
Two-Server Password-Only Authenticated Key Exchange

Jonathan Katz∗ Philip MacKenzie† Gelareh Taban‡ Virgil Gligor§

Abstract

Typical protocols for password-based authentication assume a single server that stores all
the information (e.g., the password) necessary to authenticate a user. An inherent limitation of
this approach, assuming low-entropy passwords are used, is that the user’s password is exposed
if this server is ever compromised. To address this issue, it has been suggested to share a user’s
password information among multiple servers, and to have these servers cooperate (possibly in
a threshold manner) when the user wants to authenticate.

We show here a two-server version of the password-only key-exchange protocol of Katz,
Ostrovsky, and Yung (the KOY protocol). Our work gives the first secure two-server protocol
for the password-only setting (in which the user need remember only a password, and not the
servers’ public keys), and is the first two-server protocol (in any setting) with a proof of security
in the standard model. Our work thus fills a gap left by the work of MacKenzie et al. (J. Crypto
2006) and Di Raimondo and Gennaro (JCSS 2006). As an additional benefit of our work, we
show modifications that improve the efficiency of the original KOY protocol.

1 Introduction

Humans typically choose “weak”, low-entropy passwords, while standard authentication protocols
assume the use of cryptographic (i.e., high-entropy) secrets. Unfortunately, protocols designed
and proven secure in the latter setting are generally insecure in the former context because these
protocols are not resistant to off-line dictionary attacks in which an eavesdropping adversary derives
information about the password from observed transcripts of login sessions. In recent years, much
attention has focused on designing password-based authenticated key-exchange protocols resistant
to such attacks. (We remark that on-line dictionary attacks — in which an adversary simply
attempts to login repeatedly, trying each possible password — cannot be prevented by cryptographic
means but can be dealt with using other methods outside the scope of this work.)

Means of protecting against off-line dictionary attacks in a single-server setting were first sug-
gested by Gong et al. [21] in a “hybrid”, PKI-based model where users are required to store the
server’s public key in addition to a password. Bellovin and Merritt [5] were the first to suggest
protocols for password-only authenticated key exchange (PAKE), where users are required to store
only a short password. These initial works (and others [6, 23, 28, 34]) were relatively informal
and did not provide definitions or proofs of security. Subsequently, formal definitions and provably

∗Dept. of Computer Science, University of Maryland. Work supported by NSF grants #0447075 and #0310751.
†Google labs. Work done while at DoCoMo USA Labs.
‡Work done while at the University of Maryland.
§Dept. of Electrical and Computer Engineering, Carnegie Mellon University. Work done while at the University

of Maryland.

1

secure protocols for the “hybrid” model were given [22, 7], followed by models for the password-only
setting [1, 8, 20] and associated protocols with proofs of security in the random oracle/ideal cipher
models1 [1, 8, 30] or in the standard model [26, 20, 19, 25]. (The protocols of [26, 19, 25] assume
some public information which is available to all parties. Since this information can be hard-coded
into implementations of the protocol, clients do not need to memorize or store any high-entropy,
cryptographic information as they are required to do in the PKI-based setting.)

Although the above protocols protect against off-line dictionary attacks, they do nothing to
mitigate the concern that an adversary might obtain users’ passwords via server compromise. Such
attacks represent a serious threat since they are potentially cost-effective (in that an adversary might
be able to obtain thousands of users’ passwords by corrupting a single, poorly-protected server),
and because users frequently utilize the same password at multiple sites. It is easy to show that it is
impossible to protect against server compromise when a single server holds the information needed
to authenticate a user (assuming the only secret information held by the user is a low-entropy
password). To protect against server compromise, Ford and Kaliski [18] thus proposed using a
threshold protocol in which the authentication functionality is distributed across n servers who
cooperate to authenticate a user, and who obtain independent session keys (shared with the user)
following a successful authentication. Their protocol, which is designed in the PKI-based model,
remains secure (and, in particular, an adversary learns nothing about users’ passwords other than
what it learns from its on-line password guesses) as long as n−1 or fewer servers are compromised.
Jablon [24] gave a protocol with similar functionality in the password-only setting. Neither of these
works, however, include rigorous definitions or proofs of security.

Subsequent to the work of Ford-Kaliski and Jablon, a number of provably secure protocols for
threshold password-based authentication have been given. We summarize what is known:

• MacKenzie et al. [31] showed a protocol in the “hybrid”, PKI-based setting which requires
only t out of n servers to cooperate in order to authenticate a user, for any values of t, n (of
course, security is only obtained as long as t − 1 or fewer servers are compromised). They
prove security for their protocol in the random oracle model.

• Di Raimondo and Gennaro [16] proposed a protocol in the password-only setting with a
proof of security in the standard model. (A second protocol given in their paper, which we
will not discuss further, achieves the weaker functionality in which the user shares the same
session key with all the servers.) Their protocol requires fewer than 1/3 of the servers to be
compromised (i.e., they require t < n/3) and thus does not give a solution for the two-server
case.2 (In general, threshold cryptosystems for the two-party case do not follow immediately
from threshold solutions that require honest majority.)

• Brainard et al. [9] developed a two-server protocol, a variant of which has been proven secure
in the random oracle model [33]. These protocols assume the PKI-based setting since they
require a “secure channel” between the client and the server(s) which must presumably be
implemented using public-key techniques.

1In the random oracle model [2], parties are assumed to have “black-box” access to a random function; the ideal
cipher model assumes that parties have “black-box” access to a random keyed permutation. In practice, a random
oracle is instantiated by a cryptographic hash function. It is known [10], however, that protocols secure in the random
oracle model may be insecure for any choice of hash function.

2The approach in their paper does not extend to the case t ≥ n/3. The authors mention (without details) that
“[i]t is possible to improve the fault-tolerance to t < n/2. . . ”, but even this would not imply a two-server solution.

2

1.1 Our Contributions

We show here a two-server protocol for password-only authenticated key exchange, with a proof
of security in the standard model. Ours is the first provably secure two-server protocol in the
password-only setting, and is the first two-server protocol (in any setting) with a proof of security
in the standard model. Our protocol extends and builds upon the (single-server) password-based
key-exchange protocol of Katz, Ostrovsky, and Yung [26] (the KOY protocol). As an additional
benefit of our work, we show two modifications which improve the efficiency of the original KOY
protocol even in the single-server case. (One of these modifications was also used in [11].)

In Section 4 we describe a “basic” two-server protocol which is secure against a passive (i.e.,
“honest-but-curious”) adversary who has access to the entire state of one of the servers throughout
its execution of the protocol, but cannot cause this server to deviate from its prescribed behavior.
(Even in the this case, however, the adversary is assumed to control all communication between
the client and the servers.) This protocol is interesting in its own right (when the assumption on
adversarial behavior is warranted), and serves as a useful prelude to our second result. In Section 5
we show how to modify the basic protocol so as to achieve security against an active adversary who
may cause a corrupted server to deviate arbitrarily from the protocol.

The protocols we construct are relatively efficient. Each party in the basic two-server protocol
performs (roughly) twice the amount of work as in the original KOY protocol. For the protocol
secure against active adversaries, the work of the client stays the same but the work of the servers
increases by a factor of approximately 6. (More explicit calculations of the computational cost are
given in the appropriate sections.) This does not take into account potential efficiency improvements
such as off-line computation or pre-processing.

2 Definitions and Preliminaries

We assume the reader is familiar with the model of Bellare et al. [1] (building on [3, 4]) for password-
based key exchange in the single-server case. Here, we generalize their model and present formal
definitions for two-server protocols. While the model presented here is largely equivalent to the
model proposed by MacKenzie et al. [31] (with the main difference being that we do not assume
a PKI), we can simplify matters a bit since we focus on the two-server setting exclusively. For
convenience we first describe the model for the case of a “passive” adversary corrupting one of the
servers, and then discuss briefly the modifications needed to handle an “active” adversary. (As
discussed below, in both the “passive” and “active” cases the adversary is free to interfere with
all communication between the client and the servers. These cases only differ in the power of
the adversary to control the actions of the corrupted servers: specifically, a “passive” adversary is
unable to control the actions of corrupted servers, whereas an “active” adversary can.)

We first present a general overview of the system. For simplicity, we assume that every client
C in the system shares its password pw with exactly two servers A and B. In this case we say
that servers A and B are associated with C. (A single server may be associated with multiple
clients.) In addition to holding password shares, these servers may also be provisioned with arbitrary
other information (that need not be stored by C). Any such information is provisioned by some
incorruptible, central mechanism (a system administrator, say) at the outset of the protocol. This
does not represent a restriction in practice, since the servers must be provisioned with correct
password shares anyway, and so any additional information can be provided to the servers at that
time. Furthermore, the servers have no restriction — as the client does — on the amount of

3

information they can store. An (honest) execution of a protocol between client C and associated
servers A and B should result in the client holding two (independent) session keys skC,A, skC,B, and
servers A and B holding skA,C and skB,C , respectively, with skC,A = skA,C and skC,B = skB,C .

2.1 Passive Adversaries

We assume an adversary who corrupts some servers at the outset of the protocol, such that for any
client C at most one of the servers associated with C is corrupted. (Our definition does not require
the adversary to corrupt one server associated with each client; thus, our definition encompasses
security in the case when neither server associated with some client is corrupted.) In the case
of a passive adversary, a corrupted server continues to operate according to the protocol but the
adversary may monitor the corrupted server’s internal state.

There are two types of communication: between clients and servers, and between servers. We
give the adversary full control over the client-server communication; thus, the adversary can eaves-
drop on this communication, send messages of its choice to servers or clients, or tamper with, delay,
refuse to deliver, etc. any messages sent between servers and clients. Server-server communication
is assumed to be done over a secure channel (this can be realized via standard use of private-key
cryptography, since the servers can store long-term, shared keys); thus, the adversary is unable to
eavesdrop on the communication between two uncorrupted servers, and communication between
any two servers is not under adversarial control.3

With the above in mind, we proceed to the formal definitions.

Participants, passwords, and initialization. There is a fixed set of protocol participants (also
called principals), each of which is either a client C ∈ Client or a server S ∈ Server, where Client
and Server are disjoint. Each C ∈ Client is assumed to have a password pwC chosen uniformly
and independently from the “dictionary” {1, . . . , N}.4 As noted earlier, we make the simplifying
assumption that each client shares its password with exactly two servers. If client C shares its
password with the distinct servers A,B, then A (resp., B) holds a password share pwC,A (resp.,
pwC,B); the mechanism for generating these shares depends on the protocol itself. We also allow
each server to hold information in addition to these password shares. The initialization phase during
which this information is provisioned is assumed to be carried out by some trusted authority, but
any information stored by a corrupted server is available to the adversary.

