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Abstract. Binary tree encryption (BTE), a relaxation of hierarchical
identity-based encryption (HIBE), has recently emerged as a useful and
intriguing primitive. On the one hand, the definition of security for BTE
is sufficiently “weak” that — in contrast to HIBE — constructions of
BTE in the standard model are known. On the other hand, BTE is
sufficiently powerful that it yields a number of applications which are
important from both a theoretical and a practical point of view.

This survey presents the basic definitions of BTE and also highlights
some recent applications of BTE to forward-secure encryption, identity-
based and hierarchical identity-based encryption, chosen-ciphertext se-
curity, and adaptively-secure encryption.

1 Introduction

The notion of identity-based cryptography has long fascinated researchers [23].
Loosely speaking, in such a scheme any identity (i.e., bit-string) can serve as a
public key. In somewhat more detail, there is a (trusted) private-key generator
PKG who generates master system parameters params along with a master secret
key sk. For any identity id ∈ {0, 1}∗ the PKG can use sk to compute a secret
key SKid corresponding to this identity. The pair (id, SKid) then functions as
a standard public-/private-key pair (with the important distinction that id can
be any string!) whose functionality is determined by the underlying identity-
based scheme. (The PKG would presumably authenticate the identity of the
person claiming “id” before giving them the corresponding secret key SKid.
However, this is outside the scope of the present discussion.) An identity-based
system is secure (informally) if knowledge of the secret keys corresponding to
any arbitrary-size set of identities I = {id1, . . . , idn} does not allow an adversary
to “break” the scheme (in the appropriate sense) for any id′ 6∈ I.

Shamir [23] was the first to suggest an implementation of an identity-based
signature scheme. Following this, many provably-secure proposals for identity-
based signature and identification schemes followed (e.g., [13, 16]); some of these
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constructions were recently generalized and expanded upon in [11]. Although
these constructions are proven secure in the random oracle model, note that it is
also possible to construct identity-based signatures in the standard model based
on any “regular” signature scheme (see [11]).

Recently, Boneh and Franklin [5] and Cocks [10] resolved a long-standing
open problem by constructing the first identity-based public-key encryption
schemes. Both of these constructions are proven secure in the random oracle
model. Since encryption schemes are the focus of this article (and are more in-
teresting in the sense that they are more difficult to construct), we consider only
encryption from now on.

It is natural to extend the notion of identity-based encryption (IBE) to in-
clude hierarchical identity-based encryption (HIBE). In an HIBE scheme, the
PKG (as above) issues secret keys to “first-level” identities id ∈ {0, 1}∗; further-
more, anyone knowing the secret key SKid1

corresponding to a “first-level” iden-
tity id1 can issue a secret key SKid1||id2

corresponding to any “second-level” iden-
tity id1||id2 (for arbitrary id2 ∈ {0, 1}∗). More generally, let ID = (id1|| · · · ||idt)
and let SKID be the secret key corresponding to this identity. Then for any string

idt+1 ∈ {0, 1}∗ and identity ID′ def
= (ID||idt+1), knowledge of SKID enables

computation of a key SKID′ . As before, in all these cases the pair (ID, SKID)
functions as a “standard” public-/private-key pair. The security requirement is
modified in the obvious way: now, one requires that knowledge of the secret
keys corresponding to any arbitrary-size set of identities I = {ID1, . . . , IDn}
should not enable an adversary to “break” the scheme (in some appropriate
sense) for any ID′ having no ancestors in I, where the ancestors of an identity
ID = (id1|| · · · ||idn) are all identities of the form (id1|| · · · ||idi) for i ≤ n.

Horwitz and Lynn [17] were the first to suggest the notion of HIBE, and
they also propose a partial solution handling identities of depth two. Gentry
and Silverberg [14] were the first to give a complete solution to this problem,
and they construct and prove secure a scheme supporting identities of arbitrary
(constant) depth. Both of these constructions build on the IBE scheme of Boneh
and Franklin [5], and both are proven secure in the random oracle model.

