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Abstract

Cryptographic protocol design in a two-party setting has often ignored the possibility of
simultaneous message transmission by each of the two parties (i.e., using a duplex channel). In
particular, most protocols for two-party key exchange have been designed assuming that parties
alternate sending their messages (i.e., assuming a bidirectional half-duplex channel). However,
by taking advantage of the communication characteristics of the network it may be possible to
design protocols with improved latency. This is the focus of the present work.

We present three provably-secure protocols for two-party authenticated key exchange (AKE)
which require only a single round. Our first, most efficient protocol provides key independence
but not forward secrecy. Our second scheme additionally provides forward secrecy but requires
some additional computation. Security of these two protocols is analyzed in the random oracle
model. Our final protocol provides even stronger security guarantees than our second protocol,
but does not require random oracles. This scheme is only slightly less efficient (from a com-
putational perspective) than the previous ones. Our work provides the first provably-secure
one-round protocols for two-party AKE which achieve forward secrecy.

Keywords: Authenticated key exchange, Forward secrecy.

1 Introduction

Key-exchange protocols are among the most basic and widely used cryptographic protocols. Such
protocols are used to derive a common session key between two (or more) parties; this session
key may then be used to communicate securely over an insecure public network. Thus, secure
key-exchange protocols serve as basic building blocks for constructing secure, complex, higher-level
protocols. For this reason, the computational/communication efficiency and round complexity of
key-exchange protocols are very important and have received much attention, both in the two-party
[17, 22, 6, 18, 5, 4, 7, 8, 15] and multi-party (i.e., group) [19, 14, 26, 20, 2, 13, 10, 21] settings.

This paper concerns protocols for authenticated key exchange (AKE); achieving such authen-
tication is only possible if some out-of-band initialization phase is assumed prior to execution of
the protocol. One common assumption is that each communicating party has an associated public-
/private-key pair, with the public key known to all other parties in the network (of course, this
includes the adversary). We assume this model here.
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Most protocols for two-party key exchange have been designed and analyzed assuming that
parties alternate sending messages (equivalently, that the parties communicate over a bidirectional
half-duplex channel). However, in many common scenarios parties can actually transmit mes-
sages simultaneously (i.e., they have access to a bidirectional duplex channel). Of course, any
key-exchange protocol designed and proven secure in the former model will also be secure in the
latter model; however, it may be possible to design protocols with improved round complexity by
fully exploiting the communication characteristics of the underlying network, and in particular the
possibility of simultaneous message transmission.

As a simple example, consider the traditional Diffie-Hellman key-exchange protocol [17] which
does not provide any authentication. Traditionally, this is described as a two-round protocol in
which Alice first sends ga and Bob then replies with gb. However, in this particular case Alice
and Bob can send their messages simultaneously, thereby “collapsing” this protocol to a single
round. However, the situation is more complex when authentication is required. For instance,
authenticated Diffie-Hellman key exchange typically involves one party signing messages sent by
the other party; this may be viewed as a type of “challenge-response” mechanism. (For example,
the work of Bellare, et al. [5, 4] suggests implementing “authenticated channels” in exactly this
way.) When this is done, it is no longer possible to collapse the protocol to a single round.

Motivated by the above discussion, we explore the possibility of designing protocols for authen-
ticated key exchange which can be implemented in only a single round (assuming simultaneous
message transmission). Of course, we will also ensure that our protocols are efficient with respect
to other measures, including communication complexity and computational efficiency.

1.1 Our Work in Relation to Prior Work

Before relating our work to prior work in this area, we briefly recall some of the various notions of
security for key-exchange protocols (formal definitions are given in Section 2). At the most basic
level, an authenticated key-exchange scheme must provide secrecy of a generated session key. Yet
to completely define a notion of security, we must define the class of adversarial behavior tolerated
by the protocol. The minimum requirement is that a protocol should ensure secrecy of session keys
for an adversary who passively eavesdrops on protocol executions and may also send messages of
its choice to the various parties. A stronger notion of security (and the one that is perhaps most
often considered in the cryptographic literature) is key independence, which means that session
keys are computationally independent from each other. A bit more formally, key independence
protects against “Denning-Sacco” attacks [16] involving compromise of multiple session keys for
sessions other than the one whose secrecy is being considered. Lastly, protocols achieving forward
secrecy [18] maintain secrecy of session keys even when an adversary is able to obtain long-term
secret keys of principals who have previously generated a common session key. We define all these
notions formally in Section 3.

Key-exchange protocols may also be required to provide some form of authentication. We
distinguish implicit authentication, whereby only the intended partner of a particular party A
knows the session key held by A, and explicit authentication, whereby A knows that its intended
partner indeed holds a matching session key. (See [5] for further discussion and formal definitions.)
Note that achieving explicit authentication is not possible using a 1-round in the setting we consider,
since the message of either party can always be replayed. Of course, it is well known how to convert
any protocol providing implicit authentication to one providing explicit authentication, but only
at the expense of additional rounds of communication.
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Boyd-Nieto (see note) T S1

Modular exponentiations
(per party)

2 1

Communication
(total)

2|p|+ |q| 2|q|

Security Key independence Key independence

Assumptions CDH in random oracle model CDH in random oracle model

Table 1: Comparison of the Boyd-Nieto scheme [10] to T S1. Efficiency of the Boyd-Nieto scheme
depends on the instantiation of its generic components; the above are rough estimates assuming
the random oracle model and “discrete-log-based” components using an order-q subgroup of Z

∗
p.

