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ABSTRACT
Much recent work has focused on constructing efficient dig-
ital signature schemes whose security is tightly related to
the hardness of some underlying cryptographic assumption.
With this motivation in mind, we show here two approaches
which improve both the computational efficiency and signa-
ture length of some recently-proposed schemes:

Diffie-Hellman signatures. Goh and Jarecki [18] recently
analyzed a signature scheme which has a tight security re-
duction to the computational Diffie-Hellman problem. Un-
fortunately, their scheme is less efficient in both computation
and bandwidth than previous schemes relying on the (re-
lated) discrete logarithm assumption. We present a modifi-
cation of their scheme in which signing is 33% more efficient
and signatures are 75% shorter; the security of this scheme
is tightly related to the decisional Diffie-Hellman problem.

PSS. The probabilistic signature scheme (PSS) designed by
Bellare and Rogaway [3] uses a random salt to enable a tight
security reduction to, e.g., the RSA problem. Coron [12]
subsequently showed that a shorter random salt can be used
without impacting the security of the scheme. We show a
variant of PSS which avoids the random salt altogether yet
has an equally-tight security reduction. This furthermore
yields a version of PSS-R (PSS with message recovery) with
optimal message length. Our technique may also be used to
improve the efficiency of a number of other schemes.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public-Key Cryptosystems
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1. INTRODUCTION
Beginning in the early 1980’s [19], the science of cryptog-

raphy has focused on constructing signature schemes that
can be rigorously proven secure based on specific compu-
tational assumptions. A proof of security for a given con-
struction generally proceeds by a reduction showing how an
adversary “breaking” the scheme in polynomial time can be
used to “solve” in polynomial time some underlying problem
assumed to be difficult (e.g., RSA). Classically, results of this
sort have been asymptotic; i.e., the security reduction only
guarantees that, as the security parameter (e.g., key length)
increases, no poly-time adversary can forge signatures with
“sufficiently high” probability. As first emphasized by Bel-
lare and Rogaway [3], however, such results say little about
the security of a scheme in practice for a particular choice of
key size and against adversaries investing a specific amount
of computational effort. For practical considerations it is
critical to focus on concrete security reductions which give
explicit bounds on an adversary’s success probability as a
function of their expended resources.

We provide a simplified example which we hope will pro-
vide further motivation (see [3, 11, 12, 18] for further discus-
sion). Assume a signature scheme (relying on some appro-
priate computational assumption) which an adversary ex-
pending 1 year of computational effort can “break” with
probability at most a · 2−b·κ, where κ is the key size and a, b
are constants. Under an asymptotic definition of security,
this scheme is secure. Yet, in practice, we do not know what
key size to choose unless a and b are known! Furthermore,
the values of a, b are crucial for determining the efficiency
of the scheme: for a desired security level (i.e., probability
of adversary forgery) of 2−32 following 1 year of effort, hav-
ing a ≈ 1 and b ≈ 1/10 means that κ should be roughly
320; on the other hand, if a ≈ 232 and b ≈ 1/20 then we
require κ ≈ 1280 with a concomitant decrease in efficiency
to achieve the same level of security.

The above discussion illustrates that comparisons of the
efficiency of two signature schemes must take into account
the relative security each scheme offers; alternately, such a
comparison must take into account the efficiency of the secu-
rity reduction (recall, this shows how an adversary “break-
ing” the signature scheme can be used to “break” some prob-
lem assumed to be hard). In some sense, the most efficient



reduction we can hope for is one in which an adversary who
“breaks” a signature scheme with probability ε in time t can
be used to “break” the underlying computational problem
with probability ε′ ≈ ε in time t′ ≈ t; a reduction of this
sort is called tight. A scheme with a non-tight reduction will
necessarily require larger key sizes to provide the same secu-
rity as a scheme with a tight security reduction. Indeed, it
is often the case that obtaining a reasonable level of security
from a scheme with a non-tight reduction requires using a
key length which is completely impractical!

These observations have sparked a significant amount of
research aimed at developing efficient signature schemes with
security reductions as tight as possible. As an example, con-
sider “hash-and-sign” signatures based on trapdoor permu-
tations (e.g., RSA). Let ε′ be the probability of inverting
a specified trapdoor permutation (e.g., RSA with 1024-bit
moduli) in some time t′; in the discussion which follows, one
may take t′ to be 1 year and ε′ ≈ 2−60 for concreteness but
the argument is generally applicable. The full-domain-hash
(FDH) signature scheme [1, 3] bounds the probability of
forgery by ε ≈ (qs + qh)ε′ for any adversary running in time
t ≈ t′, where qs (resp., qh) is the number of signatures (resp.,
hash function evaluations) obtained by the adversary. Since
signatures can only be obtained from the legitimate signer
while the adversary can evaluate the hash function on its
own, it has been suggested [3, 11, 12] to use qs ≈ 230 and
qh ≈ 260. But if we take ε′ ≈ 2−60 then the security guaran-
tee provided by the signature scheme is meaningless (since
ε ≈ 1)! We stress that it is meaningless only for specific
trapdoor permutations with ε′ ≈ 2−60; by choosing a differ-
ent trapdoor permutation (say, RSA with 2048-bit moduli)
with smaller ε′, meaningful results can be obtained.

This again illustrates the effect of concrete security on
efficiency: In the above example, one must use a trapdoor
permutation with very low probability of inversion (e.g., by
using longer key sizes) in order to obtain any security at all.

Coron [11] has subsequently shown how to improve the
security reduction for FDH for the specific case when RSA
is used as the trapdoor permutation1. Coron’s results bound
the probability of forgery in this case by ε ≈ qsε

′. Returning
to our above example, choosing our RSA key length so that
ε′ ≈ 2−60 now gives a reasonable guarantee of security (i.e.,
ε ≈ 2−30).

To further improve the tightness of the security reduction
for “hash-and-sign”-type signatures, the probabilistic signa-
ture scheme (PSS) was introduced [3] and shown to achieve
tight security reduction ε ≈ ε′ when RSA is used as the trap-
door permutation (although footnote 1 applies here as well).
The key feature distinguishing PSS from FDH is that in the
former there are multiple valid signatures corresponding to
any given message. This is used in an essential way in the
proof of security; indeed, it has been shown [12] that “hash-
and-sign” signature schemes without this property cannot
have a tight security reduction.

To ensure multiple valid signatures for a message, PSS
uses a “salt” r which is randomly generated and hashed
along with the message each time a signature is produced.
The original work [3] required |r| = 180 (for values of qs, qh

as above) to achieve a tight security reduction. Coron later
observed [12] that the length of the salt could be reduced to
|r| = 30 while obtaining essentially the same security bound

1Actually, this result can be generalized [11, 13] but this is
unimportant for the present discussion.

(Coron also shows [12] that this value of |r| is optimal for
PSS). Reducing the length of r is important since it reduces
the randomness used. More importantly, when extending
PSS to provide message recovery, the length of the recover-
able messages increases as the length of r decreases.

