Contents

Preface I Introduction and Classical Cryptography

1	Intr	oduction 1
	1.1	Cryptography and Modern Cryptography 1
	1.2	The Setting of Private-Key Encryption
	1.3	Historical Ciphers and Their Cryptanalysis 6
	1.4	Principles of Modern Cryptography 14
		1.4.1 Principle 1 – Formal Definitions
		1.4.2 Principle 2 – Precise Assumptions
		1.4.3 Principle 3 – Proofs of Security
		1.4.4 Provable Security and Real-World Security 20
	Refe	rences and Additional Reading
	Exer	cises $\ldots \ldots 21$
2	Perf	Tectly Secret Encryption 23
	2.1	Definitions 24
	2.2	The One-Time Pad 31
	2.3	Limitations of Perfect Secrecy
	2.4	*Shannon's Theorem 34
	Refe	rences and Additional Reading
	Exer	cises
п	\mathbf{P}	rivate-Key (Symmetric) Cryptography 41
3	Priv	rate-Key Encryption 43
	3.1	Computational Security 43
		3.1.1 The Concrete Approach
		3.1.2 The Asymptotic Approach
	3.2	Defining Computationally Secure Encryption 51
		3.2.1 The Basic Definition of Security (EAV-Security) 52
		3.2.2 *Semantic Security $\ldots \ldots 56$
	3.3	Constructing an EAV-Secure Encryption Scheme
		3.3.1 Pseudorandom Generators
		3.3.2 Proofs by Reduction $\ldots \ldots \ldots$
		3.3.3 EAV-Security from a Pseudorandom Generator 65

 $\mathbf{x}\mathbf{v}$

	3.4	Stronger Security Notions	70
		3.4.1 Security for Multiple Encryptions	70
		3.4.2 Chosen-Plaintext Attacks and CPA-Security	72
		3.4.3 CPA-Security for Multiple Encryptions	74
	3.5	Constructing a CPA-Secure Encryption Scheme	75
		3.5.1 Pseudorandom Functions and Permutations	76
		3.5.2 CPA-Security from a Pseudorandom Function	80
	3.6	Modes of Operation and Encryption in Practice	84
	0.0	3.6.1 Stream Ciphers	85
		3.6.2 Stream-Cipher Modes of Operation	87
		3.6.3 Block Ciphers and Block-Cipher Modes of Operation	88
		3.6.4 *Nonce-Based Encryption	96
	Refe	erences and Additional Reading	99
	Exe	rcises	99
	LAC		00
4	Mes	ssage Authentication Codes	105
	4.1	Message Integrity	105
		4.1.1 Secrecy vs. Integrity	105
		4.1.2 Encryption vs. Message Authentication	106
	4.2	Message Authentication Codes (MACs) – Definitions	108
	4.3	Constructing Secure Message Authentication Codes	114
		4.3.1 A Fixed-Length MAC	114
		4.3.2 Domain Extension for MACs	116
	4.4	CBC-MAC	120
		4.4.1 The Basic Construction	120
		4.4.2 *Proof of Security	123
	4.5	GMAC and Poly 1305 \cdot	128
		4.5.1 MACs from Difference-Universal Functions	128
		4.5.2 Instantiations	131
	4.6	*Information-Theoretic MACs	133
		4.6.1 One-Time MACs from Strongly Universal Functions .	134
		4.6.2 One-Time MACs from Difference-Universal Functions	137
		4.6.3 Limitations on Information-Theoretic MACs	139
	Refe	erences and Additional Reading	140
	Exe	rcises	140
5	CC.	A-Security and Authenticated Encryption	145
	5.1	Chosen-Ciphertext Attacks and CCA-Security	145
		5.1.1 Padding-Oracle Attacks	146
		5.1.2 Defining CCA-Security	149
	5.2	Authenticated Encryption	151
		5.2.1 Defining Authenticated Encryption	151
		5.2.2 CCA Security vs. Authenticated Encryption	153
	5.3	Authenticated Encryption Schemes	154
		5.3.1 Generic Constructions	154

