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Preface

The goal of our book remains the same as in the first edition: to present the
basic paradigms and principles of modern cryptography to a general audience
with a basic mathematics background. We have designed this book to serve as
a textbook for undergraduate- or graduate-level courses in cryptography (in
computer science, electrical engineering, or mathematics departments), as a
general introduction suitable for self-study (especially for beginning graduate
students), and as a reference for students, researchers, and practitioners.

There are numerous other cryptography textbooks available today, and the
reader may rightly ask whether another book on the subject is needed. We
would not have written this book—nor worked on revising it for the second
edition—if the answer to that question were anything other than an unequiv-
ocal yes. What, in our opinion, distinguishes our book from other available
books is that it provides a rigorous treatment of modern cryptography in an
accessible manner appropriate for an introduction to the topic.

Our focus is on modern (post-1980s) cryptography, which is distinguished
from classical cryptography by its emphasis on definitions, precise assump-
tions, and rigorous proofs of security. We briefly discuss each of these in turn
(these principles are explored in greater detail in Chapter 1):

• The central role of definitions: A key intellectual contribution of
modern cryptography has been the recognition that formal definitions
of security are an essential first step in the design of any cryptographic
primitive or protocol. The reason, in retrospect, is simple: if you don’t
know what it is you are trying to achieve, how can you hope to know
when you have achieved it? As we will see in this book, cryptographic
definitions of security are quite strong and—at first glance—may appear
impossible to achieve. One of the most amazing aspects of cryptography
is that efficient constructions satisfying such strong definitions can be
proven to exist (under rather mild assumptions).

• The importance of precise assumptions: As will be explained in
Chapters 2 and 3, many cryptographic constructions cannot currently
be proven secure in an unconditional sense. Security often relies, in-
stead, on some widely believed (though unproven) assumption(s). The
modern cryptographic approach dictates that any such assumption must
be clearly stated and unambiguously defined. This not only allows for
objective evaluation of the assumption but, more importantly, enables
rigorous proofs of security as described next.
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• The possibility of proofs of security: The previous two principles
serve as the basis for the idea that cryptographic constructions can be
proven secure with respect to clearly stated definitions of security and
relative to well-defined cryptographic assumptions. This concept is the
essence of modern cryptography, and is what has transformed the field
from an art to a science.

The importance of this idea cannot be overemphasized. Historically,
cryptographic schemes were designed in a largely ad hoc fashion, and
were deemed to be secure if the designers themselves could not find
any attacks. In contrast, modern cryptography advocates the design
of schemes with formal, mathematical proofs of security in well-defined
models. Such schemes are guaranteed to be secure unless the underly-
ing assumption is false (or the security definition did not appropriately
model the real-world security concerns). By relying on long-standing
assumptions (e.g., the assumption that “factoring is hard”), it is thus
possible to obtain schemes that are extremely unlikely to be broken.

A unified approach. The above principles of modern cryptography are rel-
evant not only to the “theory of cryptography” community. The importance
of precise definitions is, by now, widely understood and appreciated by de-
velopers and security engineers who use cryptographic tools to build secure
systems, and rigorous proofs of security have become one of the requirements
for cryptographic schemes to be standardized.

Changes in the Second Edition

In preparing the second edition, we have made a conscious effort to integrate
a more practical perspective (without sacrificing a rigorous approach). This
is reflected in a number of changes and additions we have made:

• We have increased our coverage of stream ciphers, introducing them
as a variant of pseudorandom generators in Section 3.3.1, discussing
stream-cipher modes of operation in Section 3.6.1, and describing mod-
ern stream-cipher design principles and examples in Section 6.1.

• We have emphasized the importance of authenticated encryption (see
Section 4.5) and have added a section on secure communication sessions.

• We have moved our treatment of hash functions into its own chapter
(Chapter 5), have included some standard applications of cryptographic
hash functions (Section 5.6), and have added a section on hash-function
design principles and widely used constructions (Section 6.3). We have
also improved our treatment of birthday attacks (covering small-space
birthday attacks in Section 5.4.2) and have added a discussion of rainbow
tables and time/space tradeoffs (Section 5.4.3).
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• We have included several important attacks on implementations of cryp-
tography that arise in practice, including chosen-plaintext attacks on
chained-CBC encryption (Section 3.6.2), padding-oracle attacks on CBC-
mode encryption (Section 3.7.2), and timing attacks on MAC verifica-
tion (Section 4.2).

• After much deliberation, we have decided to introduce the random-
oracle model much earlier in the book (Section 5.5). This allows us to
give a proper, integrated treatment of standardized, widely used public-
key encryption and signature schemes in later chapters, instead of rele-
gating them to second-class status in a chapter at the end of the book.

• We have strengthened our coverage of elliptic-curve cryptography (Sec-
tion 8.3.4) and have added a discussion of its impact on recommended
key lengths (Section 9.3).

• In the chapter on public-key encryption, we introduce the KEM/DEM
paradigm as a form of hybrid encryption (see Section 11.3). We also
cover DHIES/ECIES in addition to the RSA PKCS #1 standards.