In general, additional information can be generated during the initialization phase. For example,
in the “hybrid” password/PKI model [22, 7] public/secret key pairs are generated for each server
and the secret key is given as input to the appropriate server, while the public key is provided to
the appropriate client(s). For the protocol presented here, we require only the weaker requirement
of a single set of public parameters that is provided to all parties.

Execution of the protocol. In the real world, a protocol determines how principals behave
in response to messages from the network. In the formal model, these messages are provided
by the adversary. Each principal is assumed to be able to execute the protocol multiple times

3For two uncorrupted servers, this follows by our assumption of a secure channel between them. A corrupted server
in the passive setting communicates as specified by the protocol, and so we do not allow the adversary to control this
communication. A corrupted server in the active setting may send whatever it likes and so it is unnecessary to allow
the adversary to interfere with the communication channel in this case.

4As in other work, our protocol and proof of security may be adapted easily to handle arbitrary dictionaries and/or
non-uniform (but efficiently sampleable) distributions on passwords.

4

(possibly concurrently) with different partners; this is modeled by allowing each principal to have
an unlimited number of instances [4, 1] with which to execute the protocol. We denote instance
i of principal U as Πi

U . A given instance may be used only once. The adversary is given oracle
access to these different instances, and each instance Πi

U maintains (local) state, updated during
the course of the experiment, which includes the following:

• sidi
U , pidi

U , and ski
U are the session id, partner id, and session key(s) for an instance, re-

spectively. The session id keeps track of the different executions of a particular user U ; we
specify below how this is determined. The partner id denotes the identity of the principal
with whom Πi

U believes it is interacting. A client’s partner id will be a set of two servers; a
server’s partner id will be a single client (viewed as a set for notational convenience). For C
a client, ski

C consists of a pair ski
C,A, ski

C,B, where these are the keys shared with servers A

and B, respectively. A server instance Πi
S with partner C has only a single session key ski

S,C .

• termi
U and acci

U are boolean variables indicating whether a given instance has terminated or
accepted, respectively. Termination means that a given instance is done sending and receiving
messages; acceptance indicates successful termination.

As highlighted earlier, the adversary is assumed to have complete control over all communication
between the servers and clients. This is modeled via access to oracles which are essentially as in [1]
and are described now:

• Send(C, i, S,msg), where C ∈ Client and S is a server associated with C. This sends message
msg to client instance Πi

C , supposedly from S. This client instance runs according to the
protocol specification and the message it outputs, if any, is given to the adversary. If msg is
empty then this query represents a “prompt” for C to initiate the protocol.

• Send(S, i, C,msg), where S ∈ Server is associated with client C. This sends message msg
to server instance Πi

S , supposedly from C. This instance runs according to the protocol
specification, and the message it outputs is given to the adversary. If S is corrupted, the
adversary also receives the entire internal state of S; if the other server S′ associated with C
is corrupted, then the adversary is given the entire internal state of S′.

• Execute(C, i, A, B, j), where C ∈ Client and A,B are servers associated with C. This executes
the full protocol between instances Πi

C and Πj
A,Πj

B, and outputs the entire transcript of the
client-server communication in this execution. In addition, if S ∈ {A,B} is corrupted the
adversary is given the entire internal state of S.

• Reveal(U,U ′, i), where U ′ ∈ pidi
U . This outputs ski

U,U ′ , a session key held by instance Πi
U .

This oracle call models usage of the session key by some higher-level application, or possible
leakage of a session key due to, e.g., compromise of a host computer.

• Test(U,U ′, i). This does not model any real capability of the adversary, but is instead needed
for a definition of security. As in the case of a Reveal query, we assume U ′ ∈ pidi

U . If
ski

U,U ′ = null, then this oracle outputs ⊥. Otherwise, a random bit b is generated; if b = 1
the adversary is given ski

U,U ′ , and if b = 0 the adversary is given a random session key. The
adversary is allowed only a single Test query, at any time during its execution.

5

As usual, Send oracle calls are intended to model active attacks on the protocol (i.e., “on-line at-
tacks”), whereas Execute calls are intended to model passive eavesdropping (i.e., “off-line attacks”).

Session ids and partnering. We define a natural notion of partnering based on matching
transcripts. For a client instance Πi

C associated with servers A and B, let sidi
C,A (resp., sidi

C,B)
denote the ordered sequence of messages sent to/from the client and server A (resp., server B). For
a server instance Πj

B, let sidj
B be the ordered sequence of messages sent to/from this instance and

the client; note that server-server communication is not included. Then instances Πi
C and Πj

B are
partnered if: (1) sidi

C,B = sidj
B 6= null; and (2) B ∈ pidi

C and C ∈ pidj
B.

Correctness. We require a key-exchange protocol to satisfy the following: if a client instance Πi
C

and server instances Πj
A and Πj

B run an honest execution of the protocol with no interference from
the adversary, then acci

C = accj
A = accj

B = true, and ski
C,A = skj

A,C , and ski
C,B = skj

B,C .
In the case of an active adversary who has corrupted server A, we impose no correctness re-

quirements. However, our protocol in Section 5 achieves the following: with all but negligible
probability, for every pair of partnered instances Πi

C and Πj
B with acci

C = accj
B = true, it holds

that ski
C,B = skj

B,C 6= null.

Freshness. To formally define the adversary’s success we must first define a notion of freshness
for a session key, where freshness of a key is meant to indicate that the adversary does not trivially
know the value of the key. We say a session key ski

U,U ′ is fresh if: (1) neither U nor U ′ is a
corrupted server, (2) the adversary never queried Reveal(U,U ′, i); and (3) the adversary never
queried Reveal(U ′, U, j), where Πj

U ′ and Πi
U are partnered.

Advantage of the adversary. Informally, the adversary succeeds if it can distinguish a fresh
session key from random. (Restricting to a fresh session key is necessary for a meaningful definition
of security.) Formally, we say an adversary A succeeds if it makes a single query Test(U,U ′, i)
regarding a fresh key ski

U,U ′ , and outputs a bit b′ with b′ = b (recall that b is the bit chosen by the
Test oracle). We denote this event by Succ. The advantage of adversary A in attacking protocol P
is then given by:

AdvA,P (k) def= 2 · Pr[Succ]− 1,

where the probability is taken over the random coins used by the adversary as well as the random
coins used during the course of the experiment.

An adversary can always succeed by trying all passwords one-by-one in an on-line impersonation
attack; a protocol is secure if this is the best an adversary can do. In our model, on-line attacks
correspond to Send queries. Formally, every instance for which the adversary has made a Send
query counts as one on-line attack. We stress that instances with which the adversary interacts
via Execute queries are not counted as on-line attacks. The number of on-line attacks represents a
bound on the number of passwords the adversary could have tested in an on-line fashion.

Definition 1 Protocol P is a secure two-server protocol for password-only authenticated key-exchange
if, for all dictionary sizes N and for all ppt adversaries A making at most Q(k) on-line attacks
and corrupting at most one server associated with each client, there exists a negligible function ε(·)
such that AdvA,P (k) ≤ Q(k)/N + ε(k).

Explicit mutual authentication. The above definition captures the requirement of implicit
authentication only (and the protocol we present here achieves only implicit authentication). Using
standard techniques, however, it is easy to add explicit authentication to any protocol achieving
implicit authentication.

6

2.2 Active Adversaries

The only difference in the active case is that the adversary may now cause any corrupted servers
to deviate in an arbitrary way from the actions prescribed by the protocol. Thus, if a server is
corrupted the adversary controls all messages sent from this server to any other servers. (The
adversary can also control messages sent from this server to any clients; note, however, that even
a passive adversary has this ability since it controls the communication channel between servers
and clients.) Because of this change, we no longer use a Send oracle to model sending messages
to a corrupted server, but we formally introduce a new Send oracle to model communication from
a corrupted server to a non-corrupted server. (We also charge the adversary with an additional
on-line attack for using the latter.) As in the passive case, however, we continue to assume that
the adversary cannot eavesdrop on or control communication between two non-corrupted servers.

3 A Review of the KOY Protocol

Here, we provide a brief review of the KOY protocol [26] which will be useful toward understanding
our two-server protocol in the following section. We also discuss the modifications we introduce
to the KOY protocol which have the effect of both simplifying our eventual two-server protocol as
well as improving the efficiency of the KOY protocol even in the single-server setting.

The KOY protocol operates in three rounds. At a high level, in round 1 the client generates
a Cramer-Shoup encryption [14] of its password (using a “public key” contained in the public
parameters) and sends the resulting ciphertext to the server; the server acts symmetrically in
round 2. We observe that the following modifications may be made without affecting security of
the protocol:

• The server may use El Gamal encryption [17] in round 2 rather than Cramer-Shoup encryp-
tion (this was first observed, in a different context, in [11]). This is somewhat surprising, as
the proof of security in [26] explicitly relies on the chosen-ciphertext security of Cramer-Shoup
encryption, while El Gamal encryption is only semantically secure.

• There is no need for the server to compute a fresh encryption of the password (in round 2)
in each execution of the protocol ; instead, the server can store an encryption of the password
(along with the randomness used to generate this encryption) as part of its long-term state,
and use the same ciphertext every time it executes the protocol.

We refer to the KOY protocol with the above modifications as the KOY* protocol. (We do not
formally prove security of the KOY* protocol in the single-server case; however, such a proof may
be derived from the proofs of the two-server protocols that we give in this paper.)

In brief (we provide more detail when we discuss the two-server version of this protocol in the
following section), then, the KOY* protocol assumes public parameters containing a description of
a group G with specified prime order q. Additionally, the parameters include random generators
g1, g2, g3, h, c, d ∈ G× (where G× def= G\{1}) and a hash function H. Components 〈g1, g2, h, c, d, H〉
will be used for Cramer-Shoup encryption by the client in round 1 (as in the original KOY protocol),
while 〈g1, g3〉 will be used for El Gamal encryption by the server in round 2.

A password pwC ∈ Zq is chosen for each client C and shared with the appropriate server S.

In addition, S is pre-provisioned with both r′ and a ciphertext ComS,C
def=

(
gr′
1 , gr′

3 gpwC
1

)
, where

r′ ∈ Zq is chosen at random; note that ComS,C is simply a (random) El Gamal encryption of gpwC
1 .