The original two-party key-exchange scheme of Diffie and Hellman [17] is secure against passive
eavesdroppers, but not against active attacks; indeed, that protocol provides no authentication at
all. Several variations of the scheme have been suggested to provide security against active attacks
[22, 23, 24, 8]. There are only a few provably secure schemes in the literature which provide both
key independence and forward secrecy. Most such schemes seem to be designed so as to provide
explicit authentication as well. (For example, the schemes of [1, 7, 4] use signatures and/or message
authentication codes to authenticate messages in a way that achieves explicit authentication.) In
some cases explicit authentication may be unnecessary, however, or may be provided anyway by
subsequent communication. Thus, one may wonder whether more efficient protocols (say, with
reduced round complexity) are possible if explicit authentication is not a requirement.

We first propose and analyze a very simple one-round scheme, T S1, which provides key inde-
pendence but not forward secrecy, and whose security is based on the computational Diffie-Hellman
(CDH) assumption in the random oracle model. In Table 1 we compare our scheme to the scheme
of Boyd and Nieto [10] which achieves the same level of security in the same number of rounds.
(The Boyd-Nieto protocol is actually for group AKE, but it can be suitably modified for the case
of two parties.) Our scheme is more efficient than the scheme of Boyd and Nieto and has other
advantages as well: our protocol is simpler and is also symmetric with respect to the two parties.

We next propose a modification of this scheme, T S2, which provides both key independence
and forward secrecy yet still requires only a single round of communication (security is again proved
based on the CDH assumption in the random oracle model). We are not aware of any previous
one-round protocol achieving this level of security. T S2 requires only 3 modular exponentiations
per party and uses neither key confirmation nor digital signatures, and hence the protocol is more
efficient than previous schemes in terms of computation and communication as well. A drawback
of T S2 is that its security is analyzed in the random oracle model. For this reason, we propose a
third protocol, T S3, which provides the same level of security in the same number of rounds but
whose security can be analyzed in the standard model based on the stronger, but still standard,
decisional Diffie-Hellman assumption. This protocol is only slightly less efficient than T S2. We
compare both these protocols to previous work in Table 2.
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[1, 7] [4] [21] T S2 T S3

Modular exponentiations
(per party)

3 4 4 3 3

Rounds 3 3 2 1 1

Communication (total) 2|p|+ 2|q| 4|p| 4|p|+ 2|q| 2|p| 2|p|+ 2|q|

Random oracle? Yes No No Yes No

Table 2: Comparison of key-exchange protocols achieving key independence and forward secrecy.
Efficiency of some schemes depends on instantiation details; the above represent rough estimates
assuming “discrete-log-based” instantiations using an order-q subgroup of Z

∗
p.

2 Preliminaries

We rely on the standard computational and decisional Diffie-Hellman assumptions, as well as mes-
sage authentication codes. The purpose of the present section is merely to fix some notation.

2.1 The Diffie-Hellman Problems

Let GG be an algorithm which on input 1k outputs a (description of a) group G of prime order q
(with |q| = k) along with a generator g ∈ G. The computational Diffie-Hellman (CDH) problem is
the following: given gu1 , gu2 for random u1, u2 ∈ Zq, compute gu1u2 . We say that GG satisfies the
CDH assumption if this problem is infeasible for all ppt algorithms. More formally, for any ppt

algorithm A consider the following experiment:

Expcdh

A,GG(k)

(G, q, g) ← GG(1k)
u1, u2 ← Zq

U1 = gu1 ;U2 = gu2

W ← A(G, q, g, U1, U2)
if W = gu1u2 return 1
else return 0

The advantage of an adversary A is defined as follows:

Advcdh

A,GG(k)
def
= Pr

[

Expcdh

A,GG(k) = 1
]

.

We say that GG satisfies the CDH assumption if Advcdh

A,GG(k) is negligible for all ppt algorithms A.
When we are interested in a concrete security analysis, we drop the dependence on k and say that
GG is (t, ǫ)-secure with respect to the CDH problem if Advcdh

A,GG ≤ ǫ for all A running in time at
most t. (We will sometimes be informal and say that a group G output by GG satisfies the CDH
assumption.)

Letting GG be as above, we may define a DDH tuple to be a tuple of the form (g, gu1 , gu2 , gu1u2)
and a random tuple to be a tuple of the form (g, gu1 , gu2 , gu3). The decisional Diffie-Hellman
assumption is to distinguish a random DDH tuple from a random tuple. We say that GG satisfies
the DDH assumption if this problem is infeasible for all ppt algorithms. More formally, for any
ppt algorithm A consider the following experiment:
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Expddh

A,GG(k)

(G, q, g) ← GG(1k)
u1, u2 ← Zq

U1 = gu1 ;U2 = gu2

V0 = gu1u2 ;V1 ← G
b← {0, 1}
b′ ← A(G, q, g, U1, U2, Vb)
if b′ = b return 1
else return 0

The advantage of an adversary A is defined as follows:

Advddh

A,GG(k)
def
=

∣

∣

∣
2 · Pr

[

Expddh

A,GG(k) = 1
]

− 1
∣

∣

∣
.

We say that GG satisfies the DDH assumption if Advddh

A,GG(k) is negligible for all ppt algorithms A.
When we are interested in a concrete security analysis, we drop the dependence on k and say that
GG is (t, ǫ)-secure with respect to the DDH problem if Advddh

A,GG ≤ ǫ for all A running in time at
most t. (We will sometimes be informal and say that a group G output by GG satisfies the DDH
assumption.)

2.2 Message Authentication Codes

A message authentication code (MAC) consists of two algorithms (Mac,Vrfy). Given a random
key sk, Mac computes a tag τ for a message M ; we write this as τ = Macsk(M). The verification
algorithm Vrfy takes as input the message/tag pair and the (shared) key, and returns 1 if the tag is
valid and 0 otherwise. We require that for all keys sk and all M , we have Vrfysk(M,Macsk(M)) = 1.

