
Secure Text Processing with Applications to
Private DNA Matching∗

Jonathan Katz
University of Maryland

College Park, MD
jkatz@cs.umd.edu

Lior Malka
University of Maryland

College Park, MD
lior@cs.umd.edu

ABSTRACT
Motivated by the problem of private DNA matching, we
consider the design of efficient protocols for secure text pro-
cessing. Here, informally, a party P1 holds a text T and a
party P2 holds a pattern p and some additional information
y, and P2 wants to learn {f(T, j, y)} for all locations j where
p is found as a substring in T . (In particular, this generalizes
the basic pattern matching problem.) We aim for protocols
with full security against a malicious P2 that also preserve
privacy against a malicious P1 (i.e., one-sided security). We
show how to modify Yao’s garbled circuit approach to obtain
a protocol where the size of the garbled circuit is linear in the
number of occurrences of p in T (rather than linear in |T |).
Along the way we show a new keyword search protocol that
may be of independent interest.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
security and protection

General Terms
Security, Theory

1. INTRODUCTION
Text-processing algorithms are fundamental to computer

science. They are used on the Internet to classify web pages,
monitor traffic, and support search engines. In the field of
bio-informatics they play a critical role in DNA matching
and analysis. This paper studies text processing in the set-
ting of secure two-party computation. We consider the sce-
nario where a party P1 holds a text T and a party P2 holds a
pattern p and possibly some additional information y. The
goal is to process T based on p and y, with P2 learning

∗Research supported by NSF CAREER award #0447075
and DARPA. The contents of this paper do not necessarily
reflect the position or the policy of the US Government, and
no official endorsement should be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$5.00.

nothing more than the agreed-upon result (and P1 learning
nothing about p or y).

In recent years, several efficient two-party protocols for
various tasks related to text-processing have been given; we
provide a more complete discussion further below. None
of the existing solutions, however, appears to be flexible or
general enough to encompass natural problems that arise,
e.g., in private DNA matching (which was the motivation
for this work). By way of illustration, let Σ = {A,C,T,G}
and T, p ∈ Σ∗ (where T represents a DNA sequence and p
represents a nucleotide pattern). Let `max(T, p) ≥ 0 denote

the largest integer `′ for which p`′ appears as a substring
in T . For integers ε, `, define

M(T, p, ε, `) =

{
1 |`max(T, p)− `| ≤ ε
0 otherwise

. (1)

Say P1 holds T , while P2 holds a pattern p and y = 〈ε, `〉 as
additional information; P2 wants to compute M(T, p, ε, `).
This sort of computation is exactly what is used in the
Combined DNA Index System1 (CODIS), run by the FBI
for DNA identity testing. Existing protocols for secure text
processing do not appear to readily yield solutions for this
sort of problem.

Faced with any problem in secure two-party computation,
the first thing to check is whether a generic approach based
on Yao’s garbled circuit [21] might be applicable. Indeed, in
recent years it has been demonstrated [16, 15, 19, 18] that
secure two-party protocols based on Yao’s garbled circuit ap-
proach may be practical when the function being computed
can be expressed as a small boolean circuit. Unfortunately,
that is not the case here, at least for the applications we are
interested in where |T | can be large.

To see why, consider one natural circuit for computing M .
Let m = |p| denote the length of the pattern, and assume m
is known. Fixing T , let Ti denote the m-character substring
of T beginning at position i. For i ∈ {1, . . . , |T | −m + 1},
define `i ≥ 1 to be the largest integer such that T `i

i occurs
as a substring of T beginning at position i. (Observe that
P1 can pre-compute `i for all i without any interaction with
P2.) Define next the basic circuit Bi that takes inputs from
both parties and returns 1 iff both |`i − `| ≤ ε and Ti = p
(cf. Figure 1(a)). Finally, M can be expressed as the OR of
the outputs of all the Bi (cf. Figure 1(b)).

The conclusion of the exercise is this: even if the circuit Bi

for computing the “basic” functionality is small, the circuit
for computing the “actual” functionality (M in this case) is

1http://www.fbi.gov/hq/lab/codis.

B B

∨

0/1

B B

∨

··

· ·
0/1

Ti p

0/1

∆(`i, `, ε)

ε``i

∧

(a) The basic circuit B

∨

=

··

(b) The combined circuit C

Figure 1: A circuit computing M (cf. Equation (1)).

large, and in particular has size O(|T |−m+1) (since it is the
OR of |T | −m + 1 smaller circuits). In applications where
|T | is large, then, applying generic approaches will lead to
inefficient protocols.

Let n = |T | be the length of T . Our main observation is
that in many cases there is no pattern that appears in the
text T more than some bounded number of times, and this
bound may be much smaller than n. This gives hope that
instead of duplicating the basic circuit O(n) times, we can
use only as many copies as necessary. The question then
is how to achieve this without having P1 learn something
about the pattern p held by P2. We explain next how this
is possible.

