4.11: the question assumes that \(\Pi'\) is a secure MAC that uses canonical verification.

• page 150, Exercise 4.20: the question assumes that \(\Pi'\) is strongly secure.

• page 210: In the second and third paragraphs on that page, the roles of \(k_1\) and \(k_2\) were confused. These paragraphs should read as follows:

A better attack is possible by noting that individual bits of the output depend on only part of the master key. Fix some given input/output pair \((x, y)\) as before. Now, the adversary will enumerate over all possible values for the first byte of \(k_1\).

It can XOR each such value with the first byte of \(x\) to obtain a candidate value for the input of the first \(S\)-box. Evaluating this \(S\)-box, the attacker learns a candidate value for the output of that \(S\)-box. Since the output of that \(S\)-box is XOR’d with 8 bits of \(k_2\) to give 8 bits of \(y\) (where the positions of those bits depend on the mixing permutation and are known to the attacker), this yields a candidate value for 8 bits of \(k_2\).

To summarize: for each candidate value for the first byte of \(k_1\), there is a unique possible corresponding value for some 8 bits of \(k_2\). . . .

(The rest is the same, exact that \(k_2\) should be replaced with \(k_1\).)
• page 237, Exercise 6.4: the attack in the text already considers S-boxes with 8-bit input. So the first part of the question should instead consider a block length of 64 bits and 16 S-boxes taking 4-bit input.

• page 240, Exercise 6.16: there is in fact an attack taking time 2^{56} and using only constant space.

• page 255, line -12: $A(x, r \oplus e^i)$ should be $A(f(x), r \oplus e^i)$.

• page 358, Exercise 9.2: show instead that the algorithm outputs p with overwhelming probability.

• page 424, last line of Construction 11.36: \hat{m} should be m'.

• page 455, line -13: $\text{Sig-Forge}_{A',\Pi'}(n)$ should be $\Pr[\text{Sig-Forge}_{A',\Pi'}(n) = 1]$.

• page 459, line -9: h should be y (twice).

• page 460, line 3: $\mathbb{G}m$ should be \mathbb{G}.

• page 484, Exercise 12.5(c): the encoding should be $\text{enc}(m) = 0^k/10 \| m \| 0^k/10$.

• page 490, last line of Construction 13.4: $\text{inv}_I(c)$ should be $\text{inv}_{\text{id}}(c)$.