The above discussion concerns what may be termed “FDH-
like” schemes. In other related work, Micali and Reyzin [23]
improve the exact security of some signature schemes de-
rived using the Fiat-Shamir heuristic [16]. More recently,
Goh and Jarecki [18] analyzed a signature scheme with a
tight security reduction to the computational Diffie-Hellman
problem; interestingly, this scheme is the first discrete-log
based scheme with tight security (in particular, the scheme
avoids the “forking lemma” of [24]). We stress that the goal
of achieving tight security reductions is not limited to signa-
ture schemes; the issue is critical for public-key encryption
(see, for example, [28, Section 1.3]) and there has been much
research in this area as well (e.g., [2, 5, 17, 27, 21]).

The above-mentioned schemes are all analyzed in the ran-
dom oracle model [16, 1], which is also used here. It is crucial
to note that a proof of security in the random oracle model
does not guarantee security when this oracle is instantiated
by any particular cryptographic hash function [9]. However,
a proof in this model does indicate that there are no “in-
herent” weaknesses in the scheme itself; thus, a scheme with
a proof of security in the random oracle model is clearly
preferable to a scheme with no proof of security at all.

1.1 Summary of Results
Motivated by the above line of research, we focus on effi-

cient signature schemes with tight security reductions, and
improve the efficiency (both in terms of computation and
signature length) of a number of recently-proposed schemes.

Diffie-Hellman signatures. Various discrete-log based
signature schemes, providing alternatives to RSA-based sig-
natures, are known [14, 25, 15, 8]. Proofs of security for
these schemes — when available — are related to the hard-
ness of computing discrete logarithms in some underlying
group. Interestingly, Goh and Jarecki [18] recently noted
that none of these schemes has a tight security reduction to
the discrete logarithm problem; this motivated their anal-
ysis of a signature scheme proposed previously [10] whose
security they show is tightly related to the hardness of the
computational Diffie-Hellman (CDH) problem in some un-
derlying group. They further argue [18] that basing security
on this, possibly stronger, assumption is not a severe draw-
back since for many cryptographic groups used in practice
the CDH problem is as hard as the discrete logarithm prob-
lem (using current techniques) [4, 22]. Unfortunately, the
scheme they analyze is less efficient than previous discrete-
log based schemes: signing requires 3 modular exponentia-
tions, and signatures are roughly 1400 bits long for the key
sizes and cryptographic groups they recommend.

We show here a simple modification of their scheme which
results in much better efficiency: signing requires only 2 ex-
ponentiations (both of which may be computed “off-line” be-
fore the message is known) and signatures are only 320 bits
long. The security of our scheme is tightly related to the
hardness of the decisional Diffie-Hellman (DDH) problem
rather than the CDH problem. Although the DDH prob-
lem is possibly easier than the CDH problem in general, we
note (as in [18]) that these problems are equally hard for
many commonly-used groups as far as current techniques



are concerned. We discuss this further in Section 2.2.

PSS. Recall that PSS [3] is a probabilistic variant of FDH
which introduces a random salt r to achieve a tight security
reduction. (The general technique of using a random salt to
achieve a tight(er) security reduction is applicable to other
schemes also; for example, the technique may be used to
improve the exact security of the “short signatures” of [7]
and is explicitly used to obtain tight security in [18].) As
noted by Coron [12], the original analysis of Bellare and
Rogaway requires |r| ≥ 2 · log2 qh + log2 1/ε′ (where the
notation is as in the previous section); taking qh ≈ 260 and
ε′ ≈ 2−60 gives a salt length |r| of 180 bits. Refining the
analysis, Coron showed that a tight security reduction is
obtained even for |r| ≥ log2 qs; this leads to a substantial
improvement since, in practice, we have qs ≈ 230.

Here, we show how to avoid the random salt altogether
while still obtaining a tight proof of security. This does not
contradict the result of Coron [12, Theorem 5] that a tight
security reduction is impossible for “FDH-like” schemes with
unique signatures since our scheme is constructed such that
every message has exactly two signatures. However, al-
though a given message has more than one valid signature,
only one of these will ever be produced by the legitimate
signer even if the message is signed multiple times. We ac-
complish this via a deterministic signing algorithm that does
not require the signer to maintain any state, It is interesting
that this subtle change is sufficient to enable a tight proof of
security. Our proposed modification easily extends to elim-
inate the need for a random salt in, e.g., [7, 18] as well.

For schemes in which the random salt is included with the
signature, our technique yields signatures of shorter length
(equivalently, for signatures of the same length we obtain
better security). Thus, we may modify the scheme of [18]
to save 111 bits while still basing security on the CDH as-
sumption, or we can modify the “short signatures” of [7]
to obtain signatures of the same length but with improved
security. Furthermore, in the case of PSS-R (i.e., PSS with
message recovery) a shorter salt translates to the ability to
sign longer messages; thus, with our technique PSS-R can
be used for messages 30 bits longer than in [12] (under the
same assumptions, and with the same level of security). In
fact, combining our technique with ideas of Granboulan [20]
gives a version of PSS-R with tight security which we show
is optimal in terms of allowable message length.

2. DEFINITIONS
We review definitions of signature schemes, the decisional

Diffie-Hellman assumption, and claw-free (trapdoor) permu-
tations. Since we analyze our schemes in terms of their con-
crete security, none of our definitions explicitly refers to any
“security parameter”. We stress, however, that all our re-
sults imply security in the asymptotic sense as well.

2.1 Signature Schemes
We give a functional definition of both general signature

schemes as well as those supporting message recovery; this
is followed by a definition of security. In the following, H
refers to a hash function to which the algorithms are given
oracle access; this hash function will be treated as a random
oracle in the analysis. In practice, as suggested in [1], H will
be instantiated by a cryptographic hash function mapping
the appropriate domain to the appropriate range.

Definition 1. A signature scheme is a tuple of proba-
bilistic algorithms (Gen, Sign, Vrfy) over a message space M
such that:

• The key-generation algorithm Gen outputs a public key
PK and a secret key SK.

• The signing algorithm Sign takes as input secret key
SK and message m ∈M and returns signature σ.

• If message recovery is not supported, the verification
algorithm Vrfy takes as input a public key PK, a mes-
sage m ∈M, and a signature σ and returns accept or
reject.

• If message recovery is supported, verification algorithm
Vrfy takes as input public key PK and signature σ and
returns either a message m ∈M or reject.

We make the standard correctness requirement, given here
for schemes supporting message recovery (the other case is
analogous): for all SK, PK output by Gen and all m ∈ M
we have VrfyPK(SignSK(m)) = m.

We now give a definition of strong unforgeability under
adaptive chosen-message attacks (cf. [19]); “strong” here
means that the adversary cannot even generate a new sig-
nature for a previously-signed message. We let Ω denote the
space from which the random oracle H is selected.