1.1 Binary Tree Encryption

It can be immediately noticed that the identities in a hierarchical identity-based
scheme correspond in the natural way to nodes in a tree. Specifically, one may
associate the PKG with the root of the tree, the “first-level” identities with
the nodes of depth one (i.e., the children of the root), and the identity ID′ =
(id1|| · · · ||idt+1) with a node at depth t+1 which is the child of a node at depth t
which is in turn associated with ID = (id1|| · · · ||idt).

In a scheme as outlined above, the identity hierarchy yields a tree of un-
bounded degree. In contrast, a binary tree encryption (BTE) scheme [7] — as
the name suggests — considers only an identity hierarchy in the form of a bi-
nary tree (i.e., a tree in which each node has degree two). Viewing BTE as a
conceptual relaxation of HIBE, one obtains a scheme in which the PKG may



potentially issue secret keys to (only) two “identities”: 0 and 1. In turn, the
“identity” 0 (with knowledge of the appropriate secret key SK0) can potentially
issue secret keys for the “identities” 00 and 01; an analogous statement holds for
the “identity” 1. More generally (and dispensing with the purely imaginary con-
cept of “identities” here), the secret key SKw corresponding to the binary string
w ∈ {0, 1}t enables derivation of the secret keys SKw0 and SKw1 corresponding
to the strings w0, w1 ∈ {0, 1}t+1. As in the case of hierarchical identity-based
encryption, each pair (w, SKw) functions as a public-/private-key pair. A def-
inition of security is developed in a way similar (but slightly different) to that
discussed above in the context of hierarchical identity-based encryption; a formal
definition appears in Section 2.

“Relaxing” the notion of hierarchical identity-based encryption in this way
turns out to be an incredibly powerful idea. For one, a BTE scheme supporting
trees of arbitrary polynomial depth has recently been constructed and proven
secure in the standard model [7] (recall that in the case of HIBE, only a scheme
of constant depth with a proof of security in the random oracle model [14] is
known). The proof relies on a reasonable number-theoretic assumption (namely,
the decisional bilinear Diffie-Hellman assumption) related1 to that used by
Boneh and Franklin in constructing their ID-based scheme [5]. This construction
of a BTE scheme builds on the construction of Gentry and Silverberg with an
important “twist”: because a binary tree is used (and because of a slight relax-
ation of the security definition), it is possible to replace the random oracle with
a poly(k)-wise independent hash function, a description of which is included as
part of the master system parameters.

Equally important, the “relaxed” notion of BTE is surprisingly powerful and
suffices for a number of applications:

– BTE was used to construct the first forward-secure encryption scheme [7]
(indeed, the notion of BTE was introduced in the context of research di-
rected toward solving this problem). Note that this is currently the only
methodology known for achieving forward-secure encryption.

– BTE implies both identity-based encryption as well as hierarchical identity-
based encryption [7], albeit only with respect to a non-adaptive definition
of security which is weaker than the definition originally proposed [5]. This
results in the first constructions of IBE and HIBE schemes which may be
proven secure in the standard model.

– Recent work [8] shows that any IBE scheme (even if “only” secure against
non-adaptive attacks) can be used to construct a standard public-key en-
cryption scheme secure against adaptive chosen-ciphertext attacks (i.e., a
CCA-secure scheme; cf. [3]). Given the result mentioned above, this yields a
new construction of a CCA-secure encryption scheme in the standard model.
Interestingly, the construction seems not to follow the paradigms underlying
all previous constructions of CCA-secure encryption schemes (cf. [12]).

1 It is also possible to base a BTE scheme on the identical assumption used by Boneh
and Franklin (in the standard model) at the expense of a loss in efficiency.



– Finally, it has recently been shown [9] how to construct an adaptively-secure
encryption scheme with “short” keys (namely, with keys shorter than the
length of all plaintext messages sent — in fact, the length of plaintext to
be encrypted may be a priori unbounded) based on any forward-secure en-
cryption scheme plus an NIZK proof system.2 We comment that adaptively-
secure encryption with “short” keys is impossible [21] unless some form of
key-evolving techniques (such as those used in forward-secure encryption
schemes) are used.