Assume now, for simplicity, that each m-character pattern
appears at most once in T . Our idea is to de-couple the“pat-
tern matching” portion of the computation (e.g., the search
for a location i such that Ti = p) from the subsequent com-
putation of the “basic” circuit. In a bit more detail (though
still somewhat informally), P1 prepares a garbled version of
the basic circuit and sends it to P2. Recall, this basic circuit
takes inputs p, `, ε from P2, and inputs Ti, `i from P1. Note
that we only need to evaluate this circuit for the position i
(if one exists) for which Ti = p. To exploit this, we have
P1 prepare appropriate input-wire labels corresponding to
every possible match; i.e., it prepares input-wire labels for
each pair (Ti, `i), for i = 1 to n −m + 1. The parties then
use a variant of keyword search that allows P2 to learn the
appropriate input-wire labels only for i such that Ti = p.
(If no such i exists, then P2 learns this fact and simply out-
puts 0.) The parties also use oblivious transfer, as usual,
to enable P2 to learn the input-wire labels corresponding to
its own inputs p, `, ε. The net result is that P2 is able to
evaluate the garbled circuit for the “right” set of inputs and
thereby obtain the desired result of the computation. Note
that, besides the keyword search sub-routine, the rest of the
protocol has complexity proportional the size |B| of the ba-
sic circuit, rather than proportional to n·|B|) as in the naive
approach. (In general the rest of the protocol would have
complexity proportional to rmax · |B|, where rmax ≤ n is an
upper bound on the number of repetitions of any pattern,
as opposed to n · |B|.)

1.1 Organization of the Paper
In Section 2 we introduce some functionalities we will

rely on, and briefly review the (standard) definition of one-
sided security. We describe protocols for some basic text-
processing tasks in Section 3. In that section, which serves
as a warm-up to our main results, we first (re-)consider the

task of keyword search [4] and show an immediate appli-
cation to the problem of pattern matching. Our resulting
pattern-matching protocol improves in some respects on the
protocol of Hazay and Lindell [9]; we defer further discus-
sion to that section. We also observe that our approach
extends to yield protocols for a wide class of text-processing
problems; specifically, it enables computation of any func-
tionality where a party P1 holds a text T and a party P2

party has a pattern p, and P2 should learn {f(T, i) | Ti = p}
for some arbitrary function f . We give a few applications
where the desired functionality can be written in this way.

Our main result is described in Section 4. There, we give
a protocol that can securely compute any functionality of
the form described with complexity (excepting the keyword-
search sub-routine) linear in an upper bound on the number
of occurrences of p in T (rather than linear in |T |). We
then discuss how to apply this protocol to text-processing
problems such as approximate tandem repeats (motivated
by DNA matching, as described previously).

1.2 Related Work
Broadly speaking, there are two approaches to construct-

ing protocols for secure computation. Generic protocols can
be used to evaluate arbitrary functions, given a descrip-
tion of the function as a circuit; special-purpose protocols
are tailored to specific functions of interest. Yao’s “garbled
circuit” approach [21] (extended in [8] to handle malicious
adversaries) gives a generic protocol for secure two-party
computation. In recent years several implementations and
improvements of Yao’s garbled circuit protocol have been
shown [16, 10, 14, 15, 19, 18]. Regardless of any improve-
ments, however, a fundamental limitation of this approach
is that the garbled circuit has size linear in the size of the
circuit being computed.

More efficient, special-purpose protocols have been devel-
oped for several functionalities of interest. Several efficient
protocols for keyword search are known [4, 12, 9, 3]; there
also exist efficient protocols for pattern matching [20, 9, 6]
but, as discussed previously, these protocols do not seem
to extend to more complex functionalities such as the ones
we consider here. While several researchers have also inves-
tigated specific problems related to DNA matching [2, 20,
11, 5], none of these works seem to apply to our specific
problem. Finally, we also mention recent work on oblivious
evaluation of finite automata [20, 5, 6]. Applying such pro-
tocols directly to our setting seems to yield less efficient pro-
tocols. Moreover, our approach allows for the computation
of functions that cannot be computed by finite automata.

2. PRELIMINARIES
Throughout, we use k to denote the security parameter.

We rely on secure protocols for several functionalities that
we briefly describe here. In all cases, we use these functional-
ities in a black-box manner, and so can use any of the known
protocols for securely computing these functionalities. For
concreteness, we note that efficient constructions of all the
necessary protocols (with varying security guarantees) exist
based on the decisional Diffie-Hellman assumption (e.g., [1,
17, 4, 13]).

Oblivious transfer (OT). In a 1-out-of-2 (string) OT pro-
tocol, one party holds two equal-length strings m0, m1 and
the second party holds a bit b; the second party learns mb

and the first party learns nothing. For one of our protocols
we use a parallel variant of the OT functionality, where one
party holds k pairs of strings ((m1

0, m
1
1), . . . , (m

k
0 , mk

1)) and
the second party holds a k-bit string y; the second party
should learn {mi

yi
}k

i=1.

Oblivious pseudorandom function evaluation (OPRF).
Let F be some fixed pseudorandom function. In an OPRF
protocol one party holds a key s and the second party holds
an input x; the second party learns Fs(x) and the first party
learns nothing. We denote this functionality by FOPRF.

2.1 Garbled Circuits
Yao’s garbled circuit methodology [21] provides a key build-

ing block for secure two-party computation. We do not pro-
vide the details, but instead describe Yao’s approach in an
abstract manner that suffices for our purposes. Let C be
a circuit, and assume for concreteness here that C takes a
k-bit input from each party and provides a single-bit output
to the second party. Yao gives algorithms (Garble, Eval) such
that:

• Garble(1k, C) outputs a garbled circuit gC and two sets

of input-wire labels ~X = (X1,0, X1,1, . . ., Xk,0, Xk,1)

and ~Y = (Y 1,0, Y 1,1, . . . , Y k,0, Y k,1). The value Xi,0

(resp., Xi,1) is the“0-label”(resp., “1-label”) for the ith
input wire of one of the parties. (Y i,0, Y i,1 analogously
serve as the input-wire labels for the second party.)