Definition 2. Let (Gen, Sign, Vrfy) be a signature scheme
which supports message recovery. An adversarial forging al-
gorithm F is said to (t, qh, qs, ε)-break this scheme if F runs
in time at most t, makes at most qh hash queries and at
most qs signing queries, and furthermore

Pr[(PK, SK)← Gen; H ← Ω; σ ← FSignSK(·),H(·)(PK) :

σ 6∈ Σ ∧ VrfyPK(σ) 6= reject] ≥ ε,

where Σ is the set of signatures received from SignSK(·).
If signature scheme (Gen, Sign, Vrfy) does not support mes-

sage recovery, the definition is as above except that we are
interested in the probability that F outputs a pair (m, σ) such
that VrfyPK(m, σ) = accept but σ was never the response of
a query SignSK(m).

In either case, a signature scheme is (t, qh, qs, ε)-secure if
no forger can (t, qh, qs, ε)-break it.

2.2 The Decisional Diffie-Hellman Problem
Let

�
be a finite, cyclic group of prime order q in which

the group operation is represented multiplicatively; further-
more, let g be a generator of

�
. The decisional Diffie-

Hellman (DDH) problem may be described, informally, as
the problem of distinguishing between tuples of the form
(g, gx, gy, gz) for random x, y, z ∈ � q (these are denoted
“random tuples”) and tuples of the form (g, gx, gy, gxy) for
random x, y ∈ � q (these are denoted “Diffie-Hellman tu-
ples”). The following definition makes this more concrete.

Definition 3. A distinguishing algorithm D is said to
(t, ε)-break DDH in group

�
if D runs in time at most t and

furthermore

|Pr[x, y, z ← � q : D(g, gx, gy, gz) = 1]

−Pr[x, y ← � q : D(g, gx, gy, gxy) = 1]| ≥ ε.

We say that
�

is a (t, ε)-DDH group if no algorithm (t, ε)-
breaks DDH in

�
.



Hardness of the DDH problem in
�

implies hardness of
the computational Diffie-Hellman (CDH) problem as well as
hardness of the discrete logarithm problem in

�
. The con-

verse is not, in general, true; there are groups in which the
DDH problem is known to be easy yet the CDH or discrete
logarithm problems seem to be hard. However, for a vari-
ety of groups of interest “the best known algorithm for DDH
is a full discrete log algorithm” [4] (see also the discussion
by Maurer and Wolf [22]). These include, among others,
the commonly-used group

�
of quadratic residues modulo

p, where p = αq + 1 is prime. Additionally, Shoup [26] has
shown that the DDH problem is as hard as the discrete log-
arithm problem for generic algorithms (i.e., those that do
not use the underlying group structure). For more details,
the reader is referred to two excellent surveys [4, 22].

2.3 Claw-Free Permutations
As briefly touched upon in the Introduction, FDH was

originally proven secure when an arbitrary trapdoor permu-
tation is used [1]. On the other hand, subsequent work on
FDH [11] and PSS [3, 12] has focused on specific classes
of trapdoor permutations such as the RSA and Rabin per-
mutations. Dodis and Reyzin have since noted [13] that the
unifying feature of these subsequent analyses is their reliance
on trapdoor permutations induced by claw-free permutations
(of which the RSA and Rabin permutations are two exam-
ples). For this reason, we introduce this notion now.

The notion of claw-free permutations generalizes that of
trapdoor permutations. Informally, a pair of claw-free per-
mutations (f0, f1) has the property that f0 and f1 are each
individually trapdoor permutations over the same domain;
furthermore, this pair has the additional property that, with-
out one of the associated trapdoors, it is hard to find a
“claw” (namely, x0 and x1 such that f0(x0) = f1(x1)). We
give a formal definition here.

Definition 4. A family of claw-free permutations is a
tuple of ppt algorithms (cf-Gen, F, G, F−1, G−1) such that:

• cf-Gen outputs a random index i and a trapdoor td.

• F(i, ·) and G(i, ·) are both permutations over the same
domain, denoted Di. Furthermore, there is an effi-
cient sampling algorithm which, on input i, outputs a
uniformly-distributed element in Di.

• If (i, td) was output by cf-Gen, then F−1(td, ·) (resp.,
G−1(td, ·)) is the inverse of F(i, ·) (resp., G(i, ·)).

Algorithm A is said to (t, ε)-break a family of claw-free
permutations if A runs in time at most t and furthermore
A outputs a “claw” with probability greater than ε. More
formally,

Pr[(i, td)← cf-Gen; (x0, x1)← A(i) : F(i, x0) = G(i, x1)] ≥ ε.

A given claw-free permutation is (t, ε)-secure if no algorithm
can (t, ε)-break it.

For notational convenience, we will write f(·) instead of
F(i, ·) (and similarly for g) when the index i is clear from the
context. Similarly, we write f−1(·) instead of F−1(td, ·) (and
similarly for g) with the implicit understanding that this
inverse cannot be efficiently computed without knowledge
of the trapdoor. We also speak of “claw-free permutations”
rather than claw-free permutations families.

Note that the tuple (cf-Gen, F, F−1) is a trapdoor permu-
tation (and similarly for (cf-Gen, G, G−1)). In this case, fol-
lowing [13], we will say that this trapdoor permutation is
induced by a claw-free permutation.

From a complexity-theoretic point of view, the existence
of claw-free permutations represents a stronger assumption
than the existence of trapdoor permutations. On the other
hand, all known examples of trapdoor permutations can be
viewed as being induced by a family of claw-free permuta-
tions (cf. [13]). In the case of RSA, for example, given a
modulus N , an exponent e, and a random value y ∈ � ∗

N we

may define f(x)
def
= xe mod N and g(x)

def
= xey mod N ; note

that finding x0, x1 such that f(x0) = g(x1) is equivalent to
finding a value (x0/x1) which is an eth root of y (and is there-
fore infeasible under the assumption that RSA is a trapdoor
permutation). It should also be stressed that, in the above
example, RSA yields a (t, ε)-secure claw-free permutation
iff RSA itself is a (O(t), ε)-secure trapdoor permutation; in
other words, there is essentially no loss of security when
translating the problem from one domain to the other.

3. SIGNATURE SCHEME BASED ON DDH
We begin by reviewing the signature scheme analyzed by

Goh and Jarecki [18], whose security is tightly related to the
CDH problem in some cyclic group

�
. The basic idea of the

scheme is as follows: the public key contains g, h ∈
�

and the
private key consists of x = logg h. To sign a message m, the
message is first mapped (using a random oracle) to a value
z = H(m) ∈

�
. The signer then computes zx and a non-

interactive zero-knowledge proof π (using the Fiat-Shamir
heuristic [16]) that (g, h, z, zx) forms a Diffie-Hellman tuple;
the signature contains zx and π. The above description
(which slightly simplifies [18]) corresponds roughly to an
“FDH-like” signature scheme; their actual scheme uses a
111-bit random salt (à la PSS and probabilistic-FDH [12])
to achieve tight security.2

The Goh-Jarecki scheme is very similar in spirit to the
“short signatures” previously introduced by Boneh, Lynn,
and Shacham [7]. In the latter case, however, the DDH
problem is easy in the underlying group and therefore the
non-interactive proof π is unnecessary. Because of this re-
quirement that DDH be easy, the techniques of this section
do not apply to the Boneh-Lynn-Shacham scheme (however,
our techniques of Section 4 do apply; see Section 4.4).

