Automated Analysis and Synthesis of Block-Cipher
Modes of Operation

Alex J. Malozemoff Jonathan Katz Matthew D. Green
Department of Computer Science Department of Computer Science Department of Computer Science
University of Maryland University of Maryland Johns Hopkins University

amal oz@s. und. edu j katz@s. und. edu ngreen@s. j hu. edu

Abstract—Block ciphers such as AES are deterministic, keyed we refer the reader to Section I-A for a review of prior
functions that operate on small, fixed-size blocks. Blockipher \work. In this work we focus on automated analysis and
modes of operation define a mechanism for probabilistic en- synthesis oblock-cipher modes of operatioA block cipher

cryption of arbitrary length messages using any underlying . o o .
block cipher. A mode of operation can be proven secure (say, is a deterministic, keyed functiod’; with a key k fixed,

against chosen-plaintext attacks) based on the assumptighat the functionFy : {0,1}" — {0,1}" operates on smalbp-
the underlying block cipher is a pseudorandom function. Sub bit blocks. (A prominent example is the standardized block
proofs are complex and error-prone, however, and must be do& cipher AES, which has a 128-bit block size.) Seéuem-
from scratch whenever a new mode of operation is developed. cryption using a block cipher requires choosing somede

We propose anautomated approach for the security analysis . S .
of block-cipher modes of operation based on a “local” analyis of of operationto handle both probabilistic encryption (so that

the steps carried out by the mode when handling asingle message theé same message, encrypted twice, does not yield the same
block. We model these steps as a directed, acyclic graph, Wit ciphertext) as well as messages of arbitrary length. Skvera

nodes corresponding to instructions and edges correspomii secure modes of operation were specified as part of the DES
to intermediate values. We then introduce a set olabels and ciandard in the 1970s, and modes such as CTR and CBC

constraints on the edges, and prove a meta-theorem showing that) id d tod M H . d
any mode for which there exists a labeling of the edges satjsifig aré in wigespread use today. hiore recently, various modes

these constraints is secure (against chosen-plaintext attks). This Of operation with stronger security properties, or based on
allows us to reduce security of a given mode to a constraint- newer primitives such as tweakable block ciphers, have been
satisfaction problem, which in turn can be handled using an proposed; see http://csrc.nist.gov/groups/ST/to@KitVl for
SMT solver. We couple our security-analysis tool with a rouine some examol

. . ples.
that automatically generates viable modes; together, thesallow

us to synthesize hundreds of secure modes. The core idea of our approach to the automated analysis of
Index Terms—symmetric-key encryption, modes of operation, block-cipher modes of operation is to focus on the operation
program synthesis carried out by a given mode when handlingiagle message

block. We model these steps as a directed, acyclic graph in
which nodes correspond to atomic operations (such as XORing
Designing and proving security of cryptographic construewo values together, evaluating a pseudorandom function on
tions can be difficult, time-consuming, and error-pronevéde some value, etc.) and edges correspond to intermediatesvalu
oping a protocol for some task meeting various requireme introduce a set of labels for the edges in such graphsgalon
involves creativity and hard work; even when only smallith a set of constraints on how edges can be labeled. Our
changes to an existing construction are involved, eachgshamentral result is a meta-theorem stating that if a given lyrap
typically requires a cryptographic proof of security to beorresponding to some mode, can be labeled while satisfying
redone from scratch. the constraints, then that mode is secure. We thus reduce the
To simplify, streamline, and speed up this process, it wouttbcurity of any mode of operation to a constraint-satigfact
be hugely beneficial t@utomate(parts of) this design pro- problem, which in turn can be addressed by an SMT solver.
cess. Being able to automate the analysis of cryptographi®ur meta-theorem shows that our constraints swand
constructions would enable rapid examination of proposesl that any mode classified as secure is, indeed, secure; it
candidates with less chance of error; coupling this with jg not complete and so may falsely reject a secure mode.
systematic way of generating candidates that satisfy axgigé Nevertheless, we show that our constraints are permissive
of functional requirements would enable automated syrghegnough to capture all commonly used (secure) modes we are
of secure constructions. Here we can draw inspiration fteen taware of, including CBC, CTR, OFB, CFB, and PCBC.
field of program synthesi¢l], which has recently withnessed Based on the above meta-theorem, we implemented a model

several successes (see Srivastava’s Ph.D. thesis [2] émeatr checker designed to evaluate candidate modes of operation.
survey).

The past fe_W years have _Seen the first ste_ps toward ‘?IUtQHere we mean the default notion of CPA-security, a.k.a.urstgcagainst
mated analysis and synthesis of cryptographic constmtiochosen-plaintext attacks.