It is hoped that the above results represent just the “tip of the iceberg” and
that further applications of BTE will be developed.

1.2 Outline

The remainder of the paper is organized as follows. In Section 2, we give a formal
definition of binary tree encryption as well as the corresponding definition of
security. In Section 3, we state the known results regarding constructions of
BTE. The applications of BTE, as highlighted above, are discussed in Section 4.
The treatment given here is at a relatively high level; the interested reader is
referred to the original papers [7–9] for additional information.

2 Definitions

Definitions related to identity-based encryption [5] and hierarchical identity-
based encryption [14] are given elsewhere; for the purposes of understanding the
definition of binary tree encryption, the informal descriptions provided in the
Introduction should suffice. We thus begin with a formal definition of binary
tree encryption (BTE), taken from [7]:

Definition 1. A (public-key) binary tree encryption (BTE) scheme is a 4-tuple
of ppt algorithms (Gen, Der, Enc, Dec) such that:

– The key generation algorithm Gen takes as input a security parameter 1k

and a value ` for the depth of the tree. It returns a master public key PK
and an initial (root) secret key SKε. (We assume that the values of k and `
are implicit in PK and all node secret keys.)

– The key derivation algorithm Der takes as input PK, the name of a node
w ∈ {0, 1}<`, and its secret key SKw. It returns secret keys SKw0, SKw1 for
the two children of w.

– The encryption algorithm Enc takes as input PK, the name of a node w ∈
{0, 1}≤`, and a message M . It returns a ciphertext C.

– The decryption algorithm Dec takes as input PK, the name of a node w ∈
{0, 1}≤`, its secret key SKw, and a ciphertext C. It returns a message M .

2 Interestingly, it is shown in [7] how to construct an NIZK proof system based on the
same number-theoretic assumption used for the forward-secure encryption scheme.



For correctness, we require that for any (PK, SKε) output by Gen(1k, `), any
node w ∈ {0, 1}≤` and secret key SKw correctly generated for this node, and any
message M , we have M = Dec(PK, w, SKw, Enc(PK, w, M)).

The security notion for BTE is largely similar to the security notion for HIBE,
with the key difference being that the present definition requires the attacker to
commit to the node to be attacked (i.e., the “target node”) in advance, before
seeing the public key and before asking any key exposure queries. This type
of attack is called a selective-node (SN) attack. While the resulting definition
is weaker than a definition which allows the adversary to adaptively select the
target node, we stress again that this “weaker” definition suffices for all the
applications mentioned herein. Furthermore, it is (in part) this weakening of the
definition which allows for a construction of BTE in the standard model.

Definition 2. A BTE scheme is secure against selective-node, chosen-plaintext
attacks (SN-CPA) if for all polynomially-bounded functions `(·), the advantage of
any ppt adversary A in the following game is negligible in the security parameter:

1. A(1k, `(k)) outputs a name w∗ ∈ {0, 1}≤`(k) of a node.

2. Algorithm Gen(1k, `(k)) outputs (PK, SKε). In addition, algorithm Der(· · ·)
is run to generate the secret keys of all the nodes on the path from the root
to w∗ (we denote this path by P ), and also the secret keys for the two children
of w∗ (if |w∗| < `).

3. The adversary is given PK and also the secret keys {SKw} for all nodes w
of the following form:

– w = w′b, where w′b is a prefix of w∗ and b ∈ {0, 1} (i.e., w is a sibling of
some node in P );

– w = w∗0 or w = w∗1 (i.e., w is a child of w∗; this is only when |w∗| < `).

(Note that this allows the adversary to compute SKw′ for any node w′ ∈
{0, 1}≤`(k) that is not a prefix of w∗.)