Compared to previous signature schemes based on the
(weaker) discrete logarithm assumption, the Goh-Jarecki
scheme has some notable drawbacks. The signer must com-
pute both zx and π (resulting in a total of 3 exponentia-
tions), and the signature must include both of these values.
For many groups of interest, this leads to very long signa-
tures; for example, in the running example of [18] group
elements (e.g., zx) are roughly 1000-bits long while the en-
tire proof π is 320-bits long.

We present here a way to improve the efficiency and sig-
nature length of the above scheme, while maintaining a
tight security reduction; the difference is that security of
our scheme is based on the DDH problem instead of the
CDH problem. In our scheme, the public key consists of a
Diffie-Hellman tuple (g, h, y1, y2) while the secret key is the

2Interestingly, our techniques of Section 4 may be used to
eliminate this random salt while preserving the tight security
reduction to the CDH problem; see Section 4.4.



value x such that gx = y1 and hx = y2. Now, the signature
for a message m simply consists of a non-interactive zero-
knowledge proof (using the Fiat-Shamir heuristic [16]) that
(g, h, y1, y2) indeed forms a Diffie-Hellman tuple. Forgery
will now be infeasible because the “challenge” in the Fiat-
Shamir heuristic depends on m; because the proof is zero-
knowledge (informally), viewing multiple proofs of the state-
ment will not help an adversary in constructing a new proof
of the statement for a different message.

3.1 Details and Proof of Security
In what follows, we assume a finite, cyclic group

�
of

prime order q; this group may be fixed or a description of�
may be included with the signer’s public key. We let

H : {0, 1}∗ → � q be a hash function which will be modeled
as a random oracle.

Gen chooses random generators g, h ∈
�

and a random value
x← � q. It then computes y1 = gx and y2 = hx. The public
key is PK = (g, h, y1, y2) and the secret key is x.

SignSK(m) (where m ∈ {0, 1}∗) executes a non-interactive

zero-knowledge proof that the public key (g, h, y1, y2) forms
a Diffie-Hellman tuple; this can be done efficiently given the
witness x (i.e., the secret key). In more detail: the algorithm
chooses random r ∈ � q and computes A = gr, B = hr,
and “challenge” c = H(PK, A,B, m). Finally, it computes
s = cx + r and outputs the signature (c, s).

VrfyPK(m, σ) parses PK as (g, h, y1, y2) and σ as (c, s). It

then computes A′ = gsy−c
1 and B′ = hsy−c

2 . Finally, it

outputs accept if and only if c
?
= H(PK,A′, B′, m).

It is not hard to see that the scheme is correct. Since
y1 = gx and y2 = hx, the signature verification algorithm
computes A′ = gsy−c

1 = gs−xc = gr = A and similarly for
B′; thus, it is indeed the case that H(PK,A′, B′, m) = c.

Theorem 1. Let
�

be a (t′, ε′)-DDH group with |
�
| = q

such that exponentiation in
�

takes time texp. Then the
above signature scheme is (t, qh, qs, ε)-secure (in the random
oracle model), where:

t ≤ t′ − 2.4(qs + 1)texp

ε ≥ ε′ + qsqhq−1 + (qh + 1)q−1.

Proof. Assume we have an algorithm F , running in time
at most t and making at most qh hash queries and at most
qh signing queries, which forges a new message/signature
pair with probability at least ε. We use F to construct
an algorithm D running in time t′ which solves the DDH
problem with probability ε′. The stated result follows.

Algorithm D is given as input a tuple (g, h, y1, y2); its goal
is to determine whether this represents a “random tuple” or
a “DDH tuple”. To this end, it sets PK = (g, h, y1, y2) and
runs F on input PK. Algorithm D simulates the signing
oracle and the random oracle for F as follows:

Hash queries. In response to a query H(PK,A, B, m),
algorithm D first determines whether the output of H on this
input has been previously set (either directly by a previous
hash query, or as part of a signature query). If so, D returns
the previously-assigned value. Otherwise, D responds with
a value chosen uniformly at random from � q.

Signing queries. If F asks for a signature on message
m, then D attempts — in the standard way — to simu-
late a proof that (g, h, y1, y2) is a DDH tuple. Thus, D

chooses random c, s ∈ � q and computes A = gsy−c
1 and

B = hsy−c
2 . If H had previously been queried on input

(PK, A, B, m) then D aborts (with output 0); otherwise, D
sets H(PK, A,B, m) = c and outputs the signature (c, s)

At some point, F outputs its forgery (m̃, σ̃ = (c̃, s̃)), where
we assume that σ̃ was not previously the response to a query
SignSK(m̃). Letting Ã = gs̃y−c̃

1 and B̃ = hs̃y−c̃
2 , we also as-

sume that F has previously queried H(PK, Ã, B̃, m̃). Now,

if H(PK, Ã, B̃, m̃) = c (i.e., VrfyPK(m̃, σ̃) = 1) then D out-
puts 1; otherwise, D outputs 0.

We now analyze the probability that D outputs 1. If
(g, h, y1, y2) is a Diffie-Hellman tuple, then D provides a per-
fect simulation for F except for the possibility of an abort.
An abort can occur during D’s simulation of any of the sign-
ing queries; in the simulation of any particular signing query,
it is not hard to see that the probability of abort is at most
qh/|

�
|. Thus the overall probability that D aborts is at most

qsqh/|
�
|. This means that F outputs a forgery (and hence

D outputs 1) with probability at least ε− qsqh/q.
On the other hand, if (g, h, y1, y2) is a random tuple then

with probability 1− 1/q it is not a Diffie-Hellman tuple. In
this case, for any query H(PK,A, B, m) made by F there
is at most one possible value of c for which there exists an s
satisfying A = gsy−c

1 and B = hsy−c
2 (this is easy to see by

looking at the two linear equations over � q in the exponent).
Thus, F outputs a forgery (and hence D outputs 1) with
probability at most q−1 + qhq−1.

Putting everything together, we see that

|Pr[x, y ← � q : D(g, gx, gy, gxy) = 1]

−Pr[x, y, z ← � q : D(g, gx, gy, gz) = 1]|

≥ ε− qsqhq−1 − q−1(1 + qh)

≥ ε′.

The running time of D includes the running time of F and is
otherwise dominated by the two multi-exponentiations that
are performed for each query to the signing oracle plus those
done in verifying the output of F . Assuming (as in [18])
that a two-exponent multi-exponentiation takes time 1.2texp

gives the result of the theorem.

