
In Section 4.6.3 we described a “birthday attack” for finding a collision in an
arbitrary hash function. If the output length of the hash function is ` bits, the
attack finds a collision with constant probability using Θ(2`/2) hash-function
evaluations. A drawback of that approach, however, is that the attack also
requires storage of Θ(2`/2) hash outputs. Here, we describe an improved
attack using roughly the same time as before, but storing only a constant
number of hash outputs.

The basic idea is similar to one used also (in a different context) in Sec-
tion 8.1.2. The attack starts by choosing a random initial value x0 ∈ {0, 1}`+1

and then, for i = 1, . . ., computing xi := H(xi−1) and x2i := H(H(x2(i−1))).
(Note that xi = Hi(x0) for all i, where Hi here refers to i-fold iteration of H.)
In each step the values xi and x2i are compared; if they are equal, there is a
collision somewhere in the sequence x0, x1, . . . , x2i−1 and the algorithm runs
a sub-routine to find it. (This step is described in more detail below.) The
key point is that this algorithm only requires storage of the two hash values
xi and x2i in each iteration.

We formally describe the algorithm and then give a complete analysis.

ALGORITHM 0.1
A small-space birthday attack

Input: A hash function H : {0, 1}∗ → {0, 1}`

Output: Distinct x, x′ with H(x) = H(x′)

x0 ← {0, 1}`+1

x′ := x := x0

for i = 1 to 2`/2 + 1:
x := H(x)
x′ := H(H(x′))
// Now x = Hi(x0) and x′ = H2i(x0)
if x = x′ break

if x 6= x′ return fail
x′ := x, x := x0

for j = 1 to i:
if H(x) = H(x′) return x, x′ and halt
else x := H(x), x′ := H(x′)
// Now x = Hj(x0) and x′ = Hj+i(x0)

Let q = 2`/2 +1 be the upper bound on the number of iterations run by the
algorithm. Consider the sequence of values x1, . . . , xq, where xi = Hi(x0).
If we model H as a random function, each of these values is uniformly and
independently distributed in {0, 1}` until the first repeat occurs. (If xi = xj

then we must have xj+1 = xi+1.) Using the same analysis as in Lemma A.10,
with probability greater than 1/4 there is some repeat in this sequence; we
show that whenever such a repeat is present, our algorithm finds a collision.



Assume there is some repeated value in the sequence x1, . . . , xq. The fol-
lowing holds (cf. Claim 8.2):

CLAIM 0.2 Let x1, . . . , xq be a sequence of values with xm = H(xm−1).
If xI = xJ with I < J , then there exists an i < J such that xi = x2i.

PROOF If xI = xJ , then the sequence xI , xI+1, . . . repeats with period
J − I. (That is, for all i ≥ I and integers δ ≥ 0 it holds that xi = xi+δ(J−I).)
Take i to be the smallest multiple of J − I that is greater than or equal to I;
that is, i

def= (J − I) · dI/(J − I)e. We must have i < J since the sequence
I, I + 1, . . . I + (J − I − 1) contains a multiple of J − I. Since 2i− i = i is a
multiple of the period and i ≥ I, it follows that xi = x2i.

By the claim above, if there is a repeated value in the sequence x1, . . . , xq

then there is some i < q for which xi = x2i. But that means that in itera-
tion i of our algorithm, we have x = x′ and the algorithm breaks. Next, the
algorithm sets x′ := x (= xi) and x := x0. The algorithm then proceeds until
it finds the smallest j ≥ 0 for which xj = xj+i, and outputs xj−1, xj+i−1

as a collision. (Note j 6= 0 because |x0| = ` + 1 and |xi| = ` and hence
x0 6= xi.) Such a j exists because taking j = i works. By construction
H(xj−1) = H(xj+i−1), and xj−1 6= xj+i−1 by minimality of j.