4. The adversary generates a request challenge(M0, M1). A random bit b is se-
lected and the adversary is given C∗ = Enc(PK, w∗, Mb).

At the end of the game the adversary outputs b′ ∈ {0, 1}; it succeeds if b′ = b. The
adversary’s advantage is the absolute value of the difference between its success
probability and 1/2.

Security against chosen-ciphertext attacks (denoted SN-CCA) is defined as the
obvious extension of the above; see [7] for details.

3 Constructions of Secure BTE Schemes

We limit ourselves to listing the known results regarding constructions of secure
BTE schemes, and to a tabulation of their complexity (as a function of the
tree depth); the reader is referred to [7] for further details. All constructions



mentioned below (indeed, all known constructions of BTE) rely on variants of
the so-called Bilinear Diffie-Hellman (BDH) assumption. This assumption was
first formally defined by Boneh and Franklin [5], motivated by earlier work of
Joux [18] and Joux and Nguyen [19].

One of the main results of [7] is the following:

Theorem 1. Assuming the decisional BDH assumption, there exists a BTE
scheme secure in the sense of SN-CPA.

It is easy to modify the construction so that it relies only on the (possibly
weaker) computational BDH assumption (this may be done by using a hard-
core predicate of the computational BDH problem, and encrypting bit-by-bit).
However, this modification comes at the expense of a significant loss of efficiency.

Two generic techniques for achieving chosen-ciphertext security for an arbi-
trary BTE scheme have been proposed. The first [7] relies on non-malleable non-
interactive zero-knowledge (NIZK) proofs, adapting an approach due to Naor
and Yung [20] and Sahai [22] in the context of making “standard” public-key en-
cryption schemes secure against chosen-ciphertext attacks. Interestingly, in the
process of developing this solution it is also shown how non-malleable NIZK may
be based on any publicly-verifiable trapdoor predicate (this notion, introduced
by [11, 7], generalizes the notion of trapdoor permutations), and furthermore how
the decisional BDH assumption naturally gives rise to such predicates. Putting
this together gives the following result:

Theorem 2. Assuming the decisional BDH assumption, there exists a BTE
scheme secure in the sense of SN-CCA.

Because the above relies on NIZK proofs of generic NP statements, it should
properly be regarded as a feasibility result rather than as a method for construct-
ing efficient schemes. Recently [8], a more efficient method for achieving chosen-
ciphertext security for an arbitrary BTE scheme was proposed; this method (in
particular) avoids any zero-knowledge proofs and instead relies on one-time sig-
nature schemes (which may be constructed from any BTE scheme). This gives
an alternate proof of the above theorem, via a more practical construction.

The above results all hold in the standard model. If one is willing to assume
the random oracle model, improved efficiency can be achieved. For one, it should
be clear that any HIBE scheme which is secure for a non-adaptive choice of the
target identity is also a BTE scheme; thus, the construction of [14] may be used.
One way to view this is as simply replacing the poly(k)-wise independent hash
function in the construction of [7] by a random oracle (which, of course, is also a
poly(k)-wise independent hash function). This leads to improved efficiency since
a poly(k)-wise independent hash function is (relatively) expensive to generate
and evaluate — in particular, requiring time O(poly(k)) — while for a random
oracle these operations are all assumed to take time O(1). Furthermore, essen-
tially the same scheme (with but one additional call to the random oracle) may
be based on the (possibly weaker) computational BDH assumption rather than



Standard model Random oracle model

Master key generation time O(`) O(1)

Encryption/decryption time Õ(`) O(`)
Key derivation time O(`) O(1)
Ciphertext length O(`) O(`)
Public key size O(`) O(1)
Secret key size O(`) O(`)

Table 1. Summary of dependencies on the depth of the tree `.

the decisional BDH assumption. Finally, improved efficiency is also possible for
BTE schemes achieving chosen-ciphertext security. See [7] for further details.

For completeness, the asymptotic efficiencies of the two constructions secure
in the sense of SN-CPA (i.e., in the standard model and in the random oracle
model) are given in Table 1.