Remark. This technique of using the Fiat-Shamir heuris-
tic to provide a proof rather than a proof of knowledge can
be used more generally to achieve a tight security reduction
based on a decisional problem rather than a non-tight secu-
rity reduction based on a computational problem. As one ex-
ample, the Fiat-Shamir signature scheme [16] includes values
{yi} in the public key and the signer proves knowledge of the
square roots of these values. Using the “forking lemma” of
Pointcheval and Stern [24], we may thus obtain a non-tight
security reduction for this scheme based on the hardness of
computing square roots modulo N (which is equivalent to
the hardness of factoring N). On the other hand, by hav-
ing the signer prove that the {yi} are all quadratic residues
(without necessarily proving knowledge of their square roots),
we may obtain a tight security reduction based on the hard-
ness of deciding quadratic residuosity.

3.2 Discussion
Our signature scheme is more efficient than the scheme

analyzed by Goh and Jarecki when working over the same
group

�
. Signing in our scheme requires 2 exponentiations

which may be pre-computed “off-line” before the message to



be signed is known; this may be compared to the 3 exponen-
tiations required in the Goh-Jarecki scheme (one of which
must be computed after the message is known). Verification
in both schemes requires 2 multi-exponentiations. Our sig-
nature scheme vastly outperforms the Goh-Jarecki scheme
in terms of signature length: signatures in our scheme are
2|q| bits, compared to |p| + 2|q| + 111 bits in [18] (in prac-
tice, |p| ≈ 1000 while |q| ≈ 160). Finally, an oft-neglected
aspect of cryptographic protocols is their ease of implemen-
tation; here, too, we believe our scheme offers practical ad-
vantages. The Goh-Jarecki scheme requires two indepen-
dent hash functions, one of which has

�
as its range; this

seems more difficult to implement correctly than a single
hash function mapping onto � q. Finally, note that hashing
onto � q is (in some cases) much faster than hasing onto

�
.

Indeed, hashing onto � q requires only a (small) constant
number of hash evaluations. On the other hand, when

�
is

an order-q subgroup of � ∗

p (with p = αq+1), hashing onto
�

requires computing an exponentiation to the power α mod-
ulo p. Assuming |p| = 1024, |q| = 160, and thus |α| ≈ 864
(which are parameters often used in practice), computing
the required hash (which uses an 864-bit exponent) is even
more expensive than an exponentiation in

�
itself (which

uses only 160-bit exponents)!
Interestingly, we also obtain a tighter security reduction

than Goh and Jarecki: assuming texp is 100 times larger than
the time to evaluate H and letting t = qh = 260, qs = 230,
and |q| ≥ 160, we obtain the (essentially) optimal:

t′ ≈ t, ε′ ≈ ε,

whereas Goh-Jarecki [18] obtain a (small) 28 decrease in se-
curity. Thus, our reduction carries no decrease in security,
and our signature scheme is as hard to break as the underly-
ing DDH problem is to solve. Of course, the security of our
scheme is based on the (potentially) easier DDH problem
rather than the CDH problem. Still, given current tech-
niques the DDH problem is as hard as the CDH problem
(and both are as hard as the discrete logarithm problem)
for a number of widely-used groups [4].

4. AVOIDING THE RANDOM SALT IN PSS
We begin with an informal recap of previous work on

FDH, PSS, and probabilistic FDH (PFDH); PFDH was in-
troduced by Coron [12] as a “simplified” version of PSS
which highlights the key features of PSS while being slightly
less efficient in general (yet, the “PFDH methodology” was
adopted by Goh and Jarecki to improve the security of their
scheme [18]). Throughout, we let H denote a random oracle
mapping strings to the appropriate range.

FDH was originally defined [1] for an arbitrary trapdoor
permutation. Key generation simply generates a trapdoor
permutation f as the public key, and the secret key is the
associated trapdoor allowing efficient computation of f−1.
To sign message m, the signer outputs σ = f−1(H(m));
verification is done in the obvious way. Bellare and Rog-
away showed that if f cannot be inverted with probability
better than ε′, then forgery with probability better than
ε ≈ (qh + qs)ε

′ is impossible. In their proof, the simulator
“guesses” the index i of the hash query which results in a
forgery; the simulator then sets the output of the ith hash
query H(mi) to be y (where y is the value to be inverted).
The output of all other hash queries H(mj) is set to f(xj)
for random xj . In this way, the simulator can answer all

signing queries except those for message mi; furthermore, if
the forger outputs a signature on mi, the simulator obtains
the desired inverse. However, having to guess the index i
(from among all (qs +qh) queries to H) results in a substan-
tial loss of security.

Subsequently, Coron [11] improved the exact security of
FDH for the specific case when RSA is the underlying trap-
door permutation by using random self-reducibility proper-
ties of RSA (but see footnote 1). Here, to invert a given
value y the simulator answers hash query H(mi), for all i,
with f(xi) = xe

i (with probability ρ) and with xe
i y (with

probability 1− ρ); note that the simulator can answer sign-
ing queries related to hash queries of the first type, while
forgeries related to hash queries of the second type allow
computation of the desired inverse. By appropriately choos-
ing ρ, the tighter security bound ε ≈ qsε

′ can be obtained.
Interestingly, this proof technique was generalized by Dodis
and Reyzin [13] who showed that whenever the trapdoor
permutation f is induced by a claw-free permutation (i.e.,
f arises from a pair of claw-free permutations (f, g)), then
FDH achieves security ε ≈ qsε

′. In their proof, the simu-
lator answers hash queries with f(xi) (with probability ρ)
and with g(xi) (with probability 1 − ρ); as before, the sim-
ulator can answer signing queries related to hash queries of
the first type, while forgeries related to hash queries of the
second type yield a “claw”, as desired.

In FDH, each message has a unique signature. Thus, in
the security proofs for FDH, for each message m the simu-
lator either can produce a signature of m (in which case a
forged signature on m does not “help”) or cannot produce
a signature of m (in which case a forged signature on m
breaks the underlying assumption, but a signing request for
m requires the simulator to abort). This motivated the de-
sign of PSS [3] and PFDH3 [12] in which each message has
multiple valid signatures. We discuss PFDH, but the ideas
apply to PSS as well. In PFDH, key generation is done as
before; to sign m, the signer chooses random “salt” r and
outputs 〈r, f−1(H(r‖m))〉. Verification is done in the obvi-
ous way. If f is induced by claw-free permutation (f, g) then,
in the proof of security [12, 13], the simulator can answer all
hash queries with g(xi) and thus any forgery (giving a value
f−1(g(xi))) yields a “claw”; still, the simulator can sign any
message m as long as it picks a random salt r such that
H(r‖m) was not previously queried (because it can then set
H(r‖m) = f(xi) and output the signature 〈r, xi〉).

This gives a perfect simulation unless, in answering a sign-
ing query for message m, the simulator chooses r such that
H(r‖m) was previously queried. But setting |r| long enough
ensures that this occurs with small probability. Bellare and
Rogaway [3] showed that having |r| ≥ 2 log2 qh + log2 ε′ is
sufficient to obtain a tight security proof; Coron [12] im-
proved this to |r| ≥ log2 qs. Note that reducing the length
of r reduces the amount of randomness required and also
results in a shorter signature.