In defining the security of a MAC we use the standard definition of strong unforgeability under
adaptive chosen-message attack. Namely, let Π = (Mac,Vrfy) be a MAC and A be an adversary,
and consider the following experiment:

Expsuf

A,M (k)

sk ← {0, 1}k

(M, τ)← AMacsk(·)(1k)
if Vrfysk(M, τ) = 1 and oracle Macsk(·)

never returned τ on input M then return 1
else return 0

The advantage of an adversary A is defined as Advsuf

A,Π(k)
def
= Pr

[

Expsuf

A,Π(k) = 1
]

. We say that Π =

(Mac,Vrfy) is strongly unforgeable (SUF-secure) if Advsuf

A,Π(k) is negligible for all ppt algorithms A.
When we are interested in a concrete security analysis, we drop the dependence on k and say that
M is (t, q, ǫ)-SUF-secure if Advsuf

A,Π ≤ ǫ for all A running in time t and making at most q queries
to its Mac oracle. (We remark that allowing N queries to an oracle Vrfysk(·, ·) cannot increase the
advantage of an adversary by more than a factor of N if Mac is deterministic and verification is
done by re-computing the MAC. We assume this in our constructions.)
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3 Security Model for Authenticated Key Exchange

We use the standard notion of security for key-exchange protocols as defined in [5], taking into
account forward secrecy following [18]. We assume that there are N parties, and each party’s
identity is denoted as Pi. Each party Pi holds a pair of private and public keys, where the public
key is assumed to be known to all other parties in the network (and the adversary, too). We
consider key-exchange protocols in which two parties want to exchange a session key using their
public keys to provide authentication. Πk

i represents the k-th instance of player Pi, and we assume
a given instance is used only once. If a key-exchange protocol terminates, then Πk

i generates a
session key skk

i . A session identifier of an instance, denoted sidk
i , is a string different from those of

all other sessions in the system (with high probability).
Consider instance Πk

i of player Pi. The partner of this instance is the player with whom Pi

believes it is interacting. We say that two instances Πk
i and Πk′

j are partnered if sidk
i = sidk′

i , Pj is

the partner of Πk
i , and Pi is the partner of Πk′

j . Any protocol should satisfy the following correctness
condition: two partnered instances (of uncorrupted parties) compute the same session key.

To define security, we define the capabilities of an adversary. We allow the adversary to poten-
tially control all communication in the network via access to a set of oracles as defined below. We
consider an experiment in which the adversary asks queries to oracles, and the oracles answer back
to the adversary. Oracle queries model attacks which an adversary may use in the real system. We
consider the following types of queries in this paper, specialized for the case of 1-round protocols.

• The query Initiate(Pi, k, Pj) is used to “prompt” the un-used instance Πk
i of party Pi to initiate

execution of the protocol with partner Pj 6= Pi. This query will result in Pi sending a message,
which is given to the adversary.

• A query Send(Pi, k,M) is used to send a message M to instance Πk
i ; this models active attacks

on the part of the adversary. We assume without loss of generality that an adversary always
queries Initiate(Pi, k, ⋆) before querying Send(Pi, k,M); this corresponds to assuming that the
adversary always “rushes” the messages of honest parties, which only gives the adversary
more power. Since we are dealing with 1-round protocols in this paper, a Send query does
not result in any output (but it does cause instance Πk

i to compute a session key).

• A query Execute(Pi, Pj) represents passive eavesdropping of the adversary on an execution
of the protocol by parties Pi and Pj (with Pi 6= Pj). In response to this query, parties Pi

and Pj execute the protocol without any interference from the adversary, and the adversary
is given the resulting transcript of the execution. (Although the actions of the Execute query
can be simulated via repeated Initiate and Send oracle queries, this particular query is used
to distinguish between passive and active attacks.)

• A query Reveal(Pi, k) models known key attacks (or Denning-Sacco attacks) in the real system.
In response to this query, the adversary is given the session key skk

i for the specified instance.

• A query Corrupt(Pi) models exposure of the long-term key held by player Pi. The adversary
is assumed to be able to obtain long-term keys of players, but cannot control the behavior
of these players directly (of course, once the adversary has asked a query Corrupt(Pi), the
adversary may impersonate Pi in subsequent Send queries).
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• A query Test(Pi, k) is used to define the advantage of an adversary. In response to this query,
a coin b is flipped. If b is 1, then the session key skk

i is returned. Otherwise, a random session
key (i.e., one chosen uniformly from the space of session keys) is returned. The adversary may
make a single Test query to a fresh instance (see below), at any time during the experiment.

To define a meaningful notion of security, we must also define freshness:

Definition 1 An instance Πk
i , having partner Pj and (possibly) partnered with instance Πk′

j , is
fresh if the following conditions are true at the conclusion of the experiment:

(a) The adversary has not queried Reveal(i, k) or Reveal(j, k′).

(b) If the adversary has queried Corrupt(Pi) or Corrupt(Pj), then it has never queried Send(Pi, k, ⋆).

In all the notions of security considered below, the adversary A outputs a bit b′ at the end of the
experiment, and the advantage of A, denoted AdvA(k), is defined as |2 · Pr[b′ = b]− 1|. Generically
speaking, a protocol is called “secure” if the advantage of any ppt adversary is negligible. The fol-
lowing notions of security may then be considered, depending on the types of queries the adversary
is allowed to ask (in addition to the single Test query):

• KI (Key independence): An adversary A can ask Initiate,Send,Execute, and Reveal queries,
but can not ask Corrupt queries.

• FS (Forward secrecy): An adversary A is now allowed to ask all queries, including Corrupt.

Note that forward secrecy implies key independence.
For an adversary A attacking a scheme in the sense of XX (where XX is either KI or FS), we

denote the advantage of this adversary by AdvXX
A (k). For a protocol P , we define its security as:

AdvXX
P (k, t) = max

A
{AdvXX

A (k)},

where the maximum is taken over all adversaries running in time t. A scheme P is said to be
XX-secure if AdvXX

P (k, t) is negligible (in k) for any t = poly(k).