4 Applications of BTE

We briefly summarize the known applications of BTE.

4.1 Forward Secure Encryption

Cryptographic computations are often carried out on insecure devices for which
the threat of key exposure represents a serious and realistic concern. In an ef-
fort to mitigate the damage caused by exposure of secret keys stored on such
devices, the paradigm of forward security was introduced [1, 4]. In a forward-
secure scheme, the secret key is updated at regular periods of time (say, at the
end of every day), while the public key remains fixed; such schemes guarantee
that exposure of the secret key corresponding to a given time period does not
enable an adversary to “break” the scheme (in the appropriate sense) for any
prior time period.

Although a number of forward-secure signature and identification schemes
(beginning with [1, 4]) have been proposed, designing a forward-secure (public-
key) encryption scheme seemed elusive. As outlined in [7], however, BTE schemes
can be used to solve this problem, and to give efficient constructions of forward-
secure encryption schemes. The basic idea is as follows: let N be the total number
of time periods3 for which the system will operate. Each of these time periods
is associated with a node in a binary tree of depth dlog Ne in the following way:
the ith time period will be associated with the ith node of the tree according to
a pre-order traversal, We denote this node by 〈i〉.

The secret key at period i will consist of: (1) the secret key for node 〈i〉 in the
underlying BTE scheme; and also (2) the secret keys (in the underlying BTE

3 We assume for simplicity that N is fixed in advance; in fact, an unbounded number
of time periods can be supported [7].



scheme) for all right-children of the path from the root of the tree to 〈i〉. To
encrypt a message during period i, a sender simply encrypts it for the node 〈i〉
(again, using the underlying BTE scheme); note that decryption is possible since
the secret key at period i includes, in particular, the secret key for node 〈i〉. It
should be noted also that key updates can be done by erasing the secret key
for node 〈i〉 and using the additional secret keys (i.e., those keys belonging to
right-children of the path from the root to 〈i〉) to derive the necessary keys for
the next time period. Details are given in [7], where the following is also proven:

Theorem 3. (Informal:) Given any BTE scheme secure in the sense of SN-
CPA, the above construction yields a forward-secure encryption scheme.

Since the above construction requires a binary tree of depth log N to support
N time periods, the scheme itself has all parameters at most poly-logarithmic
in the number of time periods (cf. Table 1). In fact, additional improvements
are possible. These improvements and various extensions of the above theorem,
omitted here for lack of space, are given in [7].

4.2 (Hierarchical) Identity-Based Encryption

It was noted earlier that any HIBE scheme is also trivially a BTE scheme,
without any modification. Interestingly, one can also show that a BTE scheme
is powerful enough to construct a full-fledged HIBE scheme [7] (or, as a special
case, an identity-based scheme), albeit under a slightly weaker definition which
requires a non-adaptive choice of the target identity. We sketch the construction
here. An HIBE of depth t is constructed using a BTE of depth k · t, where k is
the security parameter. Identities are hashed to strings of length at most k · t
by applying a collision-resistant hash function H to the identities at each level;
thus, the identity (id1|| · · · ||idi) is mapped to the string H(id1)|| · · · ||H(idi). It
is not hard to show that this gives a secure HIBE, under the relaxed definition
of security given above. In fact, because the target identity must be chosen in
advance, it is enough for H to be a universal one-way hash function (whose
existence is implied by any BTE scheme); thus, we have:

Theorem 4. Assuming the existence of a BTE scheme secure in the sense of
SN-CPA, there exists an HIBE scheme of arbitrary polynomial depth secure under
a non-adaptive choice of target identity.

4.3 Chosen-Ciphertext Security

Recently, an interesting connection between identity-based encryption and se-
curity against chosen-ciphertext attacks (for “standard” public-key encryption
schemes) has been shown [8]. In particular, it was shown how any identity-
based encryption scheme can be used to give a simple and efficient construction
of a regular encryption scheme secure against chosen-ciphertext attacks (i.e., a
“CCA-secure” encryption scheme). The resulting construction avoids the use of



any generic NIZK proofs, and furthermore seems not to follow the paradigm of
all previously-known constructions of CCA-secure encryption schemes (cf. [12]).