4.1 Tight Security with No Random Salt
All previous work requires some random salt in order to

achieve a tight security proof. Here, we show a very simple
modification with a tight security reduction which avoids the
random salt altogether. In order to avoid the difficulties that
arise in the proof of security for FDH (and to circumvent the

3As noted above, PFDH simplifies PSS yet distills the in-
teresting features of the security proof.



fact [12, Theorem 5] that tight reductions are impossible
for FDH-like schemes in which each message has a unique
signature), our scheme has the property that each message
has two possible signatures; in particular, our scheme may
be viewed as PFDH with |r| = 1. However, in contrast
to PFDH where a random valid signature is chosen by the
signer each time a message is signed, in our scheme only one
valid signature (for a given message) is ever produced by
the signer. Somewhat surprisingly, this is enough to obtain
a tight security reduction!

We now more carefully describe our scheme and give a full
proof of security. As in [13], our schemes assume a trapdoor
permutation f induced by a claw-free permutation (f, g).
In the description, H is a random oracle mapping arbitrary-
length strings to the appropriate range.

Gen runs cf-Gen to obtain (f, g) and trapdoor information
td. The public key is PK = f and the secret key is td.

SignSK(m) (where m ∈ {0, 1}∗) first checks to see whether

m has been signed before (below, we show a simple way to
avoid maintaining state); if it has, the previously-generated
signature is output. Otherwise, the signer chooses a random
bit b and outputs σ = f−1(H(b‖m)).

VrfyPK(m, σ) accepts if and only if either f(σ)
?
= H(0‖m)

or f(σ)
?
= H(1‖m).

Efficiency improvements. Before giving the proof of se-
curity, we note some immediate enhancements of the scheme
above. First of all, to avoid having the verifier compute both
H(0‖m) and H(1‖m), the signer can include the bit b along
with the signature. Second, to avoid having the signer main-
tain state (i.e., a record of all previous message/signature
pairs) we can simply have the signer generate b as a pseu-
dorandom function of m; since we are working in the ran-
dom oracle model anyway, the simplest solution is to set
b = H ′(SK‖m) where H ′ : {0, 1}∗ → {0, 1} is an indepen-
dent random oracle. It is also possible to have the signer
store a “short” random seed s ∈ {0, 1}80 which is used to
derive b via H ′(s‖m). (As mentioned earlier, using a PRF
and setting b = Fs(m) would also suffice.) Finally, in case
the original message m̃ is very long, we can avoid comput-
ing two hashes over long inputs by using a collision-resistant
hash function H ′′ to compute m = H ′′(m̃) and then using
the resulting m in the above construction.

Implementation using RSA. We noted earlier that the
RSA trapdoor permutation may be viewed as being induced
by a claw-free permutation. In this case, the above scheme
is almost as simple as FDH: the user’s public key is N, e and
the secret key contains d such that ed = 1 mod ϕ(N). To
sign message m, the signer sets b = H ′(SK‖m) and com-
putes σ = (H(b‖m))d mod N . Verification requires a single
exponentiation and (at most) two hash function evaluations.

Theorem 2. If the claw-free permutation in the scheme
above is (t′, ε′)-secure and the time to compute f or g is
at most tf , then the above signature scheme is (t, qh, qs, ε)-
secure (in the random oracle model), where:

t ≤ t′ − (qh + qs) · tf

ε ≥ 2ε′.

Proof. Assume we have an algorithm F , running in time
at most t and making at most qh hash queries and at most
qs signing queries, which forges a new message/signature
pair with probability at least ε. We use F to construct an
algorithm I running in time at most t′ which finds a claw
with probability at least ε′. The stated result follows.

Algorithm I is given the pair (f, g) and its goal is to out-
put a claw (i.e., x0, x1 such that f(x0) = g(x1)). It sets
PK = f and runs F on input PK. Algorithm I simulates
the signing oracle and the random oracle for F as follows:

Global state. Whenever a hash query H(b‖m) or a sign-
ing query SignSK(m) is made for a new message m, algo-
rithm I chooses a random bm ∈ {0, 1}. Informally, this
represents the fact that I will be able to produce the value
f−1(H(bm‖m)). We do not include this step explicitly in
the descriptions that follow.

Hash queries. I will maintain a list HL of tuples whose
exact format we will describe below. In response to a query
H(b‖m), algorithm I proceeds as follows: if there is a tu-
ple (b, m, x, y) in HL, then I returns y. Otherwise, I first
chooses random x from the appropriate domain. If b = bm,
then I returns y = f(x); if b 6= bm then I returns y = g(x).
In either case, I then stores (b, m, x, y) in HL.

Signing queries. If F asks for a signature on a message
m, algorithm I computes y = H(bm‖m) and finds the tuple
(bm, m, x, y) in HL. It then returns σ = x. (Note that
f(σ) = H(bm‖m), so this is indeed a valid signature.)

I provides F with a perfect simulation; in particular, all
signing queries are answered with valid signatures. At some
point, F outputs its forgery ( �m, �σ), where we assume that
both H(0‖ �m) and H(1‖ �m) were previously queried and that

�σ was not the previous response to a query SignSK( �m). If
VrfyPK( �m, �σ) = 1, there are two possible cases:

Case 1: f( �σ) = H(b �m‖ �m). In this case, I cannot find a claw
and simply aborts.

Case 2: f( �σ) = H(1− b �m‖ �m). In this case, I finds a claw as
follows: it finds a tuple (1− b �m, �m, x, y) in HL and outputs
the claw ( �σ, x). (Recall that g(x) = y = H(1− b �m‖ �m).)

Since the value of b �m is information-theoretically hidden
from F , the forgery will enable I to find a claw with proba-
bility 1/2. Thus, if F outputs a forgery with probability at
least ε then I outputs a claw with probability at least ε/2.
The running time of I includes the running time of F and
is otherwise dominated by the computation of f or g each
time a hash query is answered.

Remark. In addition to achieving a tight security proof, our
scheme has the advantage of being deterministic. Having a
deterministic signing algorithm is advantageous in a number
of environments.

4.2 A Scheme Supporting Message Recovery
In the last section, we showed an FDH-/PFDH-like scheme

achieving a tight security reduction without using a random
salt. We now apply the same idea to PSS-R to obtain a
signature scheme (with tight security proof) which supports
message recovery. By avoiding the use of a random salt, our
technique enables recovery of longer messages than previous
schemes. That is (for the case of 1024-bit RSA), whereas



the original analysis of PSS-R [3] allowed recovery of 663-
bit messages and Coron’s analysis extended this to recovery
of 813-bit messages, the scheme below can be used to sign
843-bit messages at the same level of security.