7

Execution of the protocol proceeds as follows. When a client Client with password pwC wants
to initiate an execution of the protocol, it runs a key-generation algorithm for a one-time signature
scheme, yielding VK and SK. It then chooses a random r ∈ Zq and computes A = gr

1, B = gr
2,

and C = hr · gpwC
1 . It then computes α = H(Client|VK|A|B|C) and sets D = (cdα)r. Note that

(A,B, C, D) is a (labeled) Cramer-Shoup encryption of gpwC
1 . The client sends

msg1
def= 〈Client, VK, A, B, C,D〉

to the server.
The server re-computes α = H(Client|VK|A|B|C), chooses random x′, y′, z′, w′ ∈ Zq, and com-

putes E = gx′
1 gy′

2 hz′(cdα)w′ . It then sends the message

msg2
def= 〈E, F, G〉

to the client, where (F, G) = ComS,C . We stress that the same values F, G are used by this server
every time.

Upon receiving msg2, the client chooses random x, y ∈ Zq and computes K = gx
1gy

3 . It also
computes a signature σ on (msg1, msg2,K) using SK, and sends

msg3
def= 〈K,σ〉

to the server. The client concludes by computing its session key as skC = ErF x(G/gpwC
1)y.

The server, upon receiving msg3, verifies the signature and aborts if it is incorrect. Otherwise,
is computes its session key as skS = Ax′By′(C/gpwC

1)z′Dw′Kr′ . It may be easily verified that in a
correct execution the client and server compute identical session keys.

4 A Protocol Secure Against Passive Adversaries

4.1 Description of the Protocol

We assume the reader is familiar with the decisional Diffie-Hellman (DDH) assumption [15], strong5

one-time signature schemes, and the Cramer-Shoup encryption scheme [14] with labels. A high-
level depiction of the protocol is given in Figures 1–3, and a more detailed description, as well as
some informal discussion about the protocol, follows.

Initialization. During the initialization phase, public parameters (i.e., a common reference string)
are generated and made available to all parties. For security parameter k, the public parameters
for our protocol contain a group G (written multiplicatively) having specified prime order q with
|q| = k; we assume the hardness of the DDH problem in G. Additionally, the parameters include
random generators g1, g2, g3, h, c, d ∈ G \ {1} and a hash function H : {0, 1}∗ → Zq chosen at
random from a collision-resistant hash family.

As part of the initialization, each server S is provisioned with an El Gamal public-/secret-key
pair (pkS , skS), where pkS = gskS

1 . If A and B are associated with the same client C, then A
(resp., B) is given pkB (resp., pkA). We stress that, in contrast to the PKI-based model, the client
is not assumed or required to know the public keys of any of the servers.

5In a strong signature scheme, an adversary cannot even forge a new signature on a previously signed message.

8

Public: G; g1, g2, g3, h, c, d ∈ G×; H : {0, 1}∗ → Zq

Client

(VK,SK) ← Gen(1k)
r1, r2 ← Zq

Aa := gr1
1 , Ba := gr1

2 , Ca := hr1 · gpwC

1

αa := H(Client |VK|Aa|Ba|Ca), Da := (cdαa)r1

Ab := gr2
1 , Bb := gr2

2 , Cb := hr2 · gpwC

1

αb := H(Client |VK|Ab|Bb|Cb), Db := (cdαb)r2
〈

Client, VK,
Aa, Ba, Ca, Da

Ab, Bb, Cb, Db

〉

-

msgA = 〈Ea,1, Eb,1, Fa, Ga〉
msgB = 〈Eb,2, Ea,2, Fb, Gb〉¾Ea := Ea,1 · Ea,2, Eb := Eb,1 · Eb,2

F := Fa · Fb, G := Ga ·Gb

x1, y1, x2, y2 ← Zq

Ka := gx1
1 gy1

3 , Kb := gx2
1 gy2

3

σ ← SignSK(msg1|msgA|msgB |Ka|Kb) 〈msgA,msgB ,Ka,Kb, σ〉 -

skC,A := Er1
a F x1(G/gpwC

1)y1

skC,B := Er2
b F x2(G/gpwC

1)y2

Figure 1: An execution of the protocol from the client’s point of view.

Given a message m ∈ G and a public key (i.e., group element) pk, we let M ← ElGpk(m) denote
the act of choosing a random r ∈ Zq and setting M = (gr

1, pkrm). We let M [1] refer to the first
component of this ciphertext, and let M [2] refer to the second. Note that if sk is the corresponding
secret key (i.e., pk = gsk

1), then we have m = M [2]
M [1]sk .

Passwords and password shares are provisioned in the following way: a password pwC is chosen
randomly for each client C and we assume that this password can be mapped in a one-to-one fashion
to Zq. If A and B are the servers associated with a client C, then password shares pwA,C, pwB,C ∈ Zq

are chosen uniformly at random subject to pwA,C+pwB,C = pwC mod q, with pwA,C given to server A
and pwB,C given to server B. In addition, both A and B are given ComA,C ,Com′

A,C , ComB,C , and
Com′

B,C , where:

ComA,C
def= ElGg3(g

pwA,C

1) =
(
gra
1 , gra

3 g
pwA,C

1

)

Com′
A,C

def= ElGpkA
(gpwA,C

1)

ComB,C
def= ElGg3(g

pwB,C

1) =
(
grb
1 , grb

3 g
pwB,C

1

)

Com′
B,C

def= ElGpkB
(gpwB,C

1).

(Note that the keys for these El Gamal encryptions differ.) Server A (resp., server B) is additionally
given the randomness ra (resp., rb) used to construct ComA,C (resp., ComB,C).

Protocol execution. At a high level one can view our protocol as two executions of the KOY*

9

protocol, one between the client and server A (using server B to assist with the authentication),
and one between the client and server B (using server A to assist with the authentication).

When a client with password pwC wants to initiate an execution of the protocol, this client com-
putes Cramer-Shoup “encryptions” of pwC for each of the two servers. In more detail (cf. Figure 1),
the client begins by running a key-generation algorithm for a one-time signature scheme, yielding
verification key VK and signing key SK. The client next chooses random r1 ∈ Zq and computes
Aa = gr1

1 , Ba = gr1
2 , and Ca = hr1 · gpwC

1 . The client then computes αa = H(Client|VK|Aa|Ba|Ca)
and sets D = (cdαa)r1 . This exact procedure is carried out a second time using an independent
random value r2 ∈ Zq. The client sends

msg1
def= 〈Client, VK, Aa, Ba, Ca, Da, Ab, Bb, Cb, Db〉

to each server as the first message of the protocol. Note that this corresponds to two independent
“encryptions” of pwC using the label Client |VK.

The servers act symmetrically, so for simplicity we describe the actions of server A (cf. Figure 2).
Upon receiving msg1, server A sends “shares” of (1) two values of the form gx

1gy
2hz(cdα)w (for

α ∈ {αa, αb}), one for server A and one for server B, and (2) an El Gamal encryption of pwC. In
more detail, server A chooses random xa, ya, za, wa ∈ Zq and computes Ea,1 = gxa

1 gya
2 hza(cdαa)wa .

It also chooses random x′a, y′a, z′a, w′a ∈ Zq and computes Eb,1 = g
x′a
1 g

y′a
2 hz′a(cdαb)w′a . Finally, it sets

(Fa, Ga) equal to ComA,C (which, recall, is an El Gamal encryption of g
pwA,C

1 using “public key”

g3 and randomness ra). It sends the message msgA
def= 〈Ea,1, Eb,1, Fa, Ga〉 to the client.

After receiving a second-round message from each server, the client combines the values thus
received by multiplying them component-wise to obtain 〈Ea, Eb, F, G〉 (cf. Figure 1). Note that
(1) neither server knows the representation of Ea (resp., Eb) with respect to the basis g1, g2, h, (cdαa)
(resp., g1, g2, h, (cdαb)), and (2) the values (F, G) form an El Gamal encryption of the client’s
password pwC (with respect to public key g3). The client next chooses random values x1, y1, x2, y2 ∈
Zq, computes Ka = gx1

1 gy1
3 and Kb = gx2

1 gy2
3 , and computes a signature σ on msg1|msgA|msgB|Ka|Kb

using the secret key SK that it had previously generated. It sends msg3
def= 〈msgA, msgB,Ka,Kb, σ〉

to each server as the final message of the protocol. (Of course, msgA need not be sent to A and
similarly for msgB. Furthermore, it would suffice for the client to sign and send hashes of these
messages.) Finally, the client computes session keys

skC,A := E r1
a F x1(G/gpwC

1)y1

skC,B := E r2
b F x2(G/gpwC

1)y2 .

Upon receiving 〈msgA, msgB,Ka,Kb, σ〉 from the client, server A verifies that the (Fb, Gb) com-
ponent of msgB is equal to ComB,C (recall that A stores ComB,C), and that σ is a valid signature
on msg1|msgA|msgB|Ka|Kb with respect to VK. If verification fails, the server terminates the execu-
tion. Otherwise, servers A and B jointly execute the Compute protocol (cf. Figure 3 and described
next) in order to compute their session keys.

Before describing the Compute protocol, we introduce notation for manipulation of El Gamal
ciphertexts. If M, M ′ are two El Gamal ciphertexts (encrypted with respect to the same public key
pk), then we let M ×M ′ denote (M [1] ·M ′[1], M [2] ·M ′[2]). Note that if M is an encryption of
m and M ′ is an encryption of m′, then M ×M ′ is an encryption of m ·m′. For x ∈ Zq, we let Mx

denote the ciphertext (M [1]x, M [2]x). Here, the resulting ciphertext is an encryption of mx.