We describe the construction of a CCA-secure standard encryption scheme
now: The public key of the scheme will be the master public key PK of the
identity-based scheme, while the secret key SK is the corresponding master
secret key. To encrypt a message m, the sender generates verification/signature
keys (vk, sk) for any one-time signature scheme, and encrypts m for “identity”
vk (using the underlying identity-based scheme). The sender signs the resulting
ciphertext C to obtain a signature σ, and sends 〈vk, C, σ〉 to the receiver.

The receiver first verifies that σ is a correct signature on C with respect to vk;
if not, the ciphertext is rejected. Otherwise, the receiver uses the master secret
key SK to generate a decryption key SKvk corresponding to the “identity” vk.
Notice that it can then decrypt C using SKvk.

The following is proven in [8]:

Theorem 5. (Informal:) Given any identity-based encryption scheme secure
under a non-adaptive choice of target identity, the above construction yields a
CCA-secure encryption scheme.

Note that the identity-based scheme need only be secure against a non-adaptive
choice of target identity; combined with Theorems 1 and 4, this results in a new
construction of a CCA-secure encryption scheme in the standard model.

It has already been noted above that a similar technique may be used to
construct a BTE scheme secure against chosen-ciphertext attacks, starting with
any BTE scheme secure in the sense of SN-CPA. Because this gives a slightly
stronger result than that of Theorem 2, we state it here for completeness:

Theorem 6. Assuming the existence of a BTE scheme secure in the sense of
SN-CPA, there exists a BTE scheme secure in the sense of SN-CCA.

See [8] for further details.

4.4 Adaptively-Secure Encryption

Standard definitions of secure encryption do not guarantee security in the case of
adaptive corruptions. In a setting where such adaptive corruptions are possible,
the encryption scheme should provide the additional guarantee that the infor-
mation gathered by an adversary when corrupting parties (and, in particular,
learning their secret keys) does not give it any additional advantage toward com-
promising the security of the uncorrupted parties. Very roughly speaking, this
requirement may be captured by the existence of a simulator that can generate
“dummy” ciphertexts which it can later “open” (by revealing an appropriate
secret key) to any given message. (Of course, this must be done in such a way
that the revealed secret key “matches” the fixed public key.) Schemes achieving
this notion of security are termed adaptively secure. We do not further motivate
or describe the definition, but instead refer the reader elsewhere [2, 6, 21, 15, 9]
for additional discussion.



Nielsen has shown [21] that non-interactive adaptively-secure encryption (in
the standard model) is “impossible” unless the secret key is as long as the
length of all plaintext messages that are sent. In particular, this implies that no
adaptively-secure scheme supporting an a priori unbounded number of messages
is possible. This result is in stark contrast to the case for encryption schemes
which are not adaptively secure.

It is possible to circumvent Nielsen’s impossibility result, however, by con-
sidering key-evolving cryptosystems; i.e., those in which the secret key evolves
over time. This suggests using forward-secure encryption as a building block to-
ward building adaptively-secure schemes. (Note that a forward-secure encryption
scheme, by itself, is not necessarily adaptively secure.) In fact, a construction of
an adaptively-secure encryption scheme based on any forward-secure encryption
scheme has recently been given [9]:

Theorem 7. (Informal:) Assuming the existence of a forward-secure encryp-
tion scheme and an NIZK proof system for NP, there exists a non-interactive
adaptively-secure encryption scheme for an unbounded number of messages.

Since both a forward-secure encryption scheme as well as NIZK proofs may be
based on the BDH assumption (cf. [7]), the BDH assumption suffices to imply
the result of the theorem.

More efficient constructions of adaptively-secure encryption, which avoid
NIZK proofs altogether (but which in some cases require additional number
theoretic assumptions), are also given in [9].
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