4 One-Round Protocols for Authenticated Key Exchange

For each of the protocols we present, we assume that parties can be ordered by their names (e.g.,
lexicographically) and write Pi < Pj to denote this ordering. Let k be a security parameter, and
let G be a group of prime order q (where |q| = k) with generator g. Let H be a hash function such
that H : {0, 1}∗ → {0, 1}k . (We assume that G, q, g, and H are fixed in advance and known to the
entire network.) We assume that each party Pi has a public-/private-key pair (yi = gxi , xi), and
that the public keys of all parties are known to all other parties in the network. (For the case of
T S3, parties’ public keys may include other information as well; see further below.) Recall that
the standard definition of security (discussed above) does not include the possibility of “malicious
insiders”; thus, in particular, we assume that all public-/secret-keys are honestly generated.
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4.1 Protocol T S1

We now present our first protocol T S1. The protocol is described from the perspective of Pi, but
its partner Pj behaves analogously (i.e., the protocol is symmetric):

T S1

Setup: Assume Pi wants to establish a session key with Pj , and
Pi < Pj . Recall Pi has public key yi = gxi and secret key xi, and knows
Pj ’s public key yj.

Round 1: Pi selects a random number ri ∈R {0, 1}
k , transmits it, and

receives a random rj which is supposedly from Pj .

Computation of session key: Pi forms a session identifier by con-
catenating the messages according to the ordering of Pi, Pj ; i.e., it sets
sid = ri||rj . Party Pi computes the session key ski = H(Pi‖Pj‖sid‖y

xi

j ).

P1(x1, y2) P2(x2, y1)

Round 1 r1 r2

sid = r1||r2

sk = H(P1||P2||sid||g
x1x2) = H(P1||P2||sid||y

x1

2 ) = H(P1||P2||sid||y
x2

1 )

Figure 1: An example of an execution of T S1.

An example of an execution of T S1 is shown in Figure 1 (which assumes P1 < P2). The
following theorem states the security achieved by this protocol.

Theorem 1 Assuming G satisfies the CDH assumption, T S1 is a KI-secure key-exchange protocol
when H is modeled as a random oracle. Concretely, if G is generated by GG which is (t, ǫ)-secure
with respect to the CDH problem, then

AdvKI
T S1(k, t, qre, qh) ≤ qhN2 · ǫ +

q2
s

2k
,

where t is the maximum experiment time including the adversary’s execution time, and the adversary
makes qre Reveal queries and qh hash queries. Here, N is an upper bound on the number of parties,
and qs is an upper bound on the number of instances initiated in the experiment.

Proof Consider an adversary A attacking T S1 in the sense of key independence. Informally,
and using the fact that we work in the random oracle model, there are only two ways an adversary
can get information about a particular session key skk

i = H(Pi||Pj ||sid
k
i ||g

xixj ) for a fresh instance:
either the adversary queries the random oracle on the point Pi||Pj ||sid

k
i ||g

xixj , or the value sidk
i

has repeated (for the same pair of users) at some point during the experiment. The latter case
happens with probability upper-bounded by q2

s/2
k, while the former case allows us to solve the
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computational Diffie-Hellman problem with probability related to that of the adversary’s success
probability. We now proceed with a more formal proof.

Let coll denote the event that a value of sid repeats at some point during the experiment, and
let query be the event that, for some i, j ∈ [N ], the adversary at some point makes an oracle query
H(Pi||Pj || ⋆ ||W ) with W = gxixj . Observe that PrA[b′ = b | query ∧ coll] = 1

2 , we may write

∣

∣PrA[b′ = b]− 1
2

∣

∣ =
∣

∣PrA[b′ = b ∧ coll] + PrA[b′ = b ∧ query ∧ coll]

+ PrA[b′ = b ∧ query ∧ coll]− 1
2

∣

∣

=
∣

∣PrA[b′ = b | coll] · PrA[coll] + PrA[b′ = b | query ∧ coll] · PrA[query ∧ coll]

+ 1
2 · PrA[query ∧ coll]− 1

2

∣

∣

=
∣

∣PrA[b′ = b | coll] · PrA[coll] + PrA[b′ = b | query ∧ coll] · PrA[query ∧ coll]

+ 1
2 ·

(

1− PrA[coll]− PrA[query ∧ coll]
)

− 1
2

∣

∣

≤ 1
2 ·

(

PrA[query ∧ coll] + PrA[coll]
)

. (1)

Now, as noted previously, PrA[coll] is bounded from above by q2
s/2

k by a “birthday problem”
calculation, since for this event to occur two random nonces of length k generated by some player(s)
in separate instances must repeat. We now bound the first term in Eq. (1).

Consider the following algorithm F which attempts to solve the CDH problem using A as a
subroutine. F is given (U1 = gu1 , U2 = gu2), an instance of the CDH problem. F randomly selects
two parties and uses U1 and U2 as their public keys. F simulates the random oracle H, and tries
to find gu1u2 from the hash queries made by A. A complete description of F follows:

1. F begins by selecting random distinct i∗, j∗ ∈ {1, . . . , N}, and letting U1 and U2 be the public
keys for Pi∗ and Pj∗ , respectively. Assume without loss of generality that Pi∗ < Pj∗ . Public
keys of other players are chosen in the specified way, so that F knows their secret keys.

2. F then runs A (giving it the vector of public keys for all N parties). The oracle queries of A
are answered as follows:

• For queries H(Pi||Pj ||sid||W ) return a random value v ∈ {0, 1}k . If i = i∗ and j = j∗,
store W in a list dh-tuples. (We assume A does not make the same query to H twice.)