		5.3.2 Standardized Schemes	161
	5.4	Secure Communication Sessions	162
	Refe	erences and Additional Reading	164
	Exer	rcises	164
6	Has	h Functions and Applications	167
	6.1	Definitions	167
		6.1.1 Collision Resistance	168
		6.1.2 Weaker Notions of Security	170
	6.2	Domain Extension: The Merkle–Damgård Transform \ldots	170
	6.3	Message Authentication Using Hash Functions	172
		6.3.1 Hash-and-MAC	172
		6.3.2 HMAC	175
	6.4	Generic Attacks on Hash Functions	177
		6.4.1 Birthday Attacks for Finding Collisions	178
		6.4.2 Small-Space Birthday Attacks	179
		6.4.3 *Time/Space Tradeoffs for Inverting Hash Functions .	182
	6.5	The Random-Oracle Model	187
		6.5.1 The Random-Oracle Model in Detail	188
		6.5.2 Is the Random-Oracle Methodology Sound?	192
	6.6	Additional Applications of Hash Functions	195
		6.6.1 Fingerprinting and Deduplication	195
		6.6.2 Merkle Trees	196
		6.6.3 Password Hashing	198
		6.6.4 Key Derivation	199
		6.6.5 Commitment Schemes	200
	Refe	erences and Additional Reading	202
	Exer	rcises	203
_	_		
7	Pra	ctical Constructions of Symmetric-Key Primitives	207
	7.1	Stream Ciphers	208
		7.1.1 Linear-Feedback Shift Registers	209
		7.1.2 Adding Nonlinearity	211
		7.1.3 Trivium \ldots	212
		7.1.4 RC4	213
		7.1.5 ChaCha 20	216
	7.2	Block Ciphers	217
		7.2.1 Substitution-Permutation Networks	219
		7.2.2 Feistel Networks	226
		7.2.3 DES – The Data Encryption Standard	228
		7.2.4 3DES: Increasing the Key Length of a Block Cipher .	235
		7.2.5 AES – The Advanced Encryption Standard	238
		7.2.6 *Differential and Linear Cryptanalysis	240
	7.3	Compression Functions and Hash Functions	246
		7.3.1 Compression Functions from Block Ciphers	246

