Errata/Typos for “Introduction to Modern Cryptography, second edition”

(Last updated December 16, 2018)

Note: negative line numbers correspond to counting from the bottom of the page.

• Page 5, line 12: The reference to Figure 1.2 should be to Figure 1.1 instead.

• page 11, Figure 1.3: The percentage listed for the letter ‘o’ should be 7.5, not 1.5.

• page 102, Exercise 3.6(a): $\lceil n/2 \rceil$ should be $\lfloor n/2 \rfloor$.

• page 103, Exercise 3.9: the output length of F should be one bit.

• page 129, line 12: X and X' should be X_i and X_j, respectively.

• page 129, equation (4.6) should read:

$$\Pr[\text{Coll}] \leq \sum_{i,j: i<j} \Pr[\text{Coll}_{i,j}] < \frac{q^2}{2} \cdot \max_{i<j} \{\Pr[\text{Coll}_{i,j}]\}.$$

• page 129, line 15: $\text{Coll}_{i,j}$ should be $\max_{i<j} \{\Pr[\text{Coll}_{i,j}]\}$.

• page 129, line -12: $2\ell - 2$ should be $2\ell - t - 2$, and this change should be propagated throughout the rest of the proof.

• page 146, second displayed equation: $K(m_0, t_0)$ should be $K(t_0)$.

• page 149, Exercise 4.11: the question assumes that Π' is a secure MAC that uses canonical verification.

• page 149, Exercise 4.14(b) should read as follows:

A random initial block is used each time a message is authenticated. That is, change Construction 4.11 by choosing uniform $t_0 \in \{0, 1\}^n$, computing t_ℓ as before, and then outputting the tag (t_0, t_ℓ); verification is done in the natural way.

• page 150, Exercise 4.20: the question assumes that Π' is strongly secure.

• page 161: the displayed equation should read

$$\Pr[\text{Mac-forge}_{A,\Pi}(n) = 1] = \Pr[\text{Mac-forge}_{A',\Pi'}(n) = 1 \land \overline{\text{coll}}],$$
• page 196, line 6: the displayed equation should read

\[y_i = \bigoplus_{j=0}^{n-1} c_j y_{i-n+j} \quad i > n. \]

• page 210: In the second and third paragraphs on that page, the roles of \(k_1 \) and \(k_2 \) were confused. These paragraphs should read as follows:

A better attack is possible by noting that individual bits of the output depend on only part of the master key. Fix some given input/output pair \((x, y)\) as before. Now, the adversary will enumerate over all possible values for the first byte of \(k_1 \). It can XOR each such value with the first byte of \(x \) to obtain a candidate value for the input of the first \(S \)-box. Evaluating this \(S \)-box, the attacker learns a candidate value for the output of that \(S \)-box. Since the output of that \(S \)-box is XOR’d with 8 bits of \(k_2 \) to give 8 bits of \(y \) (where the positions of those bits depend on the mixing permutation and are known to the attacker), this yields a candidate value for 8 bits of \(k_2 \).

To summarize: for each candidate value for the first byte of \(k_1 \), there is a unique possible corresponding value for some 8 bits of \(k_2 \). . .

(The rest is the same, exact that \(k_2 \) should be replaced with \(k_1 \).)

• page 237, Exercise 6.4: the attack in the text already considers \(S \)-boxes with 8-bit input. So the first part of the question should instead consider a block length of 64 bits and 16 \(S \)-boxes taking 4-bit input.

• page 240, Exercise 6.16: there is in fact an attack taking time \(2^{56} \) and using only constant space.

• page 255, line -12: \(A(x, r \oplus e^i) \) should be \(A(f(x), r \oplus e^i) \).

• page 326, line -16: This sentence should read: “…every line intersecting \(E(Z_p) \) at two points must also intersect it at a third point . . .”

• page 358, Exercise 9.2: show instead that the algorithm outputs \(p \) with overwhelming probability.

• page 424, last line of Construction 11.36: \(\hat{m} \) should be \(m' \).

• page 434, Exercise 11.7: \(m \) should be in \(Z_p \), not \(Z_q \).

• page 455, line -13: \(\text{Sig-Forge}_{\mathcal{A}', \Pi'}(n) \) should be \(\Pr[\text{Sig-Forge}_{\mathcal{A}', \Pi'}(n) = 1] \).

• page 459, line -9: \(h \) should be \(y \) (twice).

• page 460, line 3: \(\mathcal{G} m \) should be \(\mathcal{G} \).

• page 484, Exercise 12.5(c): the encoding should be \(\text{enc}(m) = 0^{6/10} \| m \| 0^{6/10} \).

• page 490, last line of Construction 13.4: \(\text{inv}_I(c) \) should be \(\text{inv}_{id}(c) \).