10

Public: G; g1, g2, g3, h, c, d ∈ G×; H : {0, 1}∗ → Zq

Client

msg1 =
〈

Client,VK,
Aa, Ba, Ca, Da

Ab, Bb, Cb, Db

〉

¾ -msg1 msg1
Server A Server B

Compute αa, αb as in Fig. 1
xa, ya, za, wa

x′a, y′a, z′a, w′a
←− Zq

Ea,1 := gxa
1 gya

2 hza(cdαa)wa

Eb,1 := g
x′a
1 g

y′a
2 hz′a(cdαb)w′a

(Fa, Ga) := ComA,C

-
〈Ea,1, Eb,1, Fa, Ga〉

Compute αa, αb as in Fig. 1
xb, yb, zb, wb

x′b, y
′
b, z

′
b, w

′
b
←− Zq

Eb,2 := gxb
1 gyb

2 hzb(cdαb)wb

Ea,2 := g
x′b
1 g

y′b
2 hz′b(cdαa)w′b

(Fb, Gb) := ComB,C

¾
〈Eb,2, Ea,2, Fb, Gb〉

¾〈msgA, msgB ,Ka, Kb, σ〉 -〈msgA, msgB , Ka,Kb, σ〉

if (Fb, Gb) incorrect, or

signature verification fails, output ⊥
else: perform Compute to obtain Xa

skA,C := Axa
a Bya

a Cza
a Dwa

a Kra
a Xa

if (Fa, Ga) incorrect, or

signature verification fails, output ⊥
else: perform Compute to obtain Xb

skB,C := Axb

b Byb

b Czb

b Dwb

b Krb

b Xb

Figure 2: Execution of the protocol from the servers’ points of view; see text for details. The
Compute protocol is given in Figure 3.

With this in mind, we now describe the Compute protocol. Since the protocol is symmetric,
we simply describe it from the point of view of server A. This server sets M1 to be an El Gamal
encryption (with respect to pkA) of g−za

1 . It then sends M1 to server B, who computes

M ′
2 ← M

pwB,C

1 × (
Com′

A,C

)−z′b × ElGpkA
(g−z′bpwB,C

1 A
x′b
a B

y′b
a C

z′b
a D

w′b
a Krb

a)

and sends this value back to server A (recall that rb is the randomness used to construct ComB,C).
Finally, server A decrypts M ′

2 and multiplies the result by g
−za·pwA,C

1 to obtain Xa. Note that

Xa = g
−(za+z′b)·pwC

1 ·
(
A

x′b
a B

y′b
a C

z′b
a D

w′b
a Krb

a

)
, (1)

using the fact that pwC = pwA,C + pwB,C mod q. In addition to the above, in the first step of
the protocol the servers exchange the messages received from the client thus far; each server then
verifies that these messages match their own view (and terminates if not).

Although omitted in the above description, we assume that the client and servers always verify
that incoming messages are well-formed, and in particular that all appropriate components of the
various messages indeed lie in G (we assume that membership in G can be efficiently verified).

Correctness. Since the protocol is symmetric, we focus on the session key shared between the

11

Server A (skA, pkB) Server B (skB , pkA)

M1 ← ElGpkA
(g−za

1) M ′
1 ← ElGpkB

(g−zb
1)

M1, msg1,msg3 -
M ′

1, msg1,msg3¾
Verify msg1, msg3

M2 ← (M ′
1)

pwA,C × (
Com′

B,C

)−z′a

×ElGpkB
(g−z′apwA,C

1 A
x′a
b B

y′a
b C

z′a
b D

w′a
b Kra

b)

Verify msg1,msg3

M ′
2 ← (M1)pwB,C × (

Com′
A,C

)−z′b

×ElGpkA(g−z′bpwB,C

1 A
x′b
a B

y′b
a C

z′b
a D

w′b
a Krb

a)
M ′

2¾

M2 -
Xa := g

−za·pwA,C

1 · M ′
2[2]

(M ′
2[1])skA

Xb := g
−zb·pwB,C

1 · M2[2]
(M2[1])skB

Figure 3: The Compute protocol. See text for a description of the notation used.

client and server A. The client computes:

skC,A = Er1
a F x1(G/gpwC

1)y1

=
(
g

xa+x′b
1 g

ya+y′b
2 hza+z′b(cdαa)wa+w′b

)r1

g
(ra+rb)·x1

1 g
(ra+rb)·y1

3 .

Meanwhile, server A computes:

skA,C = Axa
a Bya

a Cza
a Dwa

a Kra
a Xa

= A
xa+x′b
a B

ya+y′b
a C

za+z′b
a D

wa+w′b
a Kra+rb

a · g−(za+z′b)·pwC

1

= A
xa+x′b
a B

ya+y′b
a (Ca · g−pwC

1)za+z′bD
wa+w′b
a Kra+rb

a ,

using Equation (1) to substitute for the value of Xa. Continuing, we have:

skA,C =
(
g

xa+x′b
1 g

ya+y′b
2 hza+z′b(cdαa)wa+w′b

)r1

(gx1
1 gy1

3)ra+rb ,

which is equal to skC,A.

Efficiency. We count exponentiations only, and assume a multi-exponentiation with up to 5 bases
can be computed at the cost of at most 1.5 exponentiations. The client performs the equivalent of
15 full exponentiations (note that pwC is small, so does not count as a full exponentiation), while
each server performs 13 exponentiations (computation of M2,M

′
2 can be done by expressing each

of them as the product of two multi-exponentiations). Thus, our protocol increases each party’s
computation relative to the original KOY protocol by about a factor of 2. Performance could be
further improved using pre-computation.

4.2 Proof of Security for Passive Adversaries

We prove the following theorem regarding the protocol of the previous section:

Theorem 1 Assuming (1) the DDH problem is hard for G; (2) (Gen, Sign, Vrfy) is a strong one-
time signature scheme; and (3) H is collision-resistant, the protocol of Figures 1–3 is a secure two-
server protocol for password-only authenticated key exchange in the presence of a passive adversary.

12

Before proving this theorem, we introduce some notation. We view the adversary’s queries to its
Send oracles as queries to four different oracles Send0, Send1, Send2,Send3 corresponding, respec-
tively, to the request for a client to initiate the protocol as well as the three rounds of the protocol.
E.g., query Send0(C, i, S, ε) represents a request for instance Πi

C of client C to initiate the proto-
col; the output of this query is an initial message 〈Client , VK, Aa, . . . , Da, Ab, . . . Db〉. Similarly, a
query Send3(A, i, C, 〈msgA,msgB,Ka,Kb, σ〉) represents sending message 〈msgA, msgB,Ka,Kb, σ〉
to instance Πi

A of server A. In the proof, we always let msg1 denote the initial message sent by the
client to both servers; let msgA (resp., msgB) denote the second-round message sent from server A
(resp., server B) to the client; and let msg3 denote the final message sent by the client.

We do not explicitly use collision-resistance of H in the proof that follows, but that assumption
is needed for security of the Cramer-Shoup encryption scheme (which is used in the proof).

Proof Given a passive adversary A attacking the protocol, we imagine a simulator that runs the
protocol for A. More precisely, after the adversary chooses which servers to corrupt, the simulator
initializes the system (including selecting the public parameters, choosing passwords for all clients,
and computing password shares — as well as any other necessary information — for all servers),
gives A the information held by all corrupted servers, and then responds to the oracle calls made
by A. After computing the appropriate answer to the oracle query, the simulator provides the
adversary with the internal state of any corrupted servers involved in the query.

When the adversary queries the Test oracle, the simulator chooses a random bit b. When the
adversary completes its execution and outputs a bit b′, the simulator can tell whether the adversary
succeeds by checking whether (1) a single Test query was made regarding some fresh session key
ski

U,U ′ , and (2) b′ = b. Success of the adversary is denoted by event Succ, and for any experiment

P we define AdvA,P (k) def= 2 · PrA,P [Succ] − 1, where PrA,P [·] denotes the probability of an event
when the simulator interacts with the adversary in accordance with experiment P . We refer to the
original execution of the experiment (i.e., exactly according to the specification of the protocol) as
P0. We will introduce a sequence of transformations to the original experiment and bound the effect
of each transformation on the adversary’s advantage. We then bound the adversary’s advantage in
the final experiment; this yields a bound on the adversary’s advantage in the original experiment.

It is useful to keep two observations in mind while reading the proof. First, the initial message
of the Compute protocol (and the fact that we are in the passive setting) ensures that servers A
and B abort without outputting a session key unless they have consistent views on the messages
sent between the client and the servers. Second, when the two servers associated with some client
are both uncorrupted the messages exchanged by the servers during the Compute protocol are
irrelevant since the adversary cannot eavesdrop on their communication.

Experiment P ′
0: In experiment P ′

0, the simulator interacts with the adversary as before except
that the adversary does not succeed, and the experiment is aborted, if any of the following occur:

1. At any point, a msg1 generated by the simulator (whether in response to an Execute query
or a Send0 query) is repeated.

2. At any point, a msgA or msgB generated by the simulator (whether in response to an Execute
query or a Send1 query) is repeated.

3. At any point, the adversary forges a new, valid message/signature pair for any verification key
used in a simulator-generated msg1 (whether msg1 was generated in response to an Execute
query or a Send0 query).

13

In addition, the simulator changes how it computes the session key for any non-corrupted server B
so that it no longer uses the long-term El Gamal secret key skB. Recall that this secret key is used
only to compute Xb within the Compute protocol. Instead of computing Xb this way, the simulator
simply computes Xb directly via:

Xb := g
−(zb+z′a)·pwC

1 ·
(
A

x′a
b B

y′a
b C

z′a
b D

w′a
b Kra

b

)
.

We stress that the simulator can do this because we are dealing with a passive adversary (and so
the simulator knows the internal state of all servers, even corrupted ones).

These changes have only a negligible effect on the adversary’s advantage. Events 1 and 2, above,
clearly occur with only negligible probability. Event 3 occurs with negligible probability assuming
the security of (Gen, Sign, Vrfy) as a strong one-time signature scheme. Finally, the change in
computing Xb is merely a conceptual one since we assume a passive adversary (and so the value
of Xb is identical in games P0 and P ′

0; cf. Equation 1). Putting everything together, we have that∣∣∣AdvA,P0(k)− AdvA,P ′0(k)
∣∣∣ is negligible.

Experiment P ′′
0 : In this experiment, for any non-corrupted server B the pre-provisioned value

Com′
B,C (for any client C) is set to be an El Gamal encryption of a random value (with respect

to the public key pkB). Similarly, when any non-corrupted server B runs the Compute protocol
with a corrupted server, M ′

1 is set to be an El Gamal encryption of a random value (with respect
to the public key pkB). Since, in experiment P ′

0, the simulator does not use the secret key skB

of any non-corrupted server B (recall that computation of Xb no longer uses skB), it follows from
the semantic security of El Gamal encryption with respect to the public keys of all non-corrupted
servers (as well as a straightforward hybrid argument) that

∣∣∣AdvA,P ′0(k)− AdvA,P ′′0 (k)
∣∣∣ is negligible.