• For queries of the form Initiate(Pi, Pj), choose a random nonce ri ∈ {0, 1}
k . If this nonce

has been chosen before by any party, abort. Otherwise, return ri to A.

• After a query of the form Send(Pi, k,M), compute sid and check whether there is any
other session Πk′

j with the same session id. (This can only happen if Πk′

j is partnered

with Πk
i ). If so, then set the session key skk

i equal to the value of skk′

j . Otherwise, set

the session key skk
i equal to a random value in {0, 1}k .

• For queries Execute(Pi, Pj) choose random ri, rj ∈ {0, 1}
k and abort if either of these

values has been chosen as a nonce before (by any party). Otherwise, set skk
i and skk′

j

both equal to the same random value in {0, 1}k .

• Queries of the form Reveal(Pi, k) and Test(Pi, k) are answered in the correct way.

3. Once the experiment has concluded (i.e., A is done) choose a random element in dh-tuples

and output it.
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The probability that F returns the correct answer is at least PrA[query ∧ coll]/N2qh, since the
simulation is perfect until the point, if any, that query occurs. Furthermore, since the running time
of F is essentially the same as the running time of A we must have PrA[query∧ coll] ≤ qhN2ǫ. This
concludes the proof of the theorem.

We remark that the concrete security reduction in Theorem 1 can be improved using a more
careful analysis, but we have not made any attempt to do so here.

4.2 Protocol T S2

It is easy to see that T S1 does not provide forward secrecy. Forward secrecy can be achieved
by adding an ephemeral Diffie-Hellman key exchange to T S1. The resulting protocol, T S2, is
described below, again from the point of view of player Pi wanting to exchange a key with player
Pj (and Pj acts symmetrically):

T S2

Setup: Same as in T S1.

Round 1: Pi selects a random number αi ∈R Zq and sends gαi to the
other party. It receives a value gαj , presumably from Pj .

Computation of session key: Pi forms a session identifier by concate-
nating the messages according to the ordering of Pi, Pj ; i.e., it sets sid =
gαi ||gαj . Pi computes the session key ski = H(Pi||Pj ||sid||(g

αj )αi ||yxi

j ).

P1(x1, y2) P2(x2, y1)

Round 1 gα1 gα2

sid = gα1 ||gα2

sk = H(P1||P2||sid||g
α1α2 ||gx1x2)

Figure 2: An example of an execution of T S2.

An example of an execution of T S2 is shown in Fig. 2 (where we assume P1 < P2). The
following characterizes the security of T S2.

Theorem 2 Assuming G satisfies the CDH assumption, T S2 is an FS-secure key-exchange proto-
col when H is modeled as a random oracle. Concretely, if G is generated by GG which is (t, ǫ)-secure
with respect to the CDH problem, then

AdvFS
T S2(k, t, qre, qco, qh) ≤ qh · (N

2 + 1) · ǫ +
q2
s

q
,

where t is the maximum experiment time including the adversary’s execution time, and the adversary
makes qre Reveal queries, qco Corrupt queries, and qh hash queries. N is an upper bound on the
number of parties, and qs is an upper bound on the number of sessions initiated in the experiment.
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Proof Consider an adversary A attacking T S2 in the sense of forward secrecy. Informally,
and again using the fact that we work in the random oracle model, there are only two ways an
adversary can get information about a particular session key skk

i = H(Pi||Pj ||sid||g
αiαj ||gxixj):

either the adversary queries the random oracle on the point Pi||Pj ||sid||g
αiαj ||gxixj , or the value

sid has repeated at some point during the experiment (for the same pair of users). The latter

case happens with probability upper bounded by q2
s

q
, while the former case allows us to solve the

computational Diffie-Hellman problem with probability related to that of the adversary’s success
probability. We now proceed with a more formal proof.

Let coll be the event that a value of sid repeats at some point during the experiment. Let corrupt

be the event that the adversary makes its Test query to an instance which is corrupted, or whose
partner is corrupted; i.e., it asks query Test(Pi, k) and at some point during the experiment asks
either Corrupt(Pi) or Corrupt(Pj), where Pj is the partner of instance Πk

i . Note that, by definition
of freshness, if corrupt occurs then it must be the case that the instance Πk

i and its partner instance
were initiated by an Execute query.

Let query1 be the event that, for some i, j ∈ [N ], the adversary at some point queries the
random oracle at a point Pi||Pj || ⋆ || ⋆ ||W , neither Pi nor Pj are corrupted in the entire course of
the experiment, and W = gxixj . Let query2 be the event that, for some i, j ∈ [N ], the adversary at
some point queries the random oracle on Pi||Pj ||sid||X||⋆, and it holds that:

• sid = sidk
i for some k

• Πk
i was initiated via a call Execute(Pi, Pj) (and hence sid = sidk′

j for some k′ as well)

• sid = sidk
i = gαi ||gαj and X = gαiαj .

It is not hard to see that

PrA[b′ = b | coll ∧ query1 ∧ corrupt] = 1
2

and
PrA[b′ = b | coll ∧ query2 ∧ corrupt] = 1

2 .

Thus:

|PrA[b′ = b]− 1
2 | ≤

1
2 · (PrA[coll] + PrA[query1 ∧ corrupt] + PrA[query2 ∧ corrupt]). (2)

As in the previous theorem, PrA[coll] ≤ q2
s/q. Furthermore, following essentially the same argument

as in the proof of the previous theorem (with some small modifications), we may show that

PrA[query1 ∧ corrupt] ≤ PrA[query1] ≤ qhN2ǫ.

We therefore concentrate on upper-bounding the last term of Eq. (2).
Consider the following algorithm F which attempts to solve the CDH problem using A as a

subroutine. F is given (U1 = gu1 , U2 = gu2), an instance of the CDH problem. F will “embed” this
instance into all Execute oracle calls and we will use the random self-reducibility of the CDH problem
to argue that in case query2 occurs then F can solve the given CDH instance with probability at
least 1/qh. Details follow.