• Eval(gC, X1, . . . , Xk, Y 1, . . . , Y k) outputs a bit.

By way of notation, for ~X as above and an input x ∈ {0, 1}k

we let ~X(x)
def
= (X1,x1 , . . . , Xk,xk) (and similarly for ~Y (y)).

The correctness guarantee is that for any C and any in-
puts x, y, if Garble(1k, C) outputs (gC, ~X, ~Y) then

Eval(gC, ~X(x), ~Y (y)) = C(x, y).

In typical usage, one party (holding input x) runs Garble(1k, C)

to obtain (gC, ~X, ~Y) and sends gC and ~X(x) to the second
party. In addition, the second party (holding input y) ob-

tains ~Y (y) using k invocations of oblivious transfer. The
second party can then compute C(x, y) using Eval as indi-
cated above.

The security guarantee (informally stated) is that there
exists an efficient simulator S = (S1,S2) such that

• S1(1
k, C) outputs input-wire labels X1, . . . , Xk, Y 1, . . . , Y k

and state s.

• S2(y, C(x, y), s) outputs gC.

• For any C, x, y, the following distributions are compu-
tationally indistingishable:

{
X1, . . . , Xk, Y 1, . . . , Y k, s ← S1(1

k, C);
gC ← S2(y, C(x, y), s)

:

(gC, X1, . . . , Xk, Y 1, . . . , Y k)

}

and{
gC, ~X, ~Y ← Garble(1k, C) : (gC, ~X(x), ~Y (y))

}
.

(The above is slightly stronger than what is usually required,
but is satisfied by the standard construction.) Since the
computation of S1,S2 depends only on y and C(x, y), the
above ensures that the second party learns nothing beyond
what is implied by its own input and output. For tech-
nical reasons, we also extend the definition of S2 so that
S2(y,⊥, s) outputs gC such that, for any x, y, the resulting
(gC, Y 1, . . . , Y k) is computationally indistinguishable from

(gC, ~Y (y)) (where (gC, ~X, ~Y) ← Garble(1k, C)). This im-
plies that if the first party doesn’t send the input-wire labels
~X(x), then the second party does not even learn the out-
put C(x, y).

2.2 Secure Computation
We use standard notions of secure computation, and re-

fer the reader elsewhere (e.g., [7]) for a detailed discussion.
Briefly, security is defined by requiring indistinguishability
between a real execution of the protocol and an ideal world
in which there is a trusted party who evaluates the function
in question on behalf of the parties. More formally, fix a pro-
tocol π that computes a functionality F . Because it holds
throughout this paper, assume F provides output to P2 only.
(Note, however, that F may be randomized.) Consider first
an execution in the real world. Here, party P1 holds an
input x while party P2 holds an input y, and one of these
parties is corrupted by an adversary A that has auxiliary in-
put z. The honest party runs protocol π as instructed (using
some fixed value for the security parameter k), responding
to (arbitrary) messages sent by A on behalf of the other
party. (We stress that A is malicious and can arbitrarily
deviate from the protocol specification.) Let viewA

π (x, y, k)
denote the view of A throughout this interaction, and let
outπ(x, y, k) denote the output of the honest party (which
is empty if P1 is honest). Set

realπ,A(z)(x, y, k)
def
=

(
viewA

π (x, y, k), outπ(x, y, k)
)

.

An ideal execution of the computation of F proceeds as
follows. Once again, party P1 holds an input x while party
P2 holds an input y, and one of these parties is corrupted by
an adversary A that has auxiliary input z. The honest party
sends its input to the trusted party, while the corrupted
party can send anything. Let x′, y′ be the values received
by the trusted party; it then computes F(x′, y′) and gives
the result to P2. (There are no issues of fairness here since
P1 receives no output.) The honest party outputs whatever
it was sent by the trusted party, and A outputs an arbitrary
function of its view. Let outAF (x, y, k) (resp., outF (x, y, k))
denote the output of A (resp., the honest party) following
an execution in the ideal model as described above. Set

idealF,A(z)(x, y, k)
def
=

(
outAF (x, y, k), outF (x, y, k)

)
.

Protocol πsearch

Input to P1: A database {(pi, xi)}n
i=1.

Input to P2: A pattern p.

Output: P2 learns {xi | pi = p}, the database size n, and the payload length |xi|.
1. Party P1 chooses a key s ← {0, 1}k, and then for each i ∈ {1, . . . , n} com-

putes αi := Fs(pi) and ci ← Encαi (xi).

2. P1 and P2 execute an OPRF protocol, where the input of P1 is s and the
input of P2 is p. Party P2 obtains α = Fs(p).

3. P1 sends the {ci}, in random permuted order, to P2.

4. P2 outputs {Decα(ci) | Decα(ci) 6=⊥}.

Figure 2: A protocol for keyword search.