In the experiments that follow, we distinguish between the following possibilities for a msg1

received by a non-corrupted server: We say msg1 is oracle generated if it was output by the
simulator in response to an oracle query (i.e., either an Execute query or a Send0 query); we say
msg1 is adversary generated otherwise. We also make the convention throughout the rest of the
proof that any Send3 queries made by the adversary contain a valid signature on the appropriate
message as required by the protocol (since otherwise the server will simply reject the message and
terminate the appropriate instance, and the adversary can determine by itself whether the signature
is valid or not). Also, we assume that any components of adversary-generated messages that are
supposed to lie in G actually do (as a server will again reject if this is not the case).

Experiment P1: In experiment P1, the simulator changes the way it responds to a msg3 sent to
an uncorrupted server, when msg1 for the corresponding server instance is oracle generated. (By
definition, this is automatically the case for any Execute query being answered by the simulator.)
Let A and B be the servers associated with some client C, and say B is uncorrupted. Say a msg3

as described above is sent to instance Πj
B, either as a result of an Execute(C, i, A, B, j) query or a

Send3(B, j, C, ?) query, and that the corresponding instance of server A has also been sent msg3.
(If no instance of server A has yet received the final message msg3, then Πj

B will not execute
beyond the first message of the Compute protocol.) The simulator searches for the unique i such
that sidi

C,B = sidj
B (we comment below on the existence of such an i). The simulator then sets

skj
B,C := ski

C,B. Furthermore, if A is corrupted then M ′
2 (in the Compute protocol) is computed as:

M ′
2 ← ElGpkA

(
ski

C,A ·A−xa
a B−ya

a C−za
a D−wa

a K−ra
a g

za·pwA,C

1

)
.

14

An i as desired must exist, since otherwise the adversary has succeeded in forging a signature
with respect to a verification key generated by the simulator and the simulator would then have
aborted (cf. experiment P ′

0). Furthermore, this i must be unique or else an oracle-generated msg1

has repeated and the simulator would have aborted.
The changes just described do not have any effect on the view of the adversary. This is clear for

the case of skj
B,C , since in P ′′

0 it is always the case that skj
B,C = ski

C,B when Πj
B and Πi

C are partnered
and B does not terminate the protocol. (Recall we assume a passive adversary.) Furthermore, in
both experiments P1 and P ′′

0 , the value M ′
2 is a random encryption of the unique value v such that

skj
A,C

def= v · (g−za·pwA,C

1 Axa
a Bya

a Cza
a Dwa

a Kra
a) = ski

C,A.

Thus, AdvA,P1(k) = AdvA,P ′′0 (k).

We next introduce another conceptual change in the experiment by having the simulator choose
public parameters h, c, d in such a way that it knows their representations with respect to g1, g2.
That is, when generating the public parameters the simulator now chooses g1, g2 ← G \ {1} (as
before) and then chooses κ ← Z∗q and (χ1, χ2), (ξ1, ξ2) ← {(x, y) ∈ Zq ×Zq | gx

1gy
2 6= 1}. It then sets

h = gκ
1 , c = gχ1

1 gχ2
2 , d = gξ1

1 gξ2
2 .

It is clear that the resulting distribution on the public parameters is unchanged from the previous
experiment, and so this has no effect on the adversary’s view.

Say (Client, VK, A, B, C,D) is a correct encryption if Aχ1+αξ1Bχ2+αξ2 = D and C/Aκ = gpwClient
1 ,

where α
def= H(Client|VK|A|B|C); otherwise, it is an incorrect encryption. We now distinguish three

types of adversary-generated msg1 =
〈

Client, VK,
Aa, Ba, Ca, Da

Ab, Bb, Cb, Db

〉
:

• We say msg1 re-uses an oracle-generated verification key if VK is identical to a verification
key used in an oracle-generated msg1.

• We say msg1 is valid if either (Client, VK, Aa, Ba, Ca, Da) or (Client, VK, Ab, Bb, Cb, Db) is a
correct encryption, and msg1 does not re-use an oracle-generated verification key.

• We say msg1 is invalid if neither (Client, VK, Aa, Ba, Ca, Da) nor (Client,VK, Ab, Bb, Cb, Db)
are correct encryptions, and msg1 does not re-use an oracle-generated verification key.

The simulator can always tell whether a given msg1 re-uses an oracle-generated verification key, and
(due to the way the public parameters are now generated) can also efficiently determine whether a
given msg1 is valid or invalid.

Experiment P2: In this experiment, the simulator changes the way it responds to a msg3 sent to
an uncorrupted server when the msg1 for the corresponding server instance is adversary-generated
and invalid. Let A and B be the servers associated with some client C, and say B is uncorrupted.
When a msg3 as described above is sent to an instance Πj

B of server B, and B does not terminate
the protocol, then the session key skj

B,C is chosen uniformly at random from G. Furthermore, M ′
2

(in the Compute protocol) is computed as an encryption (with respect to public key pkA) of a
uniform element of G. We claim that:

Claim 1 AdvA,P2(k) = AdvA,P1(k).

15

We prove this by showing that the distributions on the adversary’s views in the two experiments
are identical. Assume A is corrupted, as this is the more difficult case. Let us focus first on the
case of skj

B,C . Say

msg1 =
〈

Client, VK,
Aa, Ba, Ca, Da

Ab, Bb, Cb, Db

〉
,

where msg1 is the first message sent to the server instance under consideration. Since msg1 is
invalid, we know that (Client,VK, Ab, Bb, Cb, Db) is an incorrect encryption. So, it must be the
case that either Aχ1+αbξ1

b Bχ2+αbξ2
b 6= Db or Cb/pwClient 6= Aκ

b (or possibly both). In either case,
(Ab, Bb, Cb/pwClient, Db) is not a DDH tuple with respect to the basis (g1, g2, h, cdαb). Thus, for any
µ, ν ∈ G and fixing the randomness used in the rest of experiment P1, the probability over choice
of xb, yb, zb, wb that Eb,2 = µ and skj

B,C = ν is exactly the probability that

log µ = xb + yb · log g2 + zb · log h + wb · log(cdαb) (2)

and

log ν − (ra + rb) · log Kb =
(xb + x′a) · log Ab + (yb + y′a) · log Bb + (zb + z′a) · log(Cb/gpwC

1) + (wb + w′a) · log Db, (3)

where all logarithms are with respect to the base g1, and pwC = pwClient. Note that x′a, y′a, z′a, w′a
are independent of xb, yb, zb, wb since we assume a passive adversary. As in [26], then, it can be
verified that Equations (2) and (3) are linearly independent and not identically zero, when viewed
as equations over Zq in the variables xb, yb, zb, wb.6 Thus, the desired probability is exactly 1/q2 and
hence the value of skj

B,C is uniformly distributed in G independent of the rest of the experiment.
A similar argument holds for the values of M ′

2 and Ea,2, viewed as functions of the random
variables x′b, y

′
b, z

′
b, w

′
b and using now the fact that (Client, VK, Aa, Ba, Ca, Da) is an incorrect en-

cryption. In particular, Com′
A,C is an El Gamal encryption (with respect to pkA) of g

pwA,C

1 and
hence (in experiment P1) M ′

2 is an El Gamal encryption of the value

g
−za·pwB,C

1 Krb
a ·

(
A

x′b
a B

y′b
a (Ca/gpwC

1)z′bD
w′b
a

)
.

The rest of the argument is exactly as above. This concludes the proof of the claim.

Experiment P3: Here, the simulator changes the way it responds to a msg3 being sent to an
uncorrupted server when msg1 for the corresponding server instance is adversary-generated and
valid. In this case, if msg1 was also sent to the other server associated with the same client,
the simulator halts and the adversary succeeds. (In any other case, the adversary’s success is
determined as in the previous experiment. Note also that in this experiment we no longer need to
compute Xb on behalf of a non-corrupted server, since that value is now no longer used.) Clearly,
AdvA,P2(k) ≤ AdvA,P3(k) since there are now more ways for the adversary to succeed.

Experiment P4: Let us first summarize where things stand in experiment P3. In that experiment,
for any non-corrupted server B, the simulator does not use the value rb (i.e., the randomness used
to construct ComB,C) at any point during the experiment. In particular, for a given instance Πj

B

with partner C:
6We use here the fact that M ′

1 is no longer an encryption of zb (cf. experiment P ′′0) and hence the only information
the adversary has about xb, yb, zb, wb comes from Eb,2 and skB,C .

16

• If msg1 sent to this instance is oracle generated, the simulator computes skj
B,C and M ′

2 as
described in experiment P1.

• If msg1 to this instance is adversary-generated and re-uses an oracle-generated verification
key, the simulator aborts if the adversary later sends a msg3 to this instance which contains
a valid signature.

• If msg1 to this instance is adversary-generated and invalid, the simulator chooses skj
B,C and

M ′
2 at random, as described in experiment P2.

• Finally, if msg1 to this instance is adversary-generated and valid, then the simulator halts
and the adversary succeeds as described in experiment P3.

Let A and B be servers associated with some client C, and say B is non-corrupted. In experiment P4,
the simulator changes ComB,C . Whether A is corrupted or not, ComA,C is computed as before
(namely, as a random encryption under public key g3 of a random value pwA,C). The simulator sets

ComB,C to be a random El Gamal encryption of g
N+1−pwA,C

1 with respect to public key g3. (Note
that the pair pwA,C , N + 1 − pwA,C is now a random sharing of the invalid password N + 1. In
particular, servers A and B are given identically distributed information.) It follows readily from
the semantic security of El Gamal encryption that |AdvA,P4 − AdvA,P3 | is negligible. We remark
that in experiment P4, the simulator never uses pwC (for any client C) in simulating the actions of
any non-corrupted server B.

Before continuing, we introduce definitions for the messages received by the client in the second
round of the protocol that are analogous to those given previously for the case of msg1. For a pair
(msgA, msgB) received by the client, say the pair is oracle generated if both msgA and msgB were
output by the simulator in response to an oracle query (i.e., either an Execute query or a Send1

query). The pair is adversary generated otherwise.
We also introduce another conceptual change in the experiment by now having the simulator

choose public parameter g3 by first selecting random λ ← Z∗q and then setting g3 = gλ
1 . It is clear

that the resulting distribution on g3 is unchanged. With this in place, we can now define notions
of validity/invalidity in a way analogous to that done previously for the case of msg1. Namely, say
a client receives messages msgA = 〈Ea,1, Eb,1, Fa, Ga〉 and msgB = 〈Eb,2, Ea,2, Fb, Gb〉, and define
Ea, Eb, F, G as in the client’s execution. We say the pair (msgA,msgB) is valid if G/F λ = gpwC

1

and invalid otherwise. Since the simulator knows logg1
g3, it can efficiently determine validity. We

observe at this point that if both msgA and msgB are oracle generated, then (msgA,msgB) is invalid
because of the way ComA,C and ComB,C was computed in P4.