1. F is given U1, U2 ∈ G. It begins by choosing public keys for all parties normally (i.e., choosing
a random xi and letting the public key of Pi be gxi).
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2. F runs A, answering its oracle queries as follows:

• For queries H(Pi||Pj ||sid||X||W ), return a random value v ∈ {0, 1}k . (We assume A
does not make the same oracle query twice.) Store (sid,X) in a list dh-tuples.

• Initiate, Send, Reveal, Corrupt, and Test queries are answered honestly (in particular,
when a session key must be computed the appropriate random oracle query is answered
as discussed above, maintaining consistency in the obvious way).

• For queries Execute(Pi, Pj) proceed as follows: choose random a, b ∈ Zq and return the

transcript (U1g
a||U2g

b). The session keys skk
i = skk′

j are set equal to a random value

in {0, 1}k .

3. Once the experiment has concluded (i.e., A is done), F chooses a random tuple (sid,X) from
its list dh-tuples. If an Execute query was previously answered using session id sid, then F
takes the values a, b used in answering that query and outputs X/Ua

2 U b
1gab. (Note that, in

this case, sid = U ||V with U = U1g
a and V = U2g

b.)

Note that the simulation is perfect until the point, if any, that query2 occurs. Furthermore, in
case query2 occurs then with probability at least 1/qh it is the case that F outputs a correct answer
to the given instance of the CDH problem. Thus, we see that PrA[query2] ≤ qhǫ. Plugging this into
Eq. (2) gives the result of the theorem.

4.3 Protocol T S3

The security of T S2 (and T S1, for that matter) is proven in the random oracle model. We now
present protocol T S3 which is proven secure in the standard model (but using the stronger DDH
assumption):

T S3

Setup: Same as in T S1, though see below for a discussion regarding
additional values that may be included in the parties’ public keys.

Round 1: Pi computes ki,j = yxi

j which it will use as a key for a
message authentication code. (Note that ki,j is a group element rather
than a string. See below for further discussion.) Next, Pi chooses a
random number αi ∈R Zq, computes τi ← Macki,j

(i||j||gαi ), and sends
gαi ||τi to the other party. It receives gαj ||τj , presumably from Pj .

Computation of session key: Pi verifies the tag of the received mes-
sage using ki,j . If verification fails, no session key is computed. Other-
wise, Pi computes a session key ski = (gαj )αi . The session identifier is
sidi = gαi ||τi||g

αj ||τj.

An example of an execution of T S3 is shown in Fig. 3. In the example we assume that P1 < P2.
In our description of the protocol, we have assumed a MAC that can be keyed by group elements

rather than strings. Doing so is mainly a conceptual simplification that we have made so as to
focus on the security of the protocol (as our aim is not to provide a detailed specification for
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P1(x1, y2) P2(x2, y1)

Round 1 gα1 ||τ1 gα2 ||τ2

k1,2 = gx1x2

τ1 ← Mack1,2
(1||2||gα1 ); τ2 ← Mack1,2

(2||1||gα2 )
sid = gα1 ||τ1||g

α2 ||τ2

sk = gα1α2

Figure 3: An example of an execution of T S3.

implementation purposes). Nevertheless, since existing MACs assume a random string as a key
(and not a random group element), we mention for completeness two ways our protocol can be
modified in practice:

• An easy way to resolve the discrepancy is to simply hash a given group element to a string
suitable for use as a MAC key. If we treat the hash H as a random oracle, and assume the
underlying MAC is secure (when using a random string as the key), then it is trivial to see
that this derived MAC is secure when using a random group element as a key.

Of course, the whole point of this protocol is to avoid using the random oracle model in the
first place! However, we note that the full power of the random oracle is not needed, and we
may instead simply assume that H and the underlying MAC are such that using H(g) as the
key (for g a random group element) is secure. This is a well-defined (though non-standard)
complexity assumption that is reasonable when H is a standard cryptographic hash function
such as, e.g., (truncated) SHA-1.

• If one prefers to stick to standard assumptions, another solution is to use a strong extractor.
Roughly speaking, an extractor is a keyed function Ext for which Exts(g) is statistically close
to uniform when s is chosen uniformly at random and g has high min-entropy (but is not
necessarily uniform); a strong extractor has this property even conditioned on the value of s.
Strong extractors can be constructed unconditionally.

In our setting, a strong extractor with publicly-known key s can be applied to a random group
element to yield a random string that can then be used as a key for some underlying MAC.
The only remaining question is how s is generated. (We stress that it can be public, but must
be chosen uniformly at random. Therefore we may not leave it under adversarial control.)
One possibility is to simply assume that s is generated as some system-wide parameter, along
with a description of the group, etc. If one wishes to avoid this, then one may alternately
assume that each user chooses their own value s and publishes it as part of their public key.
Then two parties Pi, Pj with Pi < Pj would use Extsi

(gx1x2) as their MAC key.

The above justifies treating the MAC as being keyed by a random group element, and we simply
assume this in the proof below.

Theorem 3 Assuming the MAC used above is SUF-secure and G satisfies the DDH assumption,
T S3 is an FS-secure key-exchange protocol. Concretely, if the MAC is (t, qs, ǫ)-SUF-secure and G
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is generated by GG which is (t, ǫ′)-secure with respect to the DDH problem, then

AdvFS
T S3(k, t, qre, qco) ≤ (2 + N2 + 2q2

s) · ǫ
′ + N2 · ǫ +

q2
s

q
,

where t is the maximum total experiment time including an adversary’s execution time, and an
adversary makes qre Reveal queries and qco Corrupt queries. N is an upper bound on the number of
parties, and qs is an upper bound of the number of instances an adversary initiates.