		7.3.2	MD5, SHA-1, and SHA-2	249
		7.3.3	The Sponge Construction and SHA-3 (Keccak)	250
	Refe	erences	and Additional Reading	254
	Exe	rcises		255
8	*Tł	neoreti	cal Constructions of Symmetric-Key Primitives	261
	8.1	One-V	Vay Functions	262
		8.1.1	Definitions	262
		8.1.2	Candidate One-Way Functions	265
		8.1.3	Hard-Core Predicates	266
	8.2	From	One-Way Functions to Pseudorandomness	267
	8.3	Hard-	Core Predicates from One-Way Functions	269
		8.3.1	A Simple Case	270
		8.3.2	A More Involved Case	270
		8.3.3	The Full Proof	274
	8.4	Const	ructing Pseudorandom Generators	277
		8.4.1	Pseudorandom Generators with Minimal Expansion .	277
		8.4.2	Increasing the Expansion Factor	279
	8.5	Const	ructing Pseudorandom Functions	284
	8.6	Const	ructing (Strong) Pseudorandom Permutations	289
	8.7	Assun	options for Private-Key Cryptography	293
	8.8	Comp	utational Indistinguishability	296
	Refe	erences	and Additional Reading	298
	Exe	rcises		$\frac{-00}{299}$
		.		
11	1 1	Public	c-Key (Asymmetric) Cryptography	303
9	Nu	mber 7	Fheory and Cryptographic Hardness Assumptions	305
	9.1	Prelin	ninaries and Basic Group Theory	306
		9.1.1	Primes and Divisibility	005
		9.1.2		307
		0	Modular Arithmetic	$\frac{307}{309}$
		9.1.3	Modular Arithmetic Groups	307 309 311
		9.1.3 9.1.4	Modular ArithmeticGroupsThe Group \mathbb{Z}_N^*	307 309 311 315
		$9.1.3 \\ 9.1.4 \\ 9.1.5$	Modular ArithmeticGroupsThe Group \mathbb{Z}_N^* *Isomorphisms and the Chinese Remainder Theorem .	307 309 311 315 317
	9.2	9.1.3 9.1.4 9.1.5 Prime	Modular ArithmeticGroupsThe Group \mathbb{Z}_N^* *Isomorphisms and the Chinese Remainder Theorems, Factoring, and RSA	307 309 311 315 317 322
	9.2	9.1.3 9.1.4 9.1.5 Prime 9.2.1	Modular ArithmeticGroupsThe Group \mathbb{Z}_N^* *Isomorphisms and the Chinese Remainder TheoremGenerating Random Primes	307 309 311 315 317 322 323
	9.2	9.1.3 9.1.4 9.1.5 Prime 9.2.1 9.2.2	Modular Arithmetic	307 309 311 315 317 322 323 325
	9.2	9.1.3 9.1.4 9.1.5 Prime 9.2.1 9.2.2 9.2.3	Modular Arithmetic	307 309 311 315 317 322 323 325 331
	9.2	9.1.3 9.1.4 9.1.5 Prime 9.2.1 9.2.2 9.2.3 9.2.4	Modular Arithmetic	307 309 311 315 317 322 323 325 331 331
	9.2	9.1.3 9.1.4 9.1.5 Prime 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5	Modular Arithmetic	307 309 311 315 317 322 323 325 331 331 334
	9.2 9.3	9.1.3 9.1.4 9.1.5 Prime 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5 Crypt	Modular Arithmetic	307 309 311 315 317 322 323 325 331 331 334 336
	9.2 9.3	9.1.3 9.1.4 9.1.5 Prime 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5 Crypt 9.3.1	Modular Arithmetic	307 309 311 315 317 322 323 325 331 331 334 336 336
	9.2 9.3	9.1.3 9.1.4 9.1.5 Prime 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5 Crypt 9.3.1 9.3.2	Modular Arithmetic	307 309 311 315 317 322 323 325 331 331 331 334 336 336 339
	9.2 9.3	9.1.3 9.1.4 9.1.5 Prime 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5 Crypt 9.3.1 9.3.2 9.3.3	Modular ArithmeticGroupsThe Group \mathbb{Z}_N^* The Group \mathbb{Z}_N^* *Isomorphisms and the Chinese Remainder Theorem*s. Factoring, and RSAGenerating Random Primes*Primality TestingThe Factoring AssumptionThe Factoring Assumption*Relating the Factoring and RSA Assumptionsographic Assumptions in Cyclic GroupsCyclic Groups and GeneratorsThe Discrete-Logarithm/Diffie-Hellman AssumptionsWorking in (Subgroups of) \mathbb{Z}_n^*	307 309 311 315 317 322 323 325 331 331 331 334 336 336 339 342

	9.4	*Cryptographic Applications		•	. 354 . 355
	D	9.4.2 Collision-Resistant Hash Functions	·	•	. 357
	Refe	rences and Additional Reading	·	•	. 359
	Exer	Clses	·	•	. 360
10	*Alg	gorithms for Factoring and Computing Discrete	\mathbf{L}	og	365 365
	10.1	Algorithms for Eactoring			366
	10.1	10.1.1 Pollard's $n = 1$ Algorithm	·	•	. 300 367
		10.1.2 Pollard's Bho Algorithm	·	•	. 301 368
		10.1.3 The Quadratic Sieve Algorithm	•	•	. 360 369
	10.2	Generic Algorithms for Computing Discrete Logarithms	•	•	. 372
	10.2	10.2.1 The Pohlig-Hellman Algorithm	·	•	. 012 374
		10.2.2 The Baby-Step/Giant-Step Algorithm	•	•	. 376
		10.2.3 Discrete Logarithms from Collisions			. 377
	10.3	Index Calculus: Computing Discrete Logarithms in \mathbb{Z}^*			.378
	10.4	Recommended Key Lengths			. 380
	Refe	rences and Additional Reading	·		. 381
	Exer	rcises			. 382
11	Kev	Management and the Public-Key Revolution			385
	11.1	Key Distribution and Key Management			. 385
	11.2	A Partial Solution: Key-Distribution Centers			. 387
	11.3	Key Exchange and the Diffie–Hellman Protocol			. 389
	11.4	The Public-Key Revolution			. 396
	Refe	rences and Additional Reading			. 398
	Exer	cises		•	. 399
12	Pub	blic-Key Encryption			401
	12.1	Public-Key Encryption – An Overview			. 401
	12.2	Definitions			. 404
		12.2.1 Security against Chosen-Plaintext Attacks			. 405
		12.2.2 Multiple Encryptions			. 407
		12.2.3 Security against Chosen-Ciphertext Attacks			. 412
	12.3	Hybrid Encryption and the KEM/DEM Paradigm			. 415
		12.3.1 CPA-Security			. 419
		12.3.2 CCA-Security			. 424
	12.4	CDH/DDH-Based Encryption			. 425
		12.4.1 El Gamal Encryption		•	. 426
		12.4.2 DDH-Based Key Encapsulation		•	. 430
		12.4.3 *A CDH-Based KEM in the Random-Oracle Mod	el	,	. 432
		12.4.4 *Chosen-Ciphertext Security and DHIES/ECIES		•	. 434
	12.5	RSA-Based Encryption		•	. 436
		12.5.1 Plain RSA Encryption		•	. 436