• In the chapter on digital signatures, we now describe the construction of
signatures from identification schemes using the Fiat–Shamir transform,
with the Schnorr signature scheme as a prototypical example. We have
also improved our coverage of DSA/ECDSA. We include brief discus-
sions of SSL/TLS and signcryption, both of which serve as culminations
of everything covered up to that point.

• In the “advanced topics” chapter, we have amplified our treatment of
homomorphic encryption, and have included sections on secret sharing
and threshold encryption.

Beyond the above, we have also edited the entire book to make extensive
corrections as well as smaller adjustments, including more worked examples,
to improve the exposition. Several additional exercises have also been added.

Guide to Using This Book

This section is intended primarily for instructors seeking to adopt this book
for their course, though the student picking up this book on his or her own
may also find it a useful overview.

Required background. We have structured the book so that the only formal
prerequisite is a course on discrete mathematics. Even here we rely on very
little material: we assume familiarity with basic (discrete) probability and
modular arithmetic. Students reading this book are also expected to have had
some exposure to algorithms, mainly to be comfortable reading pseudocode
and to be familiar with big-O notation. Many of these concepts are reviewed
in Appendix A and/or when first used in the book.
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Notwithstanding the above, the book does use definitions, proofs, and ab-
stract mathematical concepts, and therefore requires some mathematical ma-
turity. In particular, the reader is assumed to have had some exposure to
proofs at the college level, whether in an upper-level mathematics course or a
course on discrete mathematics, algorithms, or computability theory.

Suggestions for course organization. The core material of this book,
which we recommend should be covered in any introductory course on cryp-
tography, consists of the following (in all cases, starred sections are excluded;
more on this below):

• Introduction and Classical Cryptography: Chapters 1 and 2 discuss clas-
sical cryptography and set the stage for modern cryptography.

• Private-Key (Symmetric) Cryptography: Chapter 3 on private-key en-
cryption, Chapter 4 on message authentication, and Chapter 5 on hash
functions provide a thorough treatment of these topics.

We also highly recommend covering Section 6.2, which deals with block-
cipher design; in our experience students really enjoy this material, and
it makes the abstract ideas they have learned in previous chapters more
concrete. Although we do consider this core material, it is not used in
the rest of the book and so can be safely skipped if desired.

• Public-Key (Asymmetric) Cryptography: Chapter 8 gives a self-contained
introduction to all the number theory needed for the remainder of the
book. The material in Chapter 9 is not used subsequently; however,
we do recommend at least covering Section 9.3 on recommended key
lengths. The public-key revolution is described in Chapter 10. Ideally,
all of Chapters 11 and 12 should be covered; those pressed for time can
pick and choose appropriately.

We are typically able to cover most of the above in a one-semester (35-hour)
undergraduate course (omitting some proofs and skipping some topics, as
needed) or, with some changes to add more material on theoretical founda-
tions, in the first three-quarters of a one-semester graduate course. Instructors
with more time available can proceed at a more leisurely pace or incorporate
additional topics, as discussed below.

Those wishing to cover additional material, in either a longer course or a
faster-paced graduate course, will find that the book is structured to allow
flexible incorporation of other topics as time permits (and depending on the
interests of the instructor). Specifically, the starred (*) sections and chapters
may be covered in any order, or skipped entirely, without affecting the overall
flow of the book. We have taken care to ensure that none of the core material
depends on any of the starred material and, for the most part, the starred
sections do not depend on each other. (When they do, this dependence is
explicitly noted.)



xix

We suggest the following from among the starred topics for those wishing
to give their course a particular flavor:

• Theory: A more theoretically inclined course could include material
from Section 3.2.2 (semantic security); Chapter 7 (one-way functions
and hard-core predicates, and constructing pseudorandom generators,
functions, and permutations from one-way permutations); Section 8.4
(one-way functions and collision-resistant hash functions from number-
theoretic assumptions); Section 11.5.3 (RSA encryption without random
oracles); and Section 12.6 (signatures without random oracles).

• Mathematics: A course directed at students with a strong mathemat-
ics background—or being taught by someone who enjoys this aspect
of cryptography—could incorporate Section 4.6 (information-theoretic
MACs in finite fields); some of the more advanced number theory from
Chapter 8 (e.g., the Chinese remainder theorem and the Miller–Rabin
primality test); and all of Chapter 9.

In either case, a selection of advanced topics from Chapter 13 could also be
included.

Feedback and Errata

Our goal in writing this book was to make modern cryptography accessible
to a wide audience beyond the “theoretical computer science” community. We
hope you will let us know if we have succeeded. The many enthusiastic emails
we have received in response to our first edition have made the whole process
of writing this book worthwhile.

We are always happy to receive feedback. We hope there are no errors
or typos in the book; if you do find any, however, we would greatly appre-
ciate it if you let us know. (A list of known errata will be maintained at
http://www.cs.umd.edu/~jkatz/imc.html.) You can email your comments
and errata to jkatz@cs.umd.edu and lindell@biu.ac.il; please put “In-
troduction to Modern Cryptography” in the subject line.
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