We describe our scheme using RSA; however, the con-
struction and proof may be generalized for arbitrary claw-
free permutations. For the sake of generality, we param-
eterize our scheme by k and k1 where k is the length (in
bits) of the modulus used and k − k1 − 1 is the length of
the messages to be signed; we achieve the result stated in
the previous paragraph by setting k = 1024 and k1 = 180.
In the description below, H : {0, 1}∗ → {0, 1}k1 and G :
{0, 1}k1 → {0, 1}k−k1−1 are hash functions which will be
modeled as independent random oracles.

Gen generates a k-bit modulus N along with public exponent
e and private exponent d such that ed = 1 mod ϕ(N). The
public key is PK = (N, e) and secret key is d.

SignSK(m) (where m ∈ {0, 1}k−k1−1) first checks to see
whether m has been signed before; if it has, the previously-
generated signature is output. (In the previous section, we
describe a simple way to avoid the need for the signer to
maintain state.) Otherwise, the signer chooses a random
b ∈ {0, 1}, computes w = H(b‖m) and r∗ = G(w) ⊕ m,
and sets �y = 0‖w‖r∗. Finally, the signer outputs signature
σ = �yd mod N .

VrfyPK(σ) parses PK as (N, e). It computes �y = σe mod N

and parses �y as 0‖w‖r∗. It then sets m = G(w) ⊕ r∗ and

accepts the message m if and only if either H(0‖m)
?
= w

or H(1‖m)
?
= w (as above, we can include the appropriate

value of b with the signature if desired).

Theorem 3. If RSA with k-bit moduli is a (t′, ε′)-secure
trapdoor permutation and computing eth powers modulo a
k-bit modulus can be done in time texp, then the above sig-
nature scheme is (t, qh, qs, ε)-secure (in the random oracle
model), where:

t ≤ t′ − (qh + qs) · (k1 − log2 qh) · texp

ε ≥ 2ε′ + 2 · (qh + qs)
2 · 2−k1 .

The proof is similar to the proof of Theorem 2 (cf. also the
proofs of PSS-R in the full version of [12] and of Theorem 4,
below), and is therefore omitted in the present abstract.

The theorem shows that to achieve tight security, we re-
quire (qh + qs)

22−k1 ≈ ε′ or, equivalently, k1 ≈ 2 · log2(qh +
qs) + log2

1
ε′

. Taking qh ≈ 260, qs ≈ 230, and ε′ ≈ 2−60

(as suggested by [12]) shows that the length of k1 must be
roughly 180 bits.

4.3 Message Recovery With Optimal Message
Length

We may apply a technique suggested by Granboulan [20]
to obtain a variant of PSS-R which is essentially optimal in
terms of the allowable message length (an easy proof of opti-
mality is given below). Unfortunately, this construction re-
quires the random permutation model 4 which seems stronger
4The random permutation model assumes a public, random
permutation E(·) (along with its inverse E−1(·)) to which
all parties have oracle access. This model is weaker than
the often-used ideal cipher model, which assumes a public,
keyed cipher E(·, ·) (and its inverse) such that E(k, ·) is an
independent, random permutation for each key k.

than the random oracle model; also, we are not aware of any
appropriate way to instantiate the random permutation for
large block sizes (i.e., block sizes larger than the block size
of a cipher such as AES).

Here, we describe our construction using a generic claw-
free permutation and assume further that the domain of the
permutation is {0, 1}k; however, the scheme can be easily
adapted for the case of, e.g., RSA as in the previous section
(see also [3, 12, 20]). We let k− k1 denote the length of the
messages to be signed, and let E : {0, 1}k → {0, 1}k denote
a public, random permutation with (public) inverse E−1.

Gen runs cf-Gen to obtain (f, g) and trapdoor information
td. The public key is PK = f and the secret key is td.

SignSK(m) (where m ∈ {0, 1}k−k1 ) first checks to see whether
m has been signed before; if it has, the previously-generated
signature is output. (As in the previous two sections, it
is easy to modify the scheme to avoid maintaining state.)
Otherwise, the signer chooses a random bit b and outputs
σ = f−1(E(bk1‖m)).

VrfyPK(σ) computes v‖m = E−1(f(σ)) where v ∈ {0, 1}k1 ;

it outputs m if v ∈ {0k1 , 1k1} and otherwise outputs reject.

Theorem 4. If the claw-free permutation in the scheme
above is (t′, ε′)-secure and the time to compute f or g is
at most tf , then the above signature scheme is (t, qE , qs, ε)-
secure (in the random permutation model), where:

t ≤ t′ − (qE + qs) · tf

ε ≥ 2ε′ + 2 · qE · 2
−k1 .

(Here, qE is the number of queries made by the adversary
to the E/E−1 oracles.)

Proof. Assume we have an algorithm F , running in time
at most t and making at most qE queries to E/E−1 and at
most qs signing queries, which forges a new signature with
probability at least ε. We use F to construct an algorithm
I running in time at most t′ which finds a claw with prob-
ability at least ε. The states result follows.

Algorithm I is given as input (f, g) and its goal is to
output a claw (i.e., values x0, x1 such that f(x0) = g(x1)).
It sets PK = f and runs F on input PK. Algorithm I
simulates the signing oracle and the oracles E/E−1 for F as
follows:

Global state. Whenever a query E(v‖m) or SignSK(m) is
made for a new message m, algorithm I chooses a random
bm ∈ {0, 1}. Informally, this represents the fact that I will
be able to produce the value f−1(E(bk1

m ‖m)). We do not
include this step explicitly in the descriptions that follow.

Queries to E/E−1. Algorithm I will maintain the lists
PAIR, L, and R with the following purpose: PAIR will
consist of tuples (w, w′, x) such that E(w) = w′ (equiva-
lently, E−1(w′) = w). List L will consist of all points w
such that E(w) is defined, and R will consist of all points
w′ such that E−1(w′) is defined.

To answer the query E−1(w′), algorithm I checks whether
w′ ∈ R. If so, it then finds the unique tuple (w, w′, x) ∈
PAIR and outputs w. Otherwise, it picks a random value
w ∈ {0, 1}k \ L (recall that {0, 1}k is assumed to be the
domain of f0 and f1). It parses w as v‖m with v ∈ {0, 1}k1 ;
if v ∈ {0k1 , 1k1}, then I aborts. If not, I returns w to F ,
adds w to L, adds w′ to R, and adds (w, w′,⊥) to PAIR.



To answer the query E(w), algorithm I checks whether
w ∈ L. If so, it then finds the unique tuple (w, w′, x) ∈
PAIR and outputs w′. Otherwise, it parses w as v‖m with
v ∈ {0, 1}k1 and chooses random x ∈ {0, 1}k. If v = bk1

m , it
sets w′ = f(x); otherwise, it sets w′ = g(x). If w′ ∈ R, then
I aborts. Otherwise, it returns the result w′ to F , adds w
to L, adds w′ to R, and adds (w, w′, x) to PAIR.

Signing queries. When F asks for a signature on a mes-
sage m, algorithm I first checks whether a signature on m
has been requested previously; if so, I simply outputs the
same signature that was output before. Otherwise, I first
computes y = E(bk1

m ‖m). It then finds the tuple of the form
(bk1

m ‖m, y, x) in PAIR and answers the query with x. It is
crucial to note that as long as I has not aborted by this
point, we have x 6=⊥.

