Errata/Typos for “Introduction to Modern Cryptography, second edition”

(Last updated April 12, 2018)

Note: negative line numbers correspond to counting from the bottom of the page.

• Page 5, line 12: The reference to Figure 1.2 should be to Figure 1.1 instead.

• page 11, Figure 1.3: The percentage listed for the letter ‘o’ should be 7.5, not 1.5.

• page 102, Exercise 3.6(a): $\lfloor n/2 \rfloor$ should be $\lceil n/2 \rceil$.

• page 103, Exercise 3.9: the output length of F should be one bit.

• page 129, line 12: X and X' should be X_i and X_j, respectively.

• page 129, equation (4.6) should read:

$$
\Pr[\text{Coll}] \leq \sum_{i,j: i < j} \Pr[\text{Coll}_{i,j}] < \frac{q^2}{2} \cdot \max_{i<j} \{ \Pr[\text{Coll}_{i,j}] \}.
$$

• page 129, line 15: Coll$_{i,j}$ should be $\max_{i<j} \{ \Pr[\text{Coll}_{i,j}] \}$.

• page 146, second displayed equation: $K(m_0, t_0)$ should be $K(t_0)$.

• page 149, Exercise 4.11: the question assumes that Π' is a secure MAC that uses canonical verification.

• page 149, Exercise 4.14(b) should read as follows:

A random initial block is used each time a message is authenticated. That is, change Construction 4.11 by choosing uniform $t_0 \in \{0, 1\}^n$, computing t_ℓ as before, and then outputting the tag (t_0, t_ℓ); verification is done in the natural way.

• page 150, Exercise 4.20: the question assumes that Π' is strongly secure.

• page 210: In the second and third paragraphs on that page, the roles of k_1 and k_2 were confused. These paragraphs should read as follows:

A better attack is possible by noting that individual bits of the output depend only on part of the master key. Fix some given input/output pair (x, y) as before. Now, the adversary will enumerate over all possible values for the first byte of k_1. It can XOR each such value with the first byte of x to obtain a candidate value for the input of the first S-box. Evaluating this S-box, the attacker learns a candidate value for the output of that S-box. Since the output of that S-box is XOR’d with
8 bits of k_2 to give 8 bits of y (where the positions of those bits depend on the mixing permutation and are known to the attacker), this yields a candidate value for 8 bits of k_2.

To summarize: for each candidate value for the first byte of k_1, there is a unique possible corresponding value for some 8 bits of k_2. . . .

(The rest is the same, exact that k_2 should be replaced with k_1.)

- page 237, Exercise 6.4: the attack in the text already considers S-boxes with 8-bit input. So the first part of the question should instead consider a block length of 64 bits and 16 S-boxes taking 4-bit input.

- page 240, Exercise 6.16: there is in fact an attack taking time 2^{56} and using only constant space.

- page 255, line -12: $A(x, r \oplus e^i)$ should be $A(f(x), r \oplus e^i)$.

- page 358, Exercise 9.2: show instead that the algorithm outputs p with overwhelming probability.

- page 424, last line of Construction 11.36: \hat{m} should be m'.

- page 434, Exercise 11.7: m should be in \mathbb{Z}_p, not \mathbb{Z}_q.

- page 455, line -13: $\text{Sig-Forge}_{A',\Pi'}(n)$ should be $\Pr[\text{Sig-Forge}_{A',\Pi'}(n) = 1]$.

- page 459, line -9: h should be y (twice).

- page 460, line 3: Gm should be G.

- page 484, Exercise 12.5(c): the encoding should be $\text{enc}(m) = 0^\kappa/10 \parallel m \parallel 0^{\kappa/10}$.

- page 490, last line of Construction 13.4: $\text{Inv}_{1}(c)$ should be $\text{Inv}_{td}(c)$.