xi

10 5 0	
12.5.2	Padded RSA and PKCS $\#1$ v1.5
12.5.3	*CPA-Secure Encryption without Random Oracles
12.5.4	OAEP and PKCS $\#1$ v2

	12.5.4 OAEP and PKCS $\#1$ v2	447
	12.5.5 *A CCA-Secure KEM in the Random-Oracle Model .	451
	12.5.6 RSA Implementation Issues and Pitfalls	455
	References and Additional Reading	458
	Exercises	459
13	Digital Signature Schemes	463
	13.1 Digital Signatures – An Overview	463
	13.2 Definitions	465
	13.3 The Hash-and-Sign Paradigm	467
	13.4 BSA-Based Signatures	468
	13.4.1 Plain RSA Signatures	468
	13.4.2 RSA-FDH and PKCS #1 Standards	470
	13.5 Signatures from the Discrete-Logarithm Problem	475
	13.5.1 Identification Schemes and Signatures	475
	13.5.2 The Schnorr Identification/Signature Schemes	480
	13.5.3 DSA and ECDSA	483
	13.6 Certificates and Public-Key Infrastructures	485
	13.7 Putting It All Together – TLS	491
	13.8 *Signervption	493
	References and Additional Reading	495
	Exercises	495
14	*Post-Quantum Cryptography	499
	14.1 Post-Quantum Symmetric-Key Cryptography	500
	14.1.1 Grover's Algorithm and Symmetric-Key Lengths	500
	14.1.2 Collision-Finding Algorithms and Hash Functions	501
	14.2 Shor's Algorithm and its Impact on Cryptography	502
	14.3 Post-Quantum Public-Key Encryption	504
	14.4 Post-Quantum Signatures	509
	14.4.1 Lamport's Signature Scheme	510
	14.4.2 Chain-Based Signatures	513
	14.4.3 Tree-Based Signatures	517
	References and Additional Reading	522
	Exercises	523
15	*Advanced Topics in Public-Key Encryption	525
0	15.1 Public-Kev Encryption from Trapdoor Permutations	525
	15.1.1 Trapdoor Permutations	526
	15.1.2 Public-Key Encryption from Trapdoor Permutations	527
	15.2 The Paillier Encryption Scheme	529
	15.2.1 The Structure of $\mathbb{Z}_{M_2}^*$	530
	15.2.2 The Paillier Encryption Scheme \ldots	532
	V 1	

441

443

	15.2.3 Homomorphic Encryption	537
15.3	Secret Sharing and Threshold Encryption	539
	15.3.1 Secret Sharing \ldots	539
	15.3.2 Verifiable Secret Sharing	541
	15.3.3 Threshold Encryption and Electronic Voting	543
15.4	The Goldwasser–Micali Encryption Scheme	545
	15.4.1 Quadratic Residues Modulo a Prime	545
	15.4.2 Quadratic Residues Modulo a Composite	548
	15.4.3 The Quadratic Residuosity Assumption	552
	15.4.4 The Goldwasser–Micali Encryption Scheme	553
15.5	The Rabin Encryption Scheme	556
	15.5.1 Computing Modular Square Roots	556
	15.5.2 A Trapdoor Permutation Based on Factoring	561
	15.5.3 The Rabin Encryption Scheme	565
Refe	erences and Additional Reading	566
Exe	rcises	567
Index	of Common Notation	571
Appen	dix A Mathematical Background	575
A.1	Identities and Inequalities	575
A.2	Asymptotic Notation	575
A.3	Basic Probability	576
A.4	The "Birthday" Problem	581
A.5	*Finite Fields	584
Appen	dix B Basic Algorithmic Number Theory	587
B 1	Integer Arithmetic	589
D.1	B 1 1 Basic Operations	589
	B 1.2 The Euclidean and Extended Euclidean Algorithms	590
B.2	Modular Arithmetic	591
D.2	B 2.1 Basic Operations	592
	B 2.2 Computing Modular Inverses	592
	B 2.3 Modular Exponentiation	593
	B 2.4 *Montgomery Multiplication	595
	B 2.5 Choosing a Uniform Group Element	597
B 3	*Finding a Generator of a Cyclic Group	599
D.0	B 3.1 Group-Theoretic Background	599
	B 3.2 Efficient Algorithms	601
Refe	erences and Additional Reading	602
Exe	rcises	602
Refere	nces	603
т 1		010
Index		619