The strongest notion of security — full security — re-
quires that for every polynomial-time adversary A in the
real world, there exists a corresponding polynomial-time
adversary S in the ideal world such that realπ,A(x, y, k)
and idealF,S(x, y, k) are computationally indistinguishable.
Here, we achieve a slightly weaker definition known as one-
sided security. Specifically, we achieve full security when
P2 is corrupted. When P1 is corrupted, though, we only
achieve privacy for the honest P2; namely, a malicious P1

learns nothing about the input of P2. If P1 is corrupted,
however, there are no guarantees that the output of P2 is
correct.

Definition 2.1. Let π be a two-party protocol computing
a functionality F where only P2 receives output. We say π
is one-sided secure if:

1. For every non-uniform polynomial-time adversary A
corrupting P2 in the real world, there is a correspond-
ing non-uniform polynomial-time adversary S corrupt-
ing P2 in the ideal world such that

{
realπ,A(z)(x, y, k)

} c≡ {
idealF,S(z)(x, y, k)

}
.

2. For every non-uniform polynomial-time adversary A
corrupting P1 in the real world, there is a correspond-
ing non-uniform polynomial-time adversary S corrupt-
ing P1 in the ideal world such that

{
viewπ,A(z)(x, y, k)

} c≡ {
viewF,S(z)(x, y, k)

}
.

3. A KEYWORD-SEARCH PROTOCOL
In this section we present a protocol for keyword search,

and then show an application to pattern matching (both of
these are defined more formally below). Our constructions
yield some advantages relative to prior protocols for these
tasks [4, 9] that will be discussed at the end of this section.

3.1 Keyword Search
In this setting party P1 has as input a database {(pi, xi)}

of tuples, where we refer to each pi as a keyword and each
xi as the associated payload. (We assume the number of
tuples is known, and all payloads have the same [known]
length.) Party P2 has as input a keyword p, and should
learn {xi | pi = p}. We denote this functionality by Fks,
and stress that we allow pi = pj for i 6= j (something that
is disallowed2 in prior work).

2Keyword repeats could be handled in prior work by padding

The basic idea of our protocol is similar to that of pre-
vious work, but differs in the details. P1 begins by choos-
ing a random key s for a pseudorandom function F . Then
for each tuple (pi, xi) party P1 computes αi := Fs(pi) and
ci ← Encαi(xi) (where Enc represents a symmetric-key en-
cryption scheme whose properties will be discussed below),
and sends all the {ci} (in random permuted order) to P2.
Next, P1 and P2 run an OPRF protocol that enables P2 to
learn α := Fs(p). Finally, P2 attempts decryption of each of
the received ci using α, and outputs the resulting plaintext
for any successful decryption. See Figure 2.

In addition to the standard notion of indistinguishabil-
ity against chosen-plaintext attacks, we impose two addi-
tional requirements on the encryption scheme used in the
protocol. First, we require that decryption with a random
(incorrect) key fails except with negligible probability; i.e.,
that Prα,α′ [Decα′(Encα(x)) 6=⊥] is negligible for any x. Sec-
ond, we require a notion of key indistinguishability which,
roughly, means that it is impossible to distinguish two ci-
phertexts encrypted using the same key from two cipher-
texts encrypted using different keys. Formally, we require
the following to be negligible for any polynomial-time dis-
tinguisher D:

∣∣∣Prα[DEncα(·),Encα(·)(1k) = 1]

− Prα,α′ [D
Encα(·),Encα′ (·)(1k) = 1]

∣∣∣ .

Both of these requirements are achieved by many standard
encryption schemes, e.g., counter mode where the plaintext
is padded with 0k.

Theorem 3.1. If (Enc, Dec) satisfies the properties out-
lined above, and the OPRF sub-protocol is one-sided secure
(cf. Definition 2.1), then πsearch is a one-sided secure proto-
col for Fks.

Proof. We need to show that πsearch achieves privacy
against a malicious P1, and is fully secure against a malicious
P2. Privacy when P1 is corrupted follows easily from the as-
sumed privacy of the OPRF sub-protocol, since P2 sends no
other messages in πsearch. Next, we show security against
a malicious P2 in the FOPRF-hybrid model. (By standard
composition theorems, this implies security of πsearch.) To
do so we describe a simulator S that is given access to an
ideal functionality computing Fks. The simulator runs the

all payloads to some maximum length, but this would be less
efficient than what we propose.

adversarial P2 as a sub-routine and extracts from P2 its in-
put p to FOPRF. Then S sends p to the functionality Fks,
and receives in return the database size n, the payload length
|x|, and a set {xi}t

i=1 for some t (possibly t = 0). The sim-
ulator chooses random α, α′ ← {0, 1}k, and gives α to P2

as its output from FOPRF. Finally, S prepares t ciphertexts
ci ← Encα(xi) and n − t ciphertexts ci ← Encα′(0

|x|) and
gives these (in random permuted order) to P2. This gener-
ates a view for P2 that is computationally indistinguishable
from the view of P2 running πsearch in the FOPRF-hybrid
model.

3.2 Applications to Pattern Matching
We can use any protocol for keyword search as a sub-

routine in various text-processing tasks. We illustrate with
the example of pattern matching, and then describe a more
general class of functions we can compute.

The task of pattern matching is as follows. P1 holds some
text T ∈ Σn and P2 holds a pattern p ∈ Σm for some alpha-
bet Σ. (We assume n and m are known by both parties.)
P2 should learn the indices i (if any) where p occurs as a
pattern in T . If we let Ti denote the m-character substring
of T starting at position i, then P2 should learn {i | Ti = p}.