Experiment P5: In experiment P5, the simulator changes the way it responds to an invalid
(msgA, msgB). In that case, the simulator computes msg3 as in the previous experiment but then
chooses keys skC,A and skC,B independently and uniformly at random from G.

Claim 2 AdvA,P4(k) = AdvA,P5(k).

The proof of this claim follows that of Claim 1. We prove the claim by showing that the distributions
on the adversary’s views in the two experiments are identical. Let 〈Ea, Eb, F,G〉 be as computed by
some client C after receiving (msgA, msgB). By definition of invalidity, we have that G/F λ 6= gpwC

1 ,

where λ
def= logg1

g3. Letting s = logg1
F and s′ = logg1

(G/gpwc
1), this means that s′ 6= λs. For any

17

µ1, µ2, ν1, ν2 ∈ G, the probability over choice of x1, y1, x2, y2 (fixing the randomness used in the
remainder of the experiment) that Ka = µ1, Kb = µ2, skC,A = ν1, and skC,B = ν2 is exactly the
probability that the following linear equations in x1, y1, x2, y2 (over Zq) hold:

logg1
µ1 = x1 + λ · y1

logg1
µ2 = x2 + λ · y2

logg1
ν1 − r1 logg1

Ea = x1 · s + y1 · s′
logg1

ν2 − r2 logg1
Eb = x2 · s + y2 · s′ .

It is easy to see that these equations are linearly independent (given that s′ 6= λs) and so the
desired probability is 1/q4. Hence, as desired, the values of skC,A and skC,B are uniformly and
independently distributed.

Experiment P6: Paralleling the change made in experiment P3, the simulator now changes the
way it responds to a valid (adversary-generated) (msgA, msgB): upon receiving such a message the
simulator halts and the adversary succeeds. (In any other case, the adversary succeeds as in the
previous experiment.) Clearly, this can only increase the adversary’s probability of success and so
AdvA,P5(k) ≤ AdvA,P6(k).

Experiment P7: In experiment P6, the simulator does not use the values r1, r2 (in simulat-
ing a client instance) other than to construct the Cramer-Shoup ciphertexts (Aa, . . . , Da) and
(Ab, . . . , Db) which are encryptions of the correct password value gpwC

1 . In experiment P7, the sim-
ulator instead sets these ciphertexts to be encryptions of 1 (i.e., it sets Ca = hr1 and Cb = hr2).
(Note this corresponds to the “password” 0.) The following bounds the effect this can have on the
adversary’s success probability:

Claim 3 Under the DDH assumption, |AdvA,P6(k)− AdvA,P7(k)| is negligible.

The claim follows from the security of the Cramer-Shoup encryption scheme (with labels) under
adaptive chosen-ciphertext attack. The proof follows that of [26], and we merely sketch an outline
here. Given a public-key (g1, g2, h, c, d) for an instance of the Cramer-Shoup encryption scheme,
as well as access to an encryption oracle and a decryption oracle, the simulator will first use the
given values as the appropriate portion of the public parameters. The remaining public parameter,
g3, is generated so that the simulator knows logg1

g3; the distribution of g3 is the same as in P6.
Every time the simulator responds to a request to initiate an interaction on behalf of a client C
(i.e., as a result of an Execute query or a Send0 query), it generates a verification key VK as before
and then submits (twice) to its encryption oracle the query (〈Client,VK), gpwC

1 , 1) and receives in
return ciphertexts (Aa, Ba, Ca, Da) and (Ab, Bb, Cb, Db). (In the query to the encryption oracle,
〈Client, VK〉 is the label, and gpwC

1 and 1 are the two messages.) The simulator then uses these
ciphertexts to construct msg1. As we have already noted, the remainder of the client-side interaction
can be simulated with no difficulty. As for the server-side interactions, here the simulator needs to
be able to determine whether an adversary-generated msg1 is valid or not. It can do this using its
decryption oracle, with the only subtlety being to verify that the simulator never needs to query the
decryption oracle with a (label, ciphertext) pair it received from its encryption oracle. This is not
quite as obvious in our case as in [26] because it is possible in our case for a msg1 to be adversary-
generated but for one of the component ciphertexts of this message to be equal to a component
ciphertext of an oracle-generated msg1. Yet it remains true due to the following observations:

18

• If msg1 is oracle generated, then no decryption is needed.

• If an adversary-generated msg1 re-uses an oracle-generated verification key, the simulator
will abort if the adversary later sends a msg3 with a valid signature (because this implies a
signature forgery).

• Otherwise, the verification key VK used in msg1 is different from all oracle-generated verifi-
cation keys, and so the (label, ciphertext) pair submitted by the simulator to its decryption
oracle is different from all (label, ciphertext) pairs received from its encryption oracle.

The proof concludes by noting that when the encryption oracle encrypts its left-most input, the
adversary’s view is identical to its view in experiment P6, while when the encryption oracle encrypts
its right-most input, the adversary’s view is identical to its view in experiment P7.

The adversary’s view in experiment P7 is independent of the passwords chosen for the var-
ious clients except for the fact that the adversary learns whether adversary-generated msg1 or
(msgA, msgB) are valid or not. That is, although the adversary is given password shares pwA,C

for any corrupted server(s) A and any client(s) C associated with A, these shares are uniformly
distributed in Zq and therefore contain no information about the actual client password(s) pwC.
Furthermore, the simulator does not use pwC except to test whether adversary-generated msg1 and
(msgA, msgB) are valid or not. Let GuessPWD denote the event that the adversary sends a valid
msg1 or (msgA, msgB). The probability of GuessPWD is at most Q(k)/N , where Q(k) is the number
of on-line attacks made by A. (Although the adversary gets the equivalent of two password guesses
for each msg1, for the adversary to succeed it must send a valid msg1 to both servers associated
with some client. Thus, this requires two on-line attacks.) If GuessPWD does not occur then the
adversary can succeed only by correctly guessing the value of b used by the Test oracle. In this
case, however, all fresh session keys are uniformly distributed in G independent of the adversary’s
view, and so the probability that the adversary can correctly guess b in this case is exactly 1/2.

Putting everything together, we have:

PrA,P7 [Succ] = Pr[GuessPWD] +
1
2
· (1− Pr[GuessPWD])

=
1
2
· Pr[GuessPWD] +

1
2

≤ Q(k)
2N

+
1
2
,

and thus the adversary’s advantage in experiment P7 is at most Q(k)/N . The sequence of claims
proven above show that

AdvA,P0(k) ≤ AdvA,P7(k) + ε(k)

for some negligible function ε(·), and therefore the adversary’s advantage in P0 (i.e., the original
protocol) is at most Q(k)/N plus some negligible quantity, as desired.

5 Handling Active Adversaries

Here, we describe the necessary changes to the protocol in order to handle active adversaries. We
then sketch the appropriate modifications to the proof given in the previous section.

19

5.1 Overview of Changes to the Protocol

At a high level, the changes we make can be summarized as follows:

Proofs of correctness. We require servers to give proofs of correctness for their actions during
the Compute protocol. We stress that we use only the fact that these are proofs (and not proofs of
knowledge) and therefore we do not require any rewinding in our proof of security. This is crucial,
as it enables us to handle concurrent executions of the protocol. Nevertheless, as part of the proofs
of correctness we will have the servers encrypt certain values with respect to (additional) per-server
public keys provisioned during protocol initialization. This will, in fact, enable extraction of certain
values from the adversary during the security proof.

Commitments to password shares. The protocol as described in the previous section already
assumes that each server is provisioned with appropriate El Gamal encryptions of the password
share of the other server. We will use these encrypted values (along with the proofs of correctness
discussed earlier) to “force” a corrupted server to use the correct password share in its computations.

Simulating proofs for non-corrupted servers. During the course of the proof of security it will
be necessary for non-corrupted servers to deviate from the prescribed actions of the protocol, yet
these servers must give “valid” proofs of correctness to corrupted servers. We cannot use “standard”
zero-knowledge proofs in our setting, since (1) this would require rewinding which we explicitly want
to avoid, and (2) potential malleability issues arise due to the fact that a corrupted server may be
giving its proof of correctness at the same time a non-corrupted server is giving such a proof (this is
so even if we force sequential executions of the proofs of correctness within any particular instance,
since multiple instances may be simultaneously active). To enable simulatability in a concurrent
setting we rely on techniques of MacKenzie [29] described in greater detail below.

5.2 Detailed Description of Changes to the Protocol

We first discuss the necessary modifications to the initialization phase. In addition to the values
already discussed in Section 4.1: (1) each server S is given a random triple tripleS = (US,1, US,2, US,3)
of elements chosen uniformly at random from G. Furthermore, (2) if servers A and B are associated
with the same client C, then B is given tripleA and A is given tripleB.

We next describe the necessary changes to the protocol itself. In what follows, we use witness-
indistinguishable Σ-protocols (with negligible soundness error7) [12] of various predicates and it
will be useful to develop some notation. If Ψ represents a predicate (defined over some public
values), we let Σ[Ψ] denote a Σ-protocol for this predicate. If Ψ1, Ψ2 are two predicates, then we
let Σ[Ψ1 ∨Ψ2] denote a Σ-protocol for the “or” of these predicates. Given Σ-protocols for Ψ1 and
Ψ2, there are standard techniques to combine these so as to obtain a Σ-protocol for Ψ1 ∨Ψ2 [13].
We define the predicate DDHS , for any server S with tripleS = (U1, U2, U3), as follows:

DDHS(U1, U2, U3)
def= [∃x, y s.t. U1 = gx

1 ∧ U2 = gy
1 ∧ U3 = gxy

1] ;

i.e., DDHS denotes the predicate asserting that tripleS is a Diffie-Hellman triple.
The only change in the protocol is the Compute component, which is modified in the following

ways (we describe the changes from the point of view of server A, but they are applied symmetrically
7From now on, “Σ-protocol” means a witness-indistinguishable Σ-protocol with negligible soundness error.