xiii

Preface

The goal of our book remains the same as in the first edition: to present the core paradigms and principles of modern cryptography to a general audience with a basic mathematics background. We have designed this book to serve as a textbook for undergraduate- or graduate-level courses in cryptography (in computer science, electrical engineering, or mathematics departments), as a general introduction suitable for self-study (especially for beginning graduate students), and as a reference for students, researchers, and practitioners.

There are numerous other cryptography textbooks available today, and the reader may rightly ask whether another book on the subject is needed. We would not have written this book—nor worked on revising it for the second and third editions—if the answer to that question were anything other than an unequivocal *yes*. What, in our opinion, distinguishes our book from others is that it provides a *rigorous* treatment of modern cryptography in an *accessible* and *introductory* manner.

Our focus is on *modern* (post-1980s) cryptography, which is distinguished from classical cryptography by its emphasis on definitions, precise assumptions, and rigorous proofs of security. We briefly discuss each of these in turn (these principles are explored in greater detail in Chapter 1):

- The central role of definitions: A key intellectual contribution of modern cryptography has been the recognition that *formal definitions* of security are an essential first step in the design of any cryptographic primitive or protocol. The reason, in retrospect, is simple: if you don't know what it is you are trying to achieve, how can you hope to know when you have achieved it? As we will see in this book, cryptographic definitions of security are quite strong and—at first glance—may appear impossible to achieve. One of the most amazing aspects of cryptography is that efficient constructions satisfying such strong definitions can be proven to exist (under rather mild assumptions).
- The importance of precise assumptions: As will be explained in Chapters 2 and 3, many cryptographic constructions cannot currently be proven secure unconditionally. Security, instead, generally relies on some widely believed (though unproven) assumption(s). The modern cryptographic approach dictates that any such assumptions must be clearly stated and unambiguously defined. This not only allows for objective evaluation of the assumptions but, more importantly, enables rigorous proofs of security (as described next).

• The possibility of proofs of security: The previous two principles serve as the basis for the idea that *cryptographic constructions can be proven secure* with respect to clearly stated definitions of security and relative to well-defined cryptographic assumptions. This concept is the essence of modern cryptography, and is what has transformed the field from an art to a science.

The importance of this idea cannot be overemphasized. Historically, cryptographic schemes were designed in a largely heuristic fashion, and were deemed to be secure if the designers themselves could not find any attacks. In contrast, modern cryptography advocates the design of schemes with formal, mathematical proofs of security in well-defined models. Such schemes are *guaranteed* to be secure (with respect to a certain security definition) unless the underlying assumption is false. By relying on long-standing assumptions, it is thus possible to obtain schemes that are extremely unlikely to be broken.

A unified approach. The above principles of modern cryptography are relevant not only to the "theory of cryptography" community. The importance of precise definitions is, by now, widely understood and appreciated by developers and security engineers who use cryptographic tools to build secure systems, and rigorous proofs of security have become one of the requirements for cryptographic schemes to be standardized.