Pattern matching can be reduced to keyword search3 by
having P1 process the text T to generate the “database”
D = {(Ti, i)}n−m+1

i=1 , and then having P1 and P2 compute
Fks using inputs D and p, respectively [9]. The primary
advantage of using our keyword-search protocol here is that
it naturally allows for keyword repeats, which in the present
context means that it automatically handles the case where
patterns may repeat in T (and so it may occur that Ti = Tj

for distinct i, j). In contrast, Hazay and Lindell [9] need
to introduce additional modifications in order to deal with
such repeats in the text. As a consequence, our resulting
protocol for pattern matching makes only a single call to
the underlying sub-protocol for OPRF, whereas the Hazay-
Lindell protocol for pattern matching requires n−m+1 calls
to an underlying OPRF protocol.4

More generally, we can use keyword search for secure com-
putation of any text-processing task of the following form:
P1 holds a text T , and P2 holds a pattern p; the goal is for
P2 to learn {f(T, i) | Ti = p} for an arbitrary function f .

(Pattern matching is a special case where f(T, i)
def
= i.) This

can be done by having P1 process T to generate a database
D = {(Ti, f(T, i))}n−m+1

i=1 , and then having P1 and P2 com-
pute Fks using inputs D and p, respectively. Once again, it
is crucial that Fks be able to handle keyword repeats.

We list some applications of the above technique:

Checking for tandem repeats in DNA. A tandem repeat
in a DNA snippet T is a pattern that is repeated multiple
times in adjacent locations of T . Rephrasing, a given nu-
cleotide pattern p is said to occur as a tandem repeat in T
if p` (for ` > 1) occurs as a substring of T . Say P1 holds a
DNA snippet T and P2 holds an m-character nucleotide pat-
tern p, and P2 wants to learn all locations i where p appears

3Recall we aim for one-sided security only. The reductions
described in this section do not suffice to achieve full security
against a malicious P1.
4Hazay and Lindell show that this overhead can be avoided
by using a specific OPRF protocol for a specific (number-
theoretic) PRF. We avoid any additional overhead while us-
ing OPRF as a black box.

in T and, for each such location i, the largest ` for which p`

occurs as a substring beginning at position i. Letting Ti, as
always, denote the m-character substring beginning at posi-
tion i, this task can be done easily within our framework by
defining the function f(T, i) = (i, `max), where `max is the

largest integer such that T `max
i appears as a substring in T

beginning at position i. (We remark that in this particular
case efficiency can be improved by using the fact that p`

occurs at position i iff p`−1 occurs at position i + m.)

Text statistics. Our basic framework can also be used
for secure computation of various statistics about T . As
one example, consider the case where P2 wants to find out
the number of occurrences of p in T (without learning the
locations of these occurrences). This can be done within our
framework by defining f(T, i) = N , where N is the number
of times the m-character string Ti occurs in T .

In the case when f(T, i) = f ′(Ti, T) for some function
f ′ (as is the case in the preceding example), we can also
use a variant of the reduction given previously. Namely, P1

can exhaustively enumerate the space of possible patterns p
and, for each p that occurs as a substring of T , add the tuple
(p, f ′(p, T)) to its database D. As before, P1 and P2 then
compute Fks using inputs D and p, respectively. This vari-
ant approach has complexity O(|Σ|m), whereas the original
approach sketched earlier in this subsection has complexity
O(n−m). Depending on the relevant parameters, the vari-
ant approach might in some cases be preferred. (By way of
example, if T represents a DNA snippet and p is a nucleotide
pattern consisting of four base pairs, then m, |Σ| = 4 while
we might have T ≈ 500, 000; the variant approach just dis-
cussed would then be preferred.)

Non-numeric values. So far we focused on computing
numeric values, but clearly non-numeric values can be com-
puted as well. For example, suppose that P2 is interested
in searching T for all occurrences of a pattern p, and when-
ever the pattern is found P2 would like to learn the next t
characters. This is easily handled in our framework by set-
ting f(T, i) = T ′i+m, where T ′i denotes the substring of T of
length t starting at location i.

4. GENERAL TEXT PROCESSING
In this section we give a general protocol for secure text

processing by combining the keyword search functionality
(described in Section 3) and Yao’s garbled circuit approach.
The resulting protocol has two attractive features: it can
compute a wide variety of functions on a text T and a pat-
tern p, and it does so using a number of circuits that is
linear in (an upper bound on) the number of occurrences of
p in T (rather than linear in |T |). We discuss applications
and extensions of this protocol in Section 5.

4.1 An Overview of the Protocol
As usual, P1 has a text T , and P2 has a pattern p. In

addition, we now allow P2 to also have some private param-
eters y. We consider a general class of functionalities defined
by two functions g and h known to both parties. Formally,
define a class of functionalities Fg,h as:

Fg,h(T, p, y) =
{

h
(
g(T, i), y

)
| Ti = p

}
, (2)

where, as usual, Ti is the substring of T of length m = |p|
starting at location i. (Also, we continue to assume that only

Protocol πtxt

Input to P1: A text T ∈ Σn.
Input to P2: A pattern p ∈ Σm (m < n) and parameters y ∈ {0, 1}k.

Common input: The input lengths n, m and an upper bound u on the number
of times p appears as a substring in T .