Proof The intuition is as follows: under the DDH assumption, the adversary cannot have non-
negligible advantage unless it can choose a value gα for which it knows α, send this to an instance,
and have that instance compute a valid session key using this value (i.e., if the instance sends
Y = gα′

then the adversary knows the computed session key Y α). However, this cannot happen
with more than negligible probability by the security of the MAC. Details follow.

Consider an adversary A attacking T S3 in the sense of forward secrecy. Let coll be the event
that a value gαi is used twice (possibly by different parties), and let Ex be the event that the
adversary makes its Test query to an instance that was initiated via an Execute query. Let Forge

be the event that, for some instance Πk
i with partner Pj , the adversary queries Send(Pi, k,M) and

(1) neither Pi nor Pj was previously corrupted; (2) M was never sent by Pj to Pi (formally, was
never output in response to a query Initiate(Pj , ⋆, Pi) and never appeared in a transcript output by
a query Execute(Pi, Pj) or Execute(Pj , Pi)); and (3) the tag contained in M is valid. One can fairly
easily derive:

∣

∣PrA[b′ = b]− 1
2

∣

∣ ≤ 1
2 · (PrA[coll] + PrA[Forge])

+
∣

∣PrA[b′ = b ∧ coll ∧ Ex]− 1
2 · PrA[coll ∧ Ex]

∣

∣

+
∣

∣PrA[b′ = b ∧ coll ∧ Forge ∧ Ex]− 1
2 · PrA[coll ∧ Forge ∧ Ex]

∣

∣ .

As in the previous proofs, we have Pr[coll] ≤ q2
s/q. We next upper-bound PrA[Forge]:

Claim PrA[Forge] ≤ N2(ǫ + ǫ′).

Proof of claim (sketch): Let Forgei,j be the probability that Forge occurs for a specific pair of
parties i, j. Clearly, we have PrA[Forge] ≤ N2 Pr[Forgei,j]. Now, if we replace the key ki,j = gxixj

by a random element from G, we claim that this does not affect PrA[Forgei,j] by more than ǫ′

since we can embed an instance of the DDH problem in the public keys yi, yj of these players (note
that ki′,j′ for all pairs of players {i′, j′} 6= {i, j} can be computed correctly, and the rest of the
experiment can be carried out honestly). However, the probability that Forgei,j occurs when ki,j is
truly random is at most ǫ by the security of the MAC. The claim follows.

The two claims that follow provide upper bounds for the final two terms of the equation above.

Claim
∣

∣PrA[b′ = b ∧ coll ∧ Ex]− 1
2 · PrA[coll ∧ Ex]

∣

∣ ≤ ǫ′.

Proof of claim: Intuitively, we prove the claim by embedding a DDH instance into every Execute

query. Formally, consider an adversary F who proceeds as follows:

1. Public keys for all the players are generated honestly.

2. Given a tuple (g,X, Y, Z) as input, F will generate polynomially-many tuples {(g,Xi, Yi, Zi)}
with the following properties: if (g,X, Y, Z) is a DDH tuple, then each tuple (g,Xi, Yi, Zi) is
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a random and independently-distributed DDH tuple. On the other hand, if the original input
is a random tuple, then each tuple (g,Xi, Yi, Zi) is a random and independently-distributed
random tuple. We refer to [3] for a description of how this is done.

3. For each query Execute(Pi, Pj), algorithm F generates a tuple (g,Xi, Yi, Zi) as above, outputs
the transcript Xi||τ ||Yi||τ

′ (where the tags are computed as expected), and sets the session
key equal to Zi.

4. All Initiate,Send,Reveal,Corrupt, and Test queries are answered normally.

5. When A is done, F checks that coll has not occurred and that Ex has occurred. If this is not
the case, then F outputs a random bit. Otherwise, F outputs ‘1’ iff A correctly guesses the
value b used to answer the Test query.

Let us analyze the behavior of F . If its input is a random DDH tuple, then F provides a perfect
simulation for A. Thus, the probability that F outputs ‘1’ in this case is given by:

1
2 ·

(

1− PrA[coll ∧ Ex]
)

+ PrA[b = b′ ∧ coll ∧ Ex].

On the other hand, if the input given to F is a random tuple then the probability that F outputs
‘1’ is exactly 1/2 (since regardless of whether Ex occurs or not, F outputs ‘1’ with probability 1/2).
We therefore have

Advddh

F ,GG =
∣

∣PrA[b = b′ ∧ coll ∧ Ex]− 1
2 · PrA[coll ∧ Ex]

∣

∣ .

The claim follows.

Claim
∣

∣PrA[b′ = b ∧ coll ∧ Forge ∧ Ex]− 1
2 · PrA[coll ∧ Forge ∧ Ex]

∣

∣ ≤ q2
sǫ

′.

Proof of claim: Consider the following adversary F :

1. F receives a tuple (g,X, Y, Z) which is either a Diffie-Hellman tuple or a random tuple. F
chooses distinct, random α, β ∈ {1, . . . , qs}. Recall that qs is a bound on the number of
instances initiated by A; intuitively, F is guessing that A will take the message sent by the
αth instance, forward this message to the βth instance, and then make its Test query on the
βth instance.

2. F chooses public keys for all parties normally, and stores the associated secret keys.

3. F runs A, answering its oracle queries as described below. In the course of this experiment,
F will sequentially assign a unique number in the range {1, . . . , qs} to each instance initiated
by A. Note that A initiates an instance in two ways: either via an Initiate query (when a
single instance is initiated), or via an Execute query (when two instances are initiated). We
now describe how the oracle queries of A are handled:

In response to a query Execute(Pi, Pj), where ctr1, ctr2 are the numbers assigned by F to the
two instances thus initiated, F responds as follows:

• If either ctr1 = β or ctr2 = β, then F aborts (since its guess for β was wrong) and
outputs a random bit.