Changes in the Third Edition

In preparing the third edition, we have continued to integrate a more practical perspective without sacrificing a rigorous approach. This is reflected in a number of changes and additions as compared to the second edition:

- We have divided our treatment of symmetric-key encryption into two parts: Chapter 3 deals with security against "passive" attacks (i.e., CPA-security), while Chapter 5 addresses "active" attacks (i.e., CCAsecurity and authenticated encryption). Besides breaking up what was previously a long chapter, this also allows us to introduce message authentication codes before discussing active attacks against encryption schemes.
- With an eye toward symmetric-key schemes used in practice, we have improved our coverage of stream ciphers and stream-cipher modes of operation (Sections 3.6.1 and 3.6.2); added a treatment of nonce-based encryption (Section 3.6.4); and incorporated material about standard-ized schemes such as GMAC and Poly1305 (Section 4.5) as well as GCM, CCM, and ChaCha20-Poly1305 (Section 5.3.2).
- With similar motivation, we have added sections on the ChaCha20 stream cipher and SHA-3 to Chapter 7. As part of our discussion about SHA-3, we also describe the sponge construction.

- We have further increased our coverage of elliptic-curve cryptography (Section 9.3.4), including a discussion of elliptic curves used in practice.
- Our treatment of TLS in Section 13.7 has been updated to reflect the latest version (TLS 1.3).
- Reflecting recent trends, we have added a chapter (Chapter 14) describing the impact of quantum computers on cryptography, and providing examples of "post-quantum" encryption and signature schemes.

For those currently using the first edition of our book, as well as for reference, we also summarize the changes/additions we have already made in the second edition (all of which remain here):

- We have increased our coverage of *stream ciphers*, including streamcipher modes of operation as well as stream-cipher design principles and examples of stream ciphers used in practice.
- We have emphasized the importance of authenticated encryption and secure communication sessions in Sections 5.2–5.4.
- We have moved our treatment of hash functions into its own chapter (Chapter 6), and have added a section on hash-function design principles and widely used constructions (Section 7.3). We have also improved our treatment of generic attacks on hash functions, including a discussion of rainbow tables (Section 6.4.3).
- We have included several important attacks on cryptographic *imple-mentations* that arise in practice, including chosen-plaintext attacks on chained-CBC encryption (Section 3.6.3), timing attacks on MAC verification (Section 4.2), and padding-oracle attacks on CBC-mode encryption (Section 5.1.1).
- After much deliberation, we have decided to introduce the randomoracle model earlier in the book (Section 6.5). This has several benefits, including allowing for an integrated treatment of standardized publickey encryption and signature schemes in Chapters 12 and 13.
- We have strengthened our coverage of elliptic-curve cryptography (Section 9.3.4) and have added a discussion of its impact on recommended key lengths (Section 10.4).
- In the chapter on public-key encryption, we introduce the KEM/DEM paradigm as a form of hybrid encryption (see Section 12.3). We also cover DHIES/ECIES in addition to the RSA PKCS #1 standards.
- In the chapter on digital signatures, we now describe the construction of signatures from identification schemes using the Fiat–Shamir transform, with the Schnorr signature scheme as a prototypical example. We have

also improved our coverage of DSA/ECDSA. We include brief discussions of SSL/TLS and signcryption, both of which serve as culminations of material covered up to that point.

• In the "advanced topics" chapter, we have amplified our treatment of homomorphic encryption, and have added sections on secret sharing and threshold encryption.

Beyond the above, we have also edited the entire book to make extensive corrections as well as smaller adjustments, including more worked examples, to improve the exposition. Several additional exercises have also been added.

Guide to Using This Book

This section is intended primarily for instructors seeking to adopt this book for their course, though the student picking up this book on his or her own may also find it a useful overview.

Required background. We have structured the book so the only formal prerequisite is a course on discrete mathematics. Even here we rely on very little: we only assume familiarity with basic (discrete) probability and modular arithmetic. Students reading this book are also expected to have had some exposure to algorithms, mainly to be comfortable reading pseudocode and to be familiar with big- \mathcal{O} notation. Many of these concepts are reviewed in Appendix A and/or when first used in the book.

Notwithstanding the above, the book does use definitions, proofs, and abstract mathematical concepts, and therefore requires some mathematical maturity. In particular, the reader is assumed to have had some exposure to proofs, whether in an upper-level mathematics course or a course on discrete mathematics, algorithms, or computability theory.

