Errata/Typos for “Introduction to Modern Cryptography, third edition”

(Last updated July 23, 2024)

Note: negative line numbers correspond to counting from the bottom of the page.

- page 58, Theorem 3.11: \(f \) should be computable in polynomial time.
- page 170: as indicated in Exercise 6.1(b), second-preimage resistance implies preimage resistance only under certain additional conditions; it is not true in general.
- page 252, line -2 of Construction 7.6: \(z_i^* \) should be \(y_i^* \).
- page 283, line 11: \(\hat{G}(s) \) should be \(G(s) \).
- page 362, Exercise 9.24: For this problem, assume that the twisted Edwards representation uses quadratic residue \(a \) and quadratic non-residue \(d \).
- page 368, line 8: “less than \(p_k \)” should be “at most \(p_k \).”
- page 449, line -10: \(k_1 \) should be \(k \).
- page 450, line -4 of Construction 12.36: should read \(s \in \{0,1\}^k \) and \(t \in \{0,1\}^{t+k} \).
- page 483, line -7: \(g^{a(s_1^{-1}s_2^{-1})} = y_1s_1^{-1}r_2s_2^{-1} \) should be \(g^{a(s_1^{-1}s_2^{-1})} = y_2s_2^{-1}r_1s_1^{-1} \).
- page 501, line -12: should read “… we can let \(C \) be the set of all strings whose first \(m - \log \ell \) bits are all 0 and take \(D \) to be the set of all strings whose first \(m - 2\log \ell \) bits are all 1.”
- page 507, last displayed equation: \(e_{n+1} \) should be \(\hat{e}_{n+1} \).
- page 577, line -7 should have “\(\geq \)” instead of “\(\leq \)” In any case, the only result we rely on is that when the \(\{E_i\}_{i=1}^n \) are disjoint events with \(\Pr[\bigvee_{i=1}^n E_i] = 1 \), then for any event \(F \) we have

\[
\Pr[F] = \sum_{i=1}^n \Pr[F \land E_i] = \sum_{i=1}^n \Pr[F \mid E_i] \cdot \Pr[E_i].
\]

- page 578, line 17: \(X_i \) should be \(X_1 \) and \(X_j \) should be \(X_2 \).

Thanks to Paulo Barreto, Claude Crépeau, Owen Ekblad, Bruno Grenet, Dominique Schröder, Marek Sefranek, Patrick Struck, and Bingsheng Zhang for informing us about some of the above typos.