20

to server B): In the first phase, in addition to computing M1 ← ElGpkA
(g−za

1), server A computes

vxa,ya,za,wa := Axa
a Bya

a Cza
a Dwa

a and Vxa,ya,za,wa ← ElGpkA
(vxa,ya,za,wa)

and sends Vxa,ya,za,wa to B. Define the predicate Ψ1 as follows:

Ψ1
def=

 ∃xa, ya, za, wa, r, r̃ s.t. :

Ea,1 = gxa
1 gya

2 hza(cdαa)wa

M1 =
(
gr
1, pkr

A · g−za
1

)
Vxa,ya,za,wa =

(
gr̃
1, pkr̃

A ·Axa
a Bya

a Cza
a Dwa

a

)

 .

Server A then acts as a prover in the protocol Σ[Ψ1 ∨ DDHA]. Meanwhile, A acts as a verifier in
the symmetric Σ-protocol being given (possibly concurrently) by server B. If B’s proof fails, then
A aborts immediately.

In the second phase of the Compute protocol, in addition to computing M2 as in Figure 3, server
A also computes

vz′a := g
z′a
1 vx′a,y′a,z′a,w′a := A

x′a
b B

y′a
b C

z′a
b D

w′a
b

Vz′a ← ElGpkA
(vz′a) Vx′a,y′a,z′a,w′a ← ElGpkA

(vx′a,y′a,z′a,w′a)

and sends Vz′a and Vx′a,y′a,z′a,w′a to B. Define the predicate Ψ2 as:

Ψ2
def=

∃x′a, y′a, z′a, w′a,
ra, pwA,C , r, r̃, r̂ s.t.

:

Eb,1 = g
x′a
1 g

y′a
2 hz′a(cdαb)w′a

Vz′a =
(
gr
1, pkr

A · gz′a
1

)

Vx′a,y′a,z′a,w′a =
(
gr̃
1, pkr̃

A ·Ax′a
b B

y′a
b C

z′a
b D

w′a
b

)

M2 = (M ′
1)

pwA,C × (Com′
B,C)−z′a

×
(
gr̂
1, pkr̂

B · g
−z′a·pwA,C

1 A
x′a
b B

y′a
b C

z′a
b D

w′a
b Kra

b

)

ComA,C =
(
gra
1 , gra

3 g
pwA,C

1

)

.

Server A then acts as a prover in the protocol Σ[Ψ2 ∨ DDHA]. Meanwhile, A acts as a verifier in
the symmetric Σ-protocol being given (possibly concurrently) by server B. If B’s proof fails, then
A aborts without computing a session key.

Relatively efficient Σ-protocols for the above predicates can be constructed using standard
techniques (see, e.g., [29]), and so we omit further details.

Efficiency. Compared to the basic protocol, the computational work of the client is unchanged.
As for the servers, assuming we instantiate the protocol using Σ-protocols as in [29] we calculate
that each server must perform a total of roughly 70 exponentiations. (I.e., each server’s work is
increased by a factor of roughly 6 as compared to the basic protocol.) Once again, this does not take
into account any potential efficiency improvements such as off-line computation or pre-computation
that could be done to speed up fixed-base exponentiations. By way of comparison, the protocol of
Di Raimondo and Gennaro [16] requires each server to perform roughly 80 exponentiations for the
smallest threshold supported by their scheme (i.e., n = 4, t = 1).

21

5.3 Proof of Security for Active Adversaries

We prove that the modified protocol described above is secure against active adversaries; that is:

Theorem 2 With the modifications described above and under the same assumptions as in Theo-
rem 1, we obtain a secure two-server protocol for password-only authenticated key exchange in the
presence of an active adversary.

In the proof of the above theorem, we only show the differences from the proof of Theorem 1. In
the following, we let ElG−1

sk (M) def= M [2]
M [1]sk for any sk ∈ Zq and El Gamal ciphertext M .

Proof Given an active adversary A attacking the protocol, we imagine a simulator which runs
the protocol for A as in the proof of Theorem 1. AdvA,P (k) is defined as there, and we again
refer to the original experiment as P0. Throughout the proof, we will again assume without loss of
generality that for any client C associated with servers A and B, the adversary corrupts server A.
(The case when neither server is corrupted follows as in the proof for passive adversaries.)

Experiment P ′
0: In experiment P ′

0, the simulator makes the following changes: First, as in the
proof of Theorem 1, the experiment is aborted and the adversary does not succeed if any of the
following occur:

1. At any point, a msg1 generated by the simulator repeats.

2. At any point, a msgA or msgB generated by the simulator repeats.

3. At any point, the adversary forges a new, valid message/signature pair for any verification
key used in a simulator-generated msg1.

4. At any point during the experiment, a collision occurs in the hash function H.

In addition, for any non-corrupted server B the simulator sets tripleB to be a (random) Diffie-
Hellman triple, while for any corrupted server A the simulator sets tripleA to be a (random) non-
Diffie-Hellman triple. Finally, the simulator also changes how it computes the session key for any
non-corrupted server B; in particular, it will no longer use the long-term El Gamal secret key skB

to compute Xb. Instead, the simulator computes Xb in the following way: using skA, the simulator
decrypts Vz′a and Vx′a,y′a,z′a,w′a to obtain values vz′a and vx′a,y′a,z′a,w′a , respectively. It then sets:

Xb := g−zb·pwC
1 · (vz′a)

−pwC ·Kra
b · vx′a,y′a,z′a,w′a

(recall that the simulator knows pwC and ra).
We claim that these changes have only a negligible effect on the adversary’s advantage. It is

immediate that the four events listed above occur with only negligible probability. Moreover, the
DDH assumption implies that the adversary cannot distinguish the change in the way tripleS is
computed for the corrupted and non-corrupted servers. It remains only to argue that the change
in computing Xb has negligible effect. Consider an execution of the Compute protocol between a
non-corrupted B and a corrupted A. Because of the Σ-protocols executed by A as part of the
protocol, with all but negligible probability there exist values x′a, y′a, z′a, w′a such that

ElG−1
skB

(M2) = g
−zb·pwA,C

1 · g−z′a·pwB,C

1 · g−z′a·pwA,C

1 ·Ax′a
b B

y′a
b C

z′a
b D

w′a
b Kra

a

22

and
vz′a = g

z′a
1 and vx′a,y′a,z′a,w′a = A

x′a
b B

y′a
b C

z′a
b D

w′a
b ,

for values pwA,C, pwB,C, zb, ra chosen (and known) by the simulator. It follows that, with all but
negligible probability, the values of Xb computed in experiments P0 and P ′

0 are identical. Putting
everything together, we have that

∣∣∣AdvA,P0(k)− AdvA,P ′0(k)
∣∣∣ is negligible.

Experiment P ′′
0 : In this experiment, all Σ-protocols in which a non-corrupted server B acts as a

prover are performed using a witness for the predicate DDHB. (This is possible since, in the previous
experiment, tripleB was chosen as a DDH triple for any non-corrupted server B.) It follows imme-
diately from the witness indistinguishability of the Σ-protocols that

∣∣∣AdvA,P ′0(k)− AdvA,P ′′0 (k)
∣∣∣ is

negligible.

Experiment P ′′′
0 : Here, all ciphertexts throughout the course of the experiment that are computed

by the simulator as El Gamal encryptions of some value with respect to pkB (for a non-corrupted
server B) are now formed by encrypting a random group element. These ciphertexts include the
values Com′

B,C (for any client C) constructed during the initialization phase, as well as M ′
1 (gener-

ated during the Compute protocol run with a corrupted server A), and all ciphertexts computed by
server B as part of the Σ-protocols in which B acts as a prover when interacting with a corrupted A.

Since neither skB nor the randomness used to generate any of the ciphertexts of the type
considered here are ever used by the simulator in experiment P ′′

0 (relying here on the fact that, in
experiment P ′′

0 , the simulator uses a witness for DDHB when acting as a prover), semantic security
of El Gamal encryption implies that

∣∣∣AdvA,P ′′0 (k)− AdvA,P ′′′0
(k)

∣∣∣ is negligible.

In the experiments that follow, we use the same definitions as in the proof of Theorem 1 for
oracle-generated and adversary-generated messages msg1.

Experiment P1: In experiment P1, the simulator interacts with the adversary as in P ′′′
0 except

for the way the simulator computes certain values in response to a msg3 sent to an uncorrupted
server when msg1 for the corresponding server instance is oracle generated. (By definition, this is
automatically the case for any Execute query being answered by the simulator.) Let A and B be
the servers associated with some client C, and say B is uncorrupted. Say a msg3 as described above
is sent to instance Πj

B, and server A runs the Compute protocol with B. The simulator finds the
unique i such that sidi

C,B = sidj
B (as in the proof of Theorem 1, a unique such i exists), and sets

skj
B,C := ski

C,B (assuming instance Πj
B does not abort due to an incorrect proof by server A).

Furthermore, if server A is corrupted then the simulator computes M ′
2 in the Compute protocol

as follows (again, assuming Πj
B does not abort due to an incorrect proof by server A): using skA,

the simulator decrypts M1 and Vxa,ya,za,wa to obtain vza

def= g−za
1 and vxa,ya,za,wa , respectively. It

then sets
M ′

2 ← ElGpkA

(
ski

C,A · (vxa,ya,za,wa)
−1 ·K−ra

a · (vza)
−pwA,C

)
.

We claim that these changes have only negligible effect on the adversary’s advantage. In par-
ticular, due to the Σ-protocols (in which A acts as a prover) we know that with all but negligible
probability there exist values x′a, y′a, z′a, w′a such that

Eb,1 = g
x′a
1 g

y′a
2 hz′a(cdαb)w′a and vz′a = g

z′a
1 and vx′a,y′a,z′a,w′a = A

x′a
b B

y′a
b C

z′a
b D

w′a
b

23

as well as values xa, ya, za, wa such that

Ea,1 = gxa
1 gya

2 hza(cdαa)wa and vza = g−za
1 and vxa,ya,za,wa = Axa

a Bya
a Cza

a Dwa
a .

Assuming this to be the case, consider the computation of skB,C . In experiment P ′′′
0 we have:

skj
B,C = Axb

b Byb
b Czb

b Dwb
b Krb

b · g−zb·pwC
1 · (vz′a)

−pwC ·Kra
b · vx′a,y′a,z′a,w′a

= A
xb+x′a
b B

yb+y′a
b (Cb/gpwC

1)zb+z′aD
wb+w′a
b Kra+rb

b .