Output: P2 learns
{

h
(
g(T, i), y

)
| Ti = p

}
.

Let t = n−m + 1. The parties do:

1. P1 runs u invocations of Garble(1k, H) to obtain (gH1, ~X1, ~Y1), . . . ,

(gHu, ~Xu, ~Yu).

2. P1 and P2 execute k (parallel) instances of OT. In the ith instance, the

inputs of P1 are the two strings (Y i,0
1 , . . . , Y i,0

u) and (Y i,1
1 , . . . , Y i,1

u), and

the input of P2 is yi. At the end of this step, P2 holds ~Y1(y), . . . , ~Yu(y).

3. P1 sets xi = g(T, i) for all i. Then P1 defines a database D as follows.
Choose a random permutation π of {1, . . . , u}. Then for i = 1, . . . , t do:

(a) Say this is the Nth time Ti has been encountered as a substring in T .
(Note that 1 ≤ N ≤ u.) Let j = π(N).

(b) Add
(
Ti,

(
j, ~Xj(xi)

))
to D.

4. P1 and P2 compute functionality Fks using inputs D and p, respectively. As

a result, P2 obtains a set {(j, ~X′
j)}j∈U for some U ⊆ {1, . . . , u}.

5. P1 sends gH1, . . . , gHu to P2.

6. Party P2 outputs
{

Eval
(
gHj , ~X′

j , ~Yj(y)
)}

j∈U
.

Figure 3: A protocol for secure text processing.

P2 obtains output.) As described, Fg,h allows P2 to learn
a set of values, but in some applications it is desirable to
instead compute a single result based on these values (e.g.,
the example from the Introduction). In the following section
we describe how to apply our techniques to that case.

The idea behind our protocol is to compute Fg,h(T, p, y)
using keyword search and Yao’s garbled circuit. We moti-
vate how this is done, postponing discussion of several tech-
nical details to the following section. Let u denote a (known)
upper bound on the number of times any m-character pat-
tern repeats in T . At the beginning of the protocol P1 con-
structs u garbled circuits gH1, . . . , gHu from the circuit H
for the function h. We want P2 to be able to evaluate these
garbled circuits on P2’s input y, as well as the (at most u)

values xi
def
= g(T, i) for which Ti = p. Note that P1 can com-

pute all the xi without any interaction with P2. Thus, all we
need to do is provide a way for P2 to learn the appropriate
input-wire labels.

It is easy for P2 to learn the labels of the wires corre-
sponding to its own input y using oblivious transfer. In
fact, because P2’s input to each of the (garbled) circuits is
the same we can accomplish this using just |y| invocations
of (string) oblivious transfer. A further optimization would
be for P1 to use the same labels for the wires corresponding
to P2’s input, in each of the u circuits. (For simplicity, this
optimization is not applied in the following section.)

To enable P2 to learn the labels of the wires correspond-
ing to P1’s input(s) to the u garbled circuits, we rely on
keyword search as a sub-routine. Essentially (but omitting
some technical details), P1 prepares a database D with en-

tries of the form (Ti, ~Xj(xi)) where ~Xj denotes the labels
on the input wires of P1 in the jth garbled circuit. When
P1 and P2 then run keyword search (with P2 using p as its

keyword), P2 learns exactly the input-wire labels for those
indices i satisfying Ti = p. To complete the protocol, P2

needs only to evaluate each garbled circuit using the input-
wire labels it has obtained for that circuit.

4.2 The Protocol
Our protocol is described in Figure 3, where we use H to

denote a circuit for computing the function h. We remark
that the permutation π is used to hide the ordering in which

the results h
(
g(T, i), y

)
are computed; this ordering should

be hidden because the output of Fg,h (cf. Equation (2)) is an
unordered set. If we instead define the output of Fg,h to be
an ordered list, then this permutation would be unnecessary.

Note also that although our description of the protocol as-
sumes that g, h are deterministic it would not be difficult to
modify the protocol to handle probabilistic functionalities:
g is anyway computed locally by P1, and P1 could hard-
wire (independent) randomness into each circuit H before
garbling it. (These fixes apply when considering one-sided
security, but we note that they would not suffice to guaran-
tee full security against a malicious P1.)

Theorem 4.1. Fix (probabilistic) polynomial-time func-
tions g and h, and consider protocol πtxt from Figure 3. If
the sub-protocols for the parallel OT and Fks are each one-
sided secure, then πtxt is a one-sided secure protocol for the
functionality Fg,h.

Proof. We need to show that πtxt is private even against
a malicious P1, and fully secure against a malicious P2. Pri-
vacy when P1 is corrupted follows easily from the assumed
privacy of the sub-protocols used, since P2 sends no mes-
sages in πtxt other than the messages it sends during exe-
cutions of the OT and keyword-search sub-protocols. Next,

we show security against a malicious P2 in a hybrid model
where the parties have access to ideal functionalities com-
puting Fks and the parallel OT functionality. We prove
security by briefly describing a simulator that is given ac-
cess to an ideal functionality computing Fg,h. (By standard
composition theorems, this implies security of πtxt.)