Suggestions for course organization. The core material of this book, which we recommend should be covered in any introductory course on cryptography, consists of the following (in all cases, starred sections are excluded; more on this below):

- *Introduction and Classical Cryptography:* Chapters 1 and 2 discuss classical cryptography and set the stage for modern cryptography.
- Private-Key (Symmetric) Cryptography: Chapter 3–5 provide a thorough treatment of private-key encryption and message authentication, and Chapter 6 covers hash functions and their applications. (Section 6.6 could be skipped if that material will not be used later.)

We also highly recommend covering at least part of Chapter 7, which deals with symmetric-key primitives used in practice; in our experience students really enjoy this material, and it makes the abstract ideas they

xviii

have learned in previous chapters more concrete. Although we do consider this core material, it is not used in the remainder of the book and so can be safely skipped if desired.

• *Public-Key Cryptography:* Chapter 9 gives a self-contained introduction to all the number theory needed for the remainder of the book. The material in The public-key revolution, including Diffie–Hellman key exchange, is described in Chapter 11. Chapters 12 and 13 go into detail about public-key encryption and digital signatures; those pressed for time can pick and choose what to cover appropriately.

We are typically able to cover most of the above in a one-semester (35-hour) undergraduate or Masters-level course (omitting some proofs and skipping some topics, as needed) or, with some changes to add more material on theoretical foundations, in the first three-quarters of a one-semester PhD-level course. Instructors with more time available can proceed at a more leisurely pace or incorporate additional topics, as discussed below.

Those wishing to cover additional material, in either a longer course or a faster-paced graduate course, will find that the book is structured to allow flexible incorporation of other topics as time permits (and depending on the interests of the instructor). Specifically, the starred (*) sections and chapters may be covered in any order, or skipped entirely, without affecting the overall flow of the book. We have taken care to ensure that none of the core (i.e., unstarred) material depends on any of the starred material and, for the most part, the starred sections do not depend on each other. (When they do, this dependence is explicitly noted.)

We suggest the following from among the starred topics for those wishing to give their course a particular flavor:

- Theory: A more theoretically inclined course could include material from Section 3.2.2 (semantic security); Chapter 8 (one-way functions and hard-core predicates, and constructing pseudorandom generators, functions, and permutations from one-way permutations); Section 9.4 (one-way functions and collision-resistant hash functions from number-theoretic assumptions); Section 12.5.3 (RSA encryption without random oracles); and Section 15.3 (cryptographic protocols).
- *Mathematics:* A course directed at students with a strong mathematics background—or being taught by someone who enjoys this aspect of cryptography—could incorporate Section 4.6 (information-theoretic MACs in finite fields); some of the more advanced number theory from Chapter 9 (e.g., the Chinese remainder theorem, the Miller–Rabin primality test, and more on elliptic curves); and all of Chapter 10 (algorithms for factoring and computing discrete logarithms).

In either case, a selection of advanced public-key schemes from Chapters 14 and 15 could also be included.

Feedback and Errata

Our goal in writing this book was to make modern cryptography accessible to a wide audience beyond the "theoretical computer science" community. We hope you will let us know if we have succeeded! The many enthusiastic emails we have received in response to our first and second editions have made the whole process of writing this book worthwhile.

We are always happy to receive feedback. We hope there are no errors or typos in the book; if you do find any, however, we would greatly appreciate it if you let us know. You can email your comments and errata to jkatz2@gmail.com and lindell@biu.ac.il; please put "Introduction to Modern Cryptography" in the subject line. A list of known errata will be maintained at http://www.cs.umd.edu/~jkatz/imc.html.

Acknowledgments

We continue to be grateful to all those who have sent us comments, suggestions, and corrections for the book. We would like to thank, in particular, Jack Aaron, Rounak Agarwal, Ionut Ambrosie, Dan Bernstein, Jeremiah Blocki, David Cash, Claude Crépeau, Dana Dachman-Soled, Daniel Escudero, Pooya Farshim, Rolf Haenni, Imededdine Jerbi, Ali El Kaafarani, Zach Kissel, Angelique Faye Loe, Wilde Luo, Tal Malkin, Alejandro Mardones, Kurt Pan, Greg Plaxton, Kyle Andrew Porter, Christian Schaffner, Jim Tallent, Hanh Tang, Markus Triska, and Rui Xue for their feedback on the second edition.

Finally, we thank our wives and children for all their support during the now over a decade(!) we have spent working on this project.