This is exactly equal to ski
C,B (for i as defined above), and hence the values of skj

B,C computed in
experiments P ′′′

0 and P1 are identical. Considering next the case of M ′
2, in experiment P ′′′

0 this is a
random El Gamal encryption (with respect to public key pkA) of:

g
−za·pwB,C

1 · g−z′b·pwC

1 ·Ax′b
a B

y′b
a C

z′b
a D

w′b
a Krb

a = ski
C,A · (vxa,ya,za,wa)

−1 ·K−ra
a · (vza)

−pwA,C ,

for i as defined above. Thus, M ′
2 is distributed identically in experiments P ′′′

0 and P1. Putting
everything together, |AdvA,P1(k)− AdvA,P ′′′0

(k)| is negligible.

Exactly as in the proof of Theorem 1, we next have the simulator choose public parameters h, c, d
in such a way that it knows their representations with respect to g1, g2. We omit the details here.
Once this is done, the simulator can again distinguish between incorrect and correct encryptions,
and can thus distinguish between adversary-generated msg1 which are valid or invalid; all these
terms are defined exactly as in the proof of Theorem 1. We also recall from that proof the notion
of an adversary-generated msg1 which re-uses an oracle-generated verification key.

Experiment P2: In this experiment, the simulator changes the way it responds to a msg3 sent to
an uncorrupted server when the msg1 for the corresponding server instance is adversary-generated
and invalid. Let A and B be the servers associated with some client C, and say B is uncorrupted.
When msg3 as described above is sent to an instance Πj

B of server B (and this instance does not
prematurely terminate the protocol) then skj

B,C is chosen uniformly at random from G. Further-
more, M ′

2 (in the Compute protocol) is computed as an encryption (with respect to public key pkA)
of a uniform element of G.

We prove that AdvA,P2(k) = AdvA,P1(k) by showing that the distributions on the adversary’s
views in the two experiments are identical. Let us focus first on the case of skj

B,C . Say

msg1 =
〈

Client, VK,
Aa, Ba, Ca, Da

Ab, Bb, Cb, Db

〉
,

where msg1 is the first message sent to the server instances under consideration. Since msg1 is
invalid, we know that (Client,VK, Ab, Bb, Cb, Db) is an incorrect encryption. So, it must be the
case that either Aχ1+αbξ1

b Bχ2+αbξ2
b 6= Db or else Cb/pwClient 6= Aκ

b (or possibly both). For any
µ, ν ∈ G and fixing the randomness used in the rest of experiment P1, the probability over choice
of xb, yb, zb, wb that Eb,2 = µ and skj

B,C = ν is exactly the probability that

log µ = xb + yb · log g2 + zb · log h + wb · log(cdαb) (4)

and

log ν − (ra + rb) · log Kb − log vx′a,y′a,z′a,w′a + pwC · log vz′a =
xb · log Ab + yb · log Bb + zb · log(Cb/gpwC

1) + wb · log Db, (5)

24

where all logarithms are with respect to the base g1 and pwC = pwClient. As in the proof of
Theorem 1, it can be verified that Equations (4) and (5) are linearly independent and not identically
zero, when viewed as equations over Zq in the variables xb, yb, zb, wb. Thus, the desired probability
is exactly 1/q2 and hence the value of skj

B,C is uniformly distributed in G independent of the rest
of the experiment. (Note that this is true even though vx′a,y′a,z′a,w′a may depend on the value of
Eb,2 = µ, since that is the only dependence of vx′a,y′a,z′a,w′a on xb, yb, zb, wb.)

A similar argument holds for the values of M ′
2 and Ea,2, viewed as functions of the random

variables x′b, y
′
b, z

′
b, w

′
b and using now the fact that (Client, VK, Aa, Ba, Ca, Da) is an incorrect en-

cryption. In particular, Com′
A,C is an El Gamal encryption (with respect to pkA) of g

pwA,C

1 and
hence the value M ′

2 in experiment P1 is an El Gamal encryption of the value
(
ElG−1

skA
(M1)

)pwB,C ·Krb
a ·Ax′b

a B
y′b
a (Ca/gpwC

1)z′bD
w′b
a .

The rest of the argument is exactly as above.
The remainder of the proof is essentially the same as the proof of Theorem 1. In fact, the

only significant difference is in the counting of the adversary’s on-line attacks. Once again the
adversary gets the equivalent of two password guesses for each msg1 it sends to an uncorrupted
server. However, for the adversary to succeed it must either send a valid msg1 to two uncorrupted
servers associated with the same client, or else must sent a valid msg1 to an uncorrupted server and
then initiate the Compute protocol with that same server. Either way, this adversary is charged
with two on-line attacks.

Acknowledgments

The first author would like to thank a very attentive reviewer who helped clarify and correct several
aspects of this paper.

References

[1] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against
Dictionary Attacks. Adv. in Cryptology — Eurocrypt 2000, LNCS vol. 1807, Springer-Verlag,
pp. 139–155, 2000.

[2] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. Proc. 1st ACM Conference on Computer and Communications Security, ACM, pp.
62–73, 1993.

[3] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. Adv. in Cryptology
— Crypto 1993, LNCS vol. 773, Springer-Verlag, pp. 232–249, 1994.

[4] M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: the Three Party Case.
27th ACM Symposium on Theory of Computing (STOC), ACM, pp. 57–66, 1995.

[5] S.M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Protocols Secure
Against Dictionary Attacks. IEEE Symposium on Research in Security and Privacy, IEEE,
pp. 72–84, 1992.

25

[6] S.M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: a Password-Based Pro-
tocol Secure Against Dictionary Attacks and Password File Compromise. 1st ACM Conf. on
Computer and Comm. Security, ACM, pp. 244–250, 1993.

[7] M. Boyarsky. Public-Key Cryptography and Password Protocols: The Multi-User Case. 7th
Ann. Conf. on Computer and Comm. Security, ACM, pp. 63–72, 1999.

[8] V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password-Authenticated Key Exchange
Using Diffie-Hellman. Adv. in Cryptology — Eurocrypt 2000, LNCS vol. 1807, Springer-Verlag,
pp. 156–171, 2000.

[9] J. Brainard, A. Juels, B. Kaliski, and M. Szydlo. Nightingale: A New Two-Server Approach
for Authentication with Short Secrets. 12th USENIX Security Symp., pp. 201–213, 2003.

[10] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited. J. ACM
51(4): 557–594, 2004.

[11] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Universally-Composable Pass-
word Authenticated Key Exchange. Adv. in Cryptology — Eurocrypt 2005, LNCS vol. 3494,
Springer-Verlag, pp. 404–421, 2005.

[12] R. Cramer. Modular Design of Secure Yet Practical Cryptographic Protocols. PhD Thesis,
CWI and University of Amsterdam, 1996.

[13] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of Partial Knowledge and Simplified
Design of Witness Hiding Protocols. Adv. in Cryptology — Crypto 1994, LNCS vol. 839,
Springer-Verlag, pp. 174–187, 1994.

[14] R. Cramer and V. Shoup. Design and Analysis of Practical Public-Key Encryption Schemes
Secure against Adaptive Chosen Ciphertext Attack. SIAM J. Computing 33(1): 167–226, 2003.

[15] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions on Informa-
tion Theory 22(6): 644–654, 1976.

[16] M. Di Raimondo and R. Gennaro. Provably Secure Threshold Password-Authenticated Key
Exchange. J. Computer and System Sciences 72(6): 978–1001 (2006).

[17] T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Loga-
rithms. IEEE Transactions on Information Theory 31: 469–472, 1985.

[18] W. Ford and B.S. Kaliski. Server-Assisted Generation of a Strong Secret from a Password.
Proc. 5th IEEE Intl. Workshop on Enterprise Security, 2000.

[19] R. Gennaro and Y. Lindell. A Framework for Password-Based Authenticated Key Exchange.
ACM Trans. Information and System Security 9(2): 181–234 (2006).

[20] O. Goldreich and Y. Lindell. Session-Key Generation Using Human Passwords Only. J. Cryp-
tology 19(3): 241–340 (2006). Preliminary version in Crypto 2001.

[21] L. Gong, T.M.A. Lomas, R.M. Needham, and J.H. Saltzer. Protecting Poorly-Chosen Secrets
from Guessing Attacks. IEEE J. on Selected Areas in Communications 11(5): 648–656, 1993.

26

[22] S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols. ACM Trans.
Information and System Security 2(3): 230–268, 1999.

[23] D. Jablon. Strong Password-Only Authenticated Key Exchange. ACM Computer Communi-
cations Review 26(5): 5–20, 1996.

[24] D. Jablon. Password Authentication Using Multiple Servers. RSA Cryptographers’ Track 2001,
LNCS vol. 2020, Springer-Verlag, pp. 344–360, 2001.

[25] S. Jiang and G. Gong. Password Based Key Exchange With Mutual Authentication. Workshop
on Selected Areas of Cryptography (SAC), 2004.

[26] J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Exchange Using
Human-Memorable Passwords. J. ACM 57(1): 78–116, 2009

[27] T.M.A. Lomas, L. Gong, J.H. Saltzer, and R.M. Needham. Reducing Risks from Poorly-Chosen
Keys. ACM Operating Systems Review 23(5): 14–18, 1989.

[28] S. Lucks. Open Key Exchange: How to Defeat Dictionary Attacks Without Encrypting Public
Keys. Proc. Security Protocols Workshop, LNCS 1361, Springer-Verlag, pp. 79–90, 1997.

[29] P. MacKenzie. An Efficient Two-Party Public-Key Cryptosystem Secure against Adaptive
Chosen-Ciphertext Attack. Public Key Cryptography (PKC) 2003, LNCS vol. 2567, Springer-
Verlag, pp. 47–61, 2003.

[30] P. MacKenzie, S. Patel, and R. Swaminathan. Password-Authenticated Key Exchange Based
on RSA. Intl. J. Information Security 9(6): 387–410, 2010.

[31] P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold Password-Authenticated Key Ex-
change. J. Cryptology 19(1): 27–66 (2006).

[32] V. Shoup. A Proposal for an ISO Standard for Public-Key Encryption, version 2.1. Draft,
2001. Available at http://eprint.iacr.org/2001/112.

[33] M. Szydlo and B. Kaliski. Proofs for Two-Server Password Authentication. RSA Cryptogra-
phers’ Track 2005, LNCS vol. 3376, Springer-Verlag, pp. 227–244, 2005.

[34] T. Wu. The Secure Remote Password Protocol. Proc. Internet Society Symp. on Network and
Distributed System Security, pp. 97–111, 1998.

27

