In Section 4.6.3 we described a “birthday attack” for finding a collision in an arbitrary hash function. If the output length of the hash function is ℓ bits, the attack finds a collision with constant probability using $\Theta(2^{\ell/2})$ hash-function evaluations. A drawback of that approach, however, is that the attack also requires storage of $\Theta(2^{\ell/2})$ hash outputs. Here, we describe an improved attack using roughly the same time as before, but storing only a constant number of hash outputs.

The basic idea is similar to one used also (in a different context) in Section 8.1.2. The attack starts by choosing a random initial value $x_0 \in \{0, 1\}^{\ell+1}$ and then, for $i = 1, \ldots$, computing $x_i := H(x_{i-1})$ and $x_{2i} := H(H(x_{2i-1}))$. (Note that $x_i = H^i(x_0)$ for all i, where H^i here refers to i-fold iteration of H.) In each step the values x_i and x_{2i} are compared; if they are equal, there is a collision somewhere in the sequence $x_0, x_1, \ldots, x_{2i-1}$ and the algorithm runs a sub-routine to find it. (This step is described in more detail below.) The key point is that this algorithm only requires storage of the two hash values x_i and x_{2i} in each iteration.

We formally describe the algorithm and then give a complete analysis.

\begin{algorithm}
\begin{center}
\textbf{ALGORITHM 0.1} \hfill
\end{center}
A small-space birthday attack
\begin{itemize}
\item \textbf{Input:} A hash function $H : \{0, 1\}^* \to \{0, 1\}^\ell$
\item \textbf{Output:} Distinct x, x' with $H(x) = H(x')$
\end{itemize}
\begin{verbatim}
x_0 := \{0, 1\}^{\ell+1}
x' := x := x_0
for $i = 1$ to $2^{\ell/2} + 1$:
 $x := H(x)$
 $x' := H(H(x'))$
 // Now $x = H^i(x_0)$ and $x' = H^{2i}(x_0)$
 if $x = x'$ break
if $x \neq x'$ return fail
$x' := x$, $x := x_0$
for $j = 1$ to i:
 if $H(x) = H(x')$ return x, x' and halt
 else $x := H(x)$, $x' := H(x')$
 // Now $x = H^j(x_0)$ and $x' = H^{j+1}(x_0)$
\end{verbatim}
\end{algorithm}

Let $q = 2^{\ell/2} + 1$ be the upper bound on the number of iterations run by the algorithm. Consider the sequence of values x_1, \ldots, x_q, where $x_i = H^i(x_0)$. If we model H as a random function, each of these values is uniformly and independently distributed in $\{0, 1\}^\ell$ until the first repeat occurs. (If $x_i = x_j$ then we must have $x_{i+1} = x_{j+1}$.) Using the same analysis as in Lemma A.10, with probability greater than $1/4$ there is some repeat in this sequence; we show that whenever such a repeat is present, our algorithm finds a collision.
Assume there is some repeated value in the sequence x_1, \ldots, x_q. The following holds (cf. Claim 8.2):

CLAIM 0.2 Let x_1, \ldots, x_q be a sequence of values with $x_m = H(x_{m-1})$. If $x_I = x_J$ with $I < J$, then there exists an $i < J$ such that $x_i = x_{2i}$.

PROOF If $x_I = x_J$, then the sequence x_I, x_{I+1}, \ldots repeats with period $J - I$. (That is, for all $i \geq I$ and integers $\delta \geq 0$ it holds that $x_i = x_{i+\delta(J-I)}$.)

Take i to be the smallest multiple of $J - I$ that is greater than or equal to I; that is, $i \overset{\text{def}}{=} (J - I) \cdot \lceil I/(J - I) \rceil$. We must have $i < J$ since the sequence $I, I + 1, \ldots I + (J - I - 1)$ contains a multiple of $J - I$. Since $2i - i = i$ is a multiple of the period and $i \geq I$, it follows that $x_i = x_{2i}$.

By the claim above, if there is a repeated value in the sequence x_1, \ldots, x_q then there is some $i < q$ for which $x_i = x_{2i}$. But that means that in iteration i of our algorithm, we have $x = x'$ and the algorithm breaks. Next, the algorithm sets $x' := x = x_i$ and $x := x_0$. The algorithm then proceeds until it finds the smallest $j \geq 0$ for which $x_j = x_{j+i}$, and outputs x_{j-1}, x_{j+i-1} as a collision. (Note $j \neq 0$ because $|x_0| = \ell + 1$ and $|x_i| = \ell$ and hence $x_0 \neq x_i$.) Such a j exists because taking $j = i$ works. By construction $H(x_{j-1}) = H(x_{j+i-1})$, and $x_{j-1} \neq x_{j+i-1}$ by minimality of j.
