Errata/Typos for “Introduction to Modern Cryptography, second edition”

(Last updated March 14, 2016)

Note: negative line numbers correspond to counting from the bottom of the page.

- Page 5, line 12: The reference to Figure 1.2 should be to Figure 1.1 instead.
- Page 11, Figure 1.3: The percentage listed for the letter ‘o’ should be 7.5, not 1.5.
- Page 102, Exercise 3.6(a): \([n/2]\) should be \([n/2]\).
- Page 146, second displayed equation: \(K(m_0,t_0)\) should be \(K(t_0)\).
- Page 149, Exercise 4.11: the question assumes that \(\Pi'\) is a secure MAC that uses canonical verification.
- Page 150, Exercise 4.20: the question assumes that \(\Pi'\) is strongly secure.
- Page 210: In the second and third paragraphs on that page, the roles of \(k_1\) and \(k_2\) were confused. These paragraphs should read as follows:

 A better attack is possible by noting that individual bits of the output depend on only part of the master key. Fix some given input/output pair \((x,y)\) as before. Now, the adversary will enumerate over all possible values for the first byte of \(k_1\). It can XOR each such value with the first byte of \(x\) to obtain a candidate value for the input of the first \(S\)-box. Evaluating this \(S\)-box, the attacker learns a candidate value for the output of that \(S\)-box. Since the output of that \(S\)-box is XOR’d with 8 bits of \(k_2\) to give 8 bits of \(y\) (where the positions of those bits depend on the mixing permutation and are known to the attacker), this yields a candidate value for 8 bits of \(k_2\).

 To summarize: for each candidate value for the first byte of \(k_1\), there is a unique possible corresponding value for some 8 bits of \(k_2\). . . .

(The rest of the second paragraph is the same, exact that \(k_2\) should be replaced with \(k_1\).)
- Page 237, Exercise 6.4: the attack in the text already considers \(S\)-boxes with 8-bit input. So the first part of the question should instead consider a block length of 64 bits and 16 \(S\)-boxes taking 4-bit input.
- Page 240, Exercise 6.16: there is in fact an attack taking time \(2^{56}\) and using only constant space.
- Page 255, line -12: \(A(x, r \oplus e^i)\) should be \(A(f(x), r \oplus e^i)\).
• page 358, Exercise 9.2: show instead that the algorithm outputs p with overwhelming probability.

• page 424, last line of Construction 11.36: \hat{m} should be m'.

• page 459, line -9: h should be y (twice).

• page 460, line 3: Gm should be G.

• page 484, Exercise 12.5(c): the encoding should be $\text{enc}(m) = 0^\kappa/10\|m\|0^\kappa/10$.

Thanks to Rolf Haenni, Ali El Kaafarani, Alejandro Mardones, Greg Plaxton, Christian Schaffner, and Jim Tallent for informing us about some of the above typos.