Let (S1,S2) be the simulators guaranteed for the Yao gar-
bled circuit construction. Our simulator begins by running
u independent copies of S1(1

k, H) to obtain (~X ′
1, ~Y ′

1 , s1),

. . ., (~X ′
u, ~Y ′

u, su) (note that here each ~X ′, ~Y ′ is a k-tuple of
strings, cf. Section 2.1). The simulator then extracts from
P2 its input y to the parallel OT functionality, and provides
to P2 in return the vectors ~Y ′

1 , . . . , ~Y ′
u. Next, the simulator

extracts from P2 its input p to the Fks functionality. The
simulator sends (p, y) to the ideal functionality computing

Fg,h and receives in return a set {zi}u′
i=1 (where 0 ≤ u′ ≤ u).

The simulator then chooses a random permutation π of

{1, . . . , u} and gives to P2 the values {(π(i), ~X ′
π(i))}u′

i=1 as the
output from the invocation of Fks. To complete the simula-

tion, the simulator computes gHπ(i) ← S2

(
(p, y), zi, sπ(i)

)

for i = 1 to u′, and gHπ(i) ← S2(p, y,⊥, sπ(i)) for i = u′ + 1
to u. It then sends gH1, . . . , gHu as the final message to P2.

We omit the proof that this generates a view for P2 that is
computationally indistinguishable from the view of P2 when
running πtxt in the specified hybrid model.

4.3 Efficiency
The most notable feature of our protocol is that it uses

only u garbled circuits, rather than O(|T |) garbled circuits
as in a naive application of Yao’s methodology. To see the
resulting improvement, let us focus on the communication
complexity (though a similar calculation applies to the com-
putational complexity also) and concentrate on terms that
depend on |T | — a reasonable choice if we assume |T | domi-
nates all other parameters. Any “naive” application of Yao’s
approach to computing the functionality in Equation (2) will
involve garbling a circuit containing (among other things)
|T | copies of H. The communication required for transmit-
ting the resulting garbled circuit is thus lower bounded by
(roughly) 4k|T ||H| bits. In our protocol, on the other hand,
the only dependence on |T | is in the sub-protocol for key-
word search. Looking at the keyword-search protocol from
Section 3 (and ignoring the OPRF sub-protocol there, whose
complexity is independent of |T |), we see that the commu-
nication complexity used by that protocol will be (roughly)
|T | ·(k |gout|+k) bits, where |gout| denotes the output length
of the function g.

5. APPLICATIONS AND EXTENSIONS
In Section 4 we have described a protocol πtxt for secure

text processing. In this section we describe some extensions
and potential applications of that protocol.

Let us return to the functionality considered in the Intro-
duction (cf. Equation (1)). That function can “almost” be
viewed as an instance of the class of functions Fg,h described

in the previous section if we set g(T, i)
def
= `max(T, Ti) and

h(`′, (ε, `)) =

{
1 |`′ − `| ≤ ε
0 otherwise

. (3)

Two problems arise in formulating the problem this way
and applying the protocol from the previous section: first,

the resulting protocol is inefficient since P2 (possibly) gets
the same answer u times rather than just once; second, it
is insecure since it reveals how many times p occurs as a
substring in T (whereas the functionality as described in
Equation (1) does not reveal this information).

Nevertheless, we can address both these issues with a pro-
tocol constructed using the same general paradigm employed
in the previous section. Specifically, we now have P1 con-
struct only a single garbled circuit gH for H (reflecting the
fact that a single evaluation of h is sufficient for comput-
ing the desired functionality). We need P2 to evaluate this
circuit on P2’s inputs ε, ` as well as the value `′ = g(T, p).
Once again, the problem reduces to finding a way for P2 to
learn all the appropriate input-wire labels.

As before, it is easy for P2 to learn the labels of the wires
corresponding to its own inputs ε, ` using oblivious transfer.
To enable P2 to learn the appropriate input-wire labels, we
use keyword search: P1 prepares a “database” of entries of
the form (p∗, g(T, p∗)), and P1 learns only g(T, p). An ad-
ditional subtlety here is that we need to prevent P2 from
learning how many times the pattern p appears in T ; this
can be handled by“padding” the database using entries with
random keys. See Figure 4.

In Figure 4, P1 “pads” the database D so that it always
contains exactly t = n − m + 1 entries; this prevents P2

from learning how many distinct patterns occur as sub-
strings of T . An alternative approach, which may be more
efficient depending on the relative sizes of |T | and |Σ|m, is
described next. First, both parties re-define h as:

h(b|`′, (ε, `)) =

{
b |`′ − `| ≤ ε
0 otherwise

.

Then for each pattern p ∈ Σm, party P1 does:

• If p occurs as a substring in T , then add the tuple(
p, ~X(1|`max(T, p))

)
to D.

• If p does not occur as a substring in T , then add the

tuple
(
p, ~X(0|0|`max|)

)
to D.

Now the database always has exactly |Σ|m entries.
On another note, we remark that the protocol in Figure 4

returns ⊥ to P2 in case its pattern p does not occur as a
substring of T . This is avoided when using the technique
described in the previous paragraph (and can be avoided in
the protocol from Figure 4 via similar techniques).

6. REFERENCES
[1] W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious

transfer: How to sell digital goods. In Advances in
Cryptology — Eurocrypt 2001, volume 2045 of LNCS,
pages 119–135. Springer, 2001.

[2] M. Atallah, F. Kerschbaum, and W. Du. Secure and
private sequence comparisons. In Proc. ACM
Workshop on Privacy in the Electronic Society
(WPES), pages 39–44. ACM, 2003.