As long as I does not abort, it provides F with a perfect
simulation (in particular, all signing queries of F can be
answered with valid signatures). If I never aborts, then at
some point F outputs its forgery �σ; we assume that f( �σ) ∈ R
and that �σ was not the response to a previous signing query.
If �σ is a valid signature, it means that there is a unique tuple
of the form (bk1‖ �m, f( �σ), x) in PAIR; the crux of the proof
is to notice that since I has not aborted, we have x 6=⊥.
With probability 1/2 it is the case that b 6= b �m in which
case I can output the claw ( �σ, x).

To complete the proof, we need only analyze the prob-
ability that I aborts. An abort can occur in one of two
ways: first, F might make a query E−1(w′) which results in
an output having k1 leading “0” or “1” bits. Second, when
answering a query to the E-oracle, a collision may occur
with a previously defined value; this ruins the simulation
since E is supposed to be a permutation. An abort of the
first type occurs with probability bounded from above by

2 · qE ·
2k−k1

2k
−qE

, which, for values of k and qE encountered in

practice (i.e., k ≈ 1024 and qE ≈ 260) is well-approximated
by 2 · qE · 2

−k1 . An abort of the second type occurs with
probability bounded from above by (qE + qs)

2 · 2−k. For
values of qE , qs, and k encountered in practice, this term is
entirely negligible.

Putting everything together, we see that if F forges signa-
tures with probability ε, then I obtains a claw with proba-
bility (roughly) 1

2
·(ε−2·qE ·2

−k1 ). Furthermore, the running
time of I includes the running time of F and is otherwise
dominated by the computation of f or g each time a permu-
tation query is answered.

To achieve tight security, we require qE · 2
−k1 ≈ ε′ or,

equivalently, k1 ≈ log2(qE/ε′). Taking qE ≈ 260 and ε′ ≈
2−60 (following [12]) we see that k1 must be 120 bits long.
In other words, the signature scheme requires only 120 bits
of redundancy and can sign messages of length k − 120. It
is not hard to see that this result is essentially optimal in
terms of the amount of redundancy used, and we formalize
this in the following lemma.

Lemma 1. Let (Gen, Sign, Vrfy) be a signature scheme sup-
porting message recovery for messages of length ` in which
signatures are of length s. Then there exists an adversary
running in time O(t) which forges a signature with probabil-
ity roughly t · 2`−s.

Before giving the (simple) proof, it is worth noting that
we do not restrict the forger in any way, do not assume

any “black-box” access to the forger, and do not make any
mention of random oracles or ideal permutations. From a
practical point of view, the lemma indicates that if we want
to achieve probability of forgery 2−60 against adversaries
running in time 260, then 120 bits of redundancy (i.e., s− `)
are necessary.

Proof. Consider the following forger F : Given a public
key PK, adversary F picks σ ∈ {0, 1}s and checks whether
VrfyPK(σ) 6= reject. Since every message in {0, 1}` corre-
sponds to at least one signature, and since there can be
no signature which corresponds to two different messages
(since the scheme supports message recovery), there are at
least 2` valid signatures. Thus, picking σ at random yields
a valid signature with probability at least 2`−s. Repeating
this process at most t times allows F to achieve the stated
bound.

4.4 Further Applications
We show how the technique of the preceding sections can

be applied to eliminate the need for a random salt in schemes
based on the CDH assumption (even though the CDH prob-
lem does not immediately give rise to a claw-free permuta-
tion). We focus on the schemes of [7, 18] which both have
a similar, high-level structure: the public key contains ele-
ments g, h in some group

�
, and the secret key contains the

value x = logg h. Signing a message m involves computing
σ = (H(m))x, where H is a random oracle mapping strings
uniformly onto

�
.

Boneh, Lynn, and Shacham [7] use an “FDH-like” ap-
proach to analyze their scheme (but with the optimization
of Coron [11]); consequently they lose a factor of qs in the
security reduction. On the other hand, Goh and Jarecki [18]
use a “PFDH-like” approach and include the random salt r
with the resulting signature; this enables them to obtain
a tight security reduction at the expense of increasing the
signature length.

We show here how to achieve a tight security reduction
without any random salt. The public key and the secret key
are as before but signing message m now involves choos-
ing random b and computing σ = (H(b‖m))x (and using the
same b to answer any subsequent signing queries for the same
message). Without going through the details of the proof
(which parallel those of the proof of Theorem 2), note that a
simulator who wants to solve an instance of the CDH prob-
lem (g, h, y) simply sets the public key to be PK = (g, h).
Whenever there is a query on a new message m, it chooses a
random bit bm ∈ {0, 1}. It will then answer the hash query
H(b‖m) with gα if b = bm, or with ygα if b 6= bm. Now, the
simulator can correctly answer all signing requests by com-
puting y = H(bm‖m), looking up the value of α = logg y,
and setting σ = hα. Conversely, any valid forgery results
in a solution to the original CDH instance with probability
1/2: if the forgery includes �σ = (H(b‖m))x for b 6= bm, then
the simulator knows α such that H(b‖m) = ygα; therefore,
�σ = yxhα from which the simulator can compute the desired
answer yx.

Remark. The above techniques extend to allow a tighter
proof of security for (a variant of) the identity-based en-
cryption scheme of Boneh and Franklin [6]. We do not
discuss the details, but instead assume the reader is famil-
iar with the Boneh-Franklin construction and give only an
overview of the approach. In the original Boneh-Franklin



scheme, for any identity ID there is an associated “public
key” PKID = H(ID); anyone can encrypt messages to user
ID using some master parameters and PKID (which can
be derived simply using ID, making the scheme “identity-
based”). There is also a corresponding secret key SKID

that the private-key generator (PKG) gives to user ID to
enable decryption. In the model of security, an adversary
is allowed to request (“expose”) secret keys for identities
I = {ID1, . . . , ID`} of his choice, yet encryption to any
user ID /∈ I should remain secure.

In the given proof of security [6], a simulator needs to
“guess” (in some sense) which identities the adversary will
expose. This leads to a loss of O(qe) in the security (where
qe is the number of key exposure queries).

Consider now a modified scheme in which for any ID there
are two “public keys” PKID,0 = H(0‖ID) and PKID,1 =
H(1‖ID); furthermore, to encrypt a message to user ID, a
sender now encrypts the same message with respect to both
of these public keys. The PKG, however, only gives to ID
one of the corresponding private keys (i.e., either SKID,0

or SKID,1 but not both). Note that a single such key is
sufficient to enable correct decryption. Following the proof
techniques discussed in this paper, a simulation can be set up
in which the simulator knows exactly one secret key for every
ID. This allows all key exposure queries to be answered by
the simulator, while ensuring that encryption to any non-
exposed ID remains secret. Thus, this modification enables
a tight proof of security at the cost of reducing the efficiency
of encryption by a factor of two.
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