• If ctr1 6= α and ctr2 6= α, then this query is answered normally.
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• If ctr1 = α, then F chooses random γ ∈ Zq and responds to this query with the transcript
X||τ ||gγ ||τ ′, where X is taken from the input instance and τ, τ ′ are computed normally.
Also, the session key for both instances is set to Xγ .

• If ctr2 = α, then F responds as above except with the transcript gγ ||τ ||X||τ ′.

In response to a query Initiate(Pi, k, Pj), where ctr is the number assigned by F to instance
Πk

i initialized by this query, F responds as follows:

• If ctr 6∈ {α, β}, then this query is answered normally.

• If ctr = α, then F responds to this query with X||τ , where X is taken from the input
instance and τ is computed normally.

• If ctr = β, then F responds to this query with Y ||τ , where Y is taken from the input
instance and τ is computed normally.

In response to a query Send(Pi, k,M), where ctr is the number assigned by F to instance Πk
i ,

adversary F responds as follows:

• If ctr 6∈ {α, β}, then F responds to this query normally. (It can do this since it responded
normally to the corresponding Initiate query for this instance.)

• If ctr = α, then the message sent by this instance was X||τ . Let M = X̂ ||τ ′. Then:

– If τ ′ is an invalid MAC tag, then F simply sets skk
i =⊥.

– Say X̂ ||τ ′ was not output by F in response to an Initiate or Execute query, but τ is
valid. Then either a MAC forgery has occurred or else Pi or its partner has been
corrupted; in any case, F aborts and outputs a random bit.

– Otherwise, X̂ ||τ ′ was output by F in response to an Initiate or Execute query corre-
sponding to some instance Πk′

j numbered ctr′. If ctr′ = α = ctr, then this is a forgery

(since τ ′ = Macki,j
(i||j||X̂) but τ ′ is also a valid tag for the message j||i||X̂) and so

F aborts and outputs a random bit. If ctr′ = β then X̂ = Y and F sets skk
i = Z. If

ctr′ 6∈ {α, β}, then F knows γ = logg X̂ and computes the session key skk
i = Xγ .

• If ctr = β, then there are two cases:

– If M is the message output by the αth instance (i.e., M = X||τ) and τ is a valid tag
(i.e., the user associated with the αth instance is the intended partner of the present
instance), then F sets skk

i = Z.

– In any other case, F aborts and outputs a random bit.

Reveal, Corrupt, and Test queries are answered normally.

4. At the conclusion of the experiment, F outputs a random bit if any of the following are true:
(1) coll or Forge or Ex has occurred, or (2) A did not ask its Test query on the βth instance.
Otherwise, F outputs ‘1’ if A guesses b correctly, and ‘0’ otherwise.

Let us first analyze the behavior of F under the assumption that its input is a random Diffie-
Hellman tuple. Define Good to be the event that neither Forge nor coll occur, and furthermore A
asks its Test query on the βth instance, which was initialized via an Initiate query and was sent
the message output by the αth instance. (Note that if Good occurs then in particular Ex does not
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occur.) We claim that F provides a perfect simulation for A until such point as it is clear that
Good will not occur. To see this, let Pβ be the user associated with the βth instance, and let P ′

β be

the partner of the βth instance. Let Pα be the user associated with the αth instance, and let P ′
α

be the partner of the αth instance. First observe that if Pα 6= P ′
β or P ′

α 6= Pβ , then Good cannot

occur. So assume Pα = P ′
β and P ′

α = Pβ (with Pα 6= Pβ). Assume also that the βth instance was
initialized via an Initiate query (or else Good also cannot occur). Then:

• If F aborts in response to a query Send(Pα, k,M) with ctr = α, there are two cases:

– A forgery has occurred, in which case Good cannot occur.

– Pα or Pβ were corrupted; then the βth instance is not fresh and Good cannot occur.

• If F aborts in response to a query Send(Pβ , k,M) with ctr = β, clearly Good cannot occur.

F outputs ‘1’ in this case with probability

Pr[b′ = b ∧ Good] +
1

2
· (1− Pr[Good]).

Furthermore, we conclude from the above that

Pr[Good] =
Pr[coll ∧ Forge ∧ Ex]

qs(qs − 1)

and

Pr[b′ = b ∧ Good] =
Pr[b′ = b ∧ coll ∧ Forge ∧ Ex]

qs(qs − 1)
.

Summarizing, when the input to F is a random Diffie-Hellman tuple then F outputs ‘1’ with
probability

1

2
+

1

qs(qs − 1)
·

(

Pr[b′ = b ∧ coll ∧ Forge ∧ Ex]−
1

2
· Pr[coll ∧ Forge ∧ Ex]

)

.

On the other hand, when the input to F is a random tuple then F outputs ‘1’ with probability
exactly 1

2 . Therefore,

Advddh

F ,GG =
1

qs(qs − 1)
·
∣

∣

(

Pr[b′ = b ∧ coll ∧ Forge ∧ Ex]− 1
2 · Pr[coll ∧ Forge ∧ Ex]

)
∣

∣,

from which the claim follows.
This completes the proof of the theorem.

A variant. In the above description of T S3, each party computes a key ki,j which it then uses
to authenticate its message using a message authentication code. It is also possible to have each
party Pi sign its messages using, for example, its public key yi as a public key for, e.g., the Schnorr
signature scheme (in fact, any signature scheme could be used assuming the parties have established
the appropriate public keys). In this case, the party must sign (Pi, Pj , g

αi) (in particular, it should
sign the recipient’s identity as well) to ensure that the signed message will be accepted only by the
intended partner. The proof of security for this modified version is completely analogous to (and,
in fact, slightly easier than) the proof of T S3.
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