[3] E. De Cristofaro and G. Tsudik. Practical private set
intersection protocols with linear complexity. In
Financial Cryptography and Data Security 2010.
Available at http://eprint.iacr.org/2009/491.

[4] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold.
Keyword search and oblivious pseudorandom

Input to P1: A text T ∈ Σn.
Input to P2: A pattern p ∈ Σm (m < n) and parameters ε, `.

Common input: The input lengths n, m.

Output: P2 learns M(T, p, ε, `) (see Equation (1)).

Let h be as in Equation (3), and let H be a circuit computing h. Let t = n−m+1.
The parties do:

1. P1 runs Garble(1k, H) to obtain (gH, ~X, ~Y).

2. P1 and P2 execute (parallel) instances of OT to enable P2 to learn the

input-wire labels ~Y ′ corresponding to its inputs ε, `.

3. P1 defines a database D as follows.

(a) For each p ∈ Σm that is a substring of T , add
(
p|0k, ~X(`max(T, p))

)

to D. (We assume `max is always a fixed number of bits.)

(b) Let d denote the number of elements in D. Then add an additional

t − d elements to D of the form (p∗r, ~X(0|`max|)), where r ← {0, 1}k

and p∗ ∈ Σm is arbitrary.

4. P1 and P2 compute Fks on D and p|0k, respectively. As a result, P2 obtains
~X′ or nothing. (In the latter case, P2 outputs ⊥. See text for discussion.)

5. P1 sends gH to P2.

6. P2 outputs Eval
(
gH, ~X′, ~Y ′

)
.

Figure 4: Computing the functionality of Equation (1).

functions. In 2nd Theory of Cryptography Conference,
volume 3378 of LNCS, pages 303–324. Springer, 2005.

[5] K. Frikken. Practical private DNA string searching
and matching through efficient oblivious automata
evaluation. In Data and Applications Security, volume
5645 of LNCS, pages 81–94. Springer, 2009.

[6] R. Gennaro, C. Hazay, and J. S. Sorensen. Text search
protocols with simulation based security. In 13th Intl.
Conference on Theory and Practice of Public Key
Cryptography (PKC 2010), volume 6056 of LNCS,
pages 332–350. Springer, 2010.

[7] O. Goldreich. Foundations of Cryptography, vol. 2:
Basic Applications. Cambridge University Press,
Cambridge, UK, 2004.

[8] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game, or a completeness theorem for
protocols with honest majority. In 19th Annual ACM
Symposium on Theory of Computing (STOC), pages
218–229. ACM Press, 1987.

[9] C. Hazay and Y. Lindell. Efficient protocols for set
intersection and pattern matching with security
against malicious and covert adversaries. In 5th
Theory of Cryptography Conference — TCC 2008,
volume 4948 of LNCS, pages 155–175. Springer, 2008.

[10] S. Jarecki and V. Shmatikov. Efficient two-party
secure computation on committed inputs. In Advances
in Cryptology — Eurocrypt 2007, volume 4515 of
LNCS, pages 97–114. Springer, 2007.

[11] S. Jha, L. Kruger, and V. Shmatikov. Towards
practical privacy for genomic computation. In IEEE
Symp. Security & Privacy, pages 216–230. IEEE, 2008.

[12] L. Kissner and D. X. Song. Privacy-preserving set
operations. In Advances in Cryptology — Crypto 2005,
volume 3621 of LNCS, pages 241–257. Springer, 2005.

[13] A. Lindell. Efficient fully-simulatable oblivious

transfer. In Cryptographers’ Track — RSA 2008,
volume 4964 of LNCS, pages 52–70. Springer, 2008.

[14] Y. Lindell and B. Pinkas. An efficient protocol for
secure two-party computation in the presence of
malicious adversaries. In Advances in Cryptology —
Eurocrypt 2007, volume 4515 of LNCS, pages 52–78.
Springer, 2007.

[15] Y. Lindell, B. Pinkas, and N. Smart. Implementing
two-party computation efficiently with security against
malicious adversaries. In 6th Intl. Conf. on Security
and Cryptography for Networks (SCN ’08), volume
5229 of LNCS, pages 2–20. Springer, 2008.

[16] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay
— a secure two-party computation system. In Proc.
13th USENIX Security Symposium, pages 287–302.
USENIX Association, 2004.

[17] M. Naor and B. Pinkas. Computationally secure
oblivious transfer. J. Cryptology, 18(1):1–35, 2005.

[18] A. Paus, A.-R. Sadeghi, and T. Schneider. Practical
secure evaluation of semi-private functions. In Conf.
on Applied Cryptography and Network Security,
volume 5536 of LNCS, pages 89–106. Springer, 2009.

[19] B. Pinkas, T. Schneider, N. Smart, and S. Williams.
Secure two-party computation is practical. In
Advances in Cryptology — Asiacrypt 2009, volume
5912 of LNCS, pages 250–267. Springer, 2009.

[20] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and
M. Celik. Privacy preserving error resilient DNA
searching through oblivious automata. In 14th ACM
Conf. on Computer and Communications
Security (CCCS), pages 519–528. ACM Press, 2007.

[21] A. C.-C. Yao. How to generate and exchange secrets.
In 27th Annual Symp. on Foundations of Computer
Science (FOCS), pages 162–167. IEEE, 1986.