I. INTRODUCTION

Our model checker takes as input a mode specified as a greggture. The required property can be proven for a given mode
and determines both whether the modeadsrect (i.e., whether by applying their Hoare-logic rules to the entire sequenfce o
there exists a corresponding decryption algorithm thaives operations used by the mode when encrypting some message.
the message from the ciphertext) and whether seisure We A drawback of their approach is that it can only reason about
then use our model checker to synthesize secure modeghaf encryption of messages of some pre-specified, fixedHengt
operation in the natural way. That is, we implement a prograamd their proofs provide no “inductive” guarantee about wwha
synthesizer that automatically generates candidate mofleshappens when the mode is used to encrypt messages of other
operation for analysis, and then filters out those modes tiathitrary) lengths. Thus, to use their approach one would
are not identified as being secure by our model checker. Doingve to provide a separate proof for all possible message
this in a naive manner would be prohibitively slow due to thiengths one would expect to encounter in practice. Moreover
combinatorial explosion in the number of candidate modes. dur “local” approach is fundamentally different from their
deal with this, we use several pruning strategies that allsw “global” perspective. In contrast to Gagné et al., we araly
to eliminate more than 99.99% of potential candidates frothe operations carried out by a given mode when processing
consideration before invoking our model checker. Using oar single message block; our meta-theorem guarantees that
approach we are able to synthesize hundreds of secure matlabat (finite) set of operations has a valid labeling, then
of operation. Our implementation could easily be integtatét corresponds to a mode of operation that is secure for
with a simple tool assigning scores to different modes (e.@ncrypting messages of arbitrary (polynomial) length.ites
expressing a preference for minimizing calls to the blodkis conceptual difference, our approach also ensures that
cipher or for avoiding integer addition) to synthesize secuanalysis of a given mode (for messages of unbounded length)
modes with desired properties. can be reduced to the satisfiability ofiaite set of constraints.
Although our approach currently only addresses securitiis, in turn, can be easily solved (in practice) using an
against chosen-plaintext attacks, we are hopeful thatdmas SMT solver. Our approach is thus particularly suited for the
can be extended to handle stronger security definitions sugymthesis ohew modes of operation.
as authenticated encryption. More generally, we believe o

techniques could find application to the automated desigh an’ Outline

verification of other cryptographic primitives and prottso We introduce some background material in Section I, and in
Section Il we discuss our approach to modeling block-ciphe

A. Prior Work modes of operation. Section IV contains our central meta-

Several works have recently considered automated geri&eorem and proof. Section V describes our implementation o
ation and/or analysis of cryptographic algorithms. Akileye the model checker and a program synthesizer that together ca
et al. [3], [4] developed tools for automatically genergtinbe used to automatically generate secure modes of enanyptio
batch-verification algorithms for digital-signature sotes [3], the results of our experiments using those tools are destrib
for converting schemes using symmetric bilinear groups inth Section VI. We conclude in Section VII.
ones using asymmetric bilinear groups [4], and for comgilin
signature schemes to schemes achieving stronger securit%/ o _ _
properties [4]. In all these cases, their tools do not diyect We use the standard definitions of private-key encryption
analyze or verify security of new constructions; instedyt s_chemes and block ciphers (i.e., pseudorandom permuta-
take as input schemes that are assumed to be secure, and Y888) [9]- We letn denote the block length of a block
attempt to apply a fixed set of transformations that have be@Rher F; thus, for a fixed keyk, the function F}, defines
proven to preserve (or amplify) security. Closer to our Hssu 2 bijection onn-bit strings. For_mally we treat as a security
are those of Barthe et al. [5], who propose a technique for tR@rameter, and so “polynomial” (resp., “negligible”) mean
automated analysis gfublic-key encryption schemes basedPolynomial in n” (resp., “negligible inn"). A message/ci-
on trapdoor permutations and a small set of other instrastio Phertext block is just am-bit string. _ _
They also use their analysis tool to synthesize secure sehem We utilize a notion of security for private-key encryption
The proof techniques and analysis methods are very differ&RlledIND$-CPA [10], which is stronger than indistinguisha-

in the public-key setting as compared to the symmetric-k&}ity @gainst chosen-plaintext attacks in that it reqsicgoher-
setting we consider here. texts to be indistinguishable from uniform strings.

The work most similar to our own is that of Gagné epefinition 1. Let IT = (Enc, Dec) be an encryption scheme in
al. [6], [7]. Building on earlier work [8], they propose ugin which the encryption of ari-block message yields &+ 1)-
a compositional Hoare logic to analyze block-cipher modegock ciphertext, and le$(-) be an oracle that, when queried
of operation. They use an imperative language in which eagh inputm € {0,1}¢", returns a uniform string of length
operation updates a distribution over states of the prograjp 1).,. We sayll is IND$-CPA secure if the following is

and then use their Hoare logic to reason about the outpidgiigible for all probabilistic polynomial-time algohitns.A:
distribution of modes expressed in this language. Roughly,

they show that if, after the execution of a mode, all variable
are marked as indistinguishable from uniform, then the mede

Il. PRELIMINARIES

Pr [AE“%<'>(1”) - 1} _Pr [,4$<'>(1n) - 1] ’ .

k«{0,1}

Since the issue will arise in our analysis, we remark that

: : - L m, m, m;
the decryption algorithnbec is irrelevant as far as security is | | |
concerned (although it is, of course, critical for corrests). v l 4’1 l

[1l. M ODELING MODES OFOPERATION Fi F Fx
A mode of operation refers to a mechanism for encrypting 1 x J
arbitrary length messages based on any underlying block | !
cipher. For simplicity, we assume all messages being etexyp v G C: Cs

have length a multiple of the block length. (This is without
loss of generality, as messages can be padded unambiguously
to such a length using known techniques.) For our purposes
in this and the next section, a mode is defined by a pair gf \iewing Modes as Graphs
efficient algorithmsinit and Block that each expect oracle
access to a functiofiy, : {0,1}™ — {0,1}". These algorithms
have the following functionality:

Fig. 1. CBC mode.

The Init and Block algorithms constituting a mode of
encryption can be viewed as directed, acyclic graphs, where
the nodes correspond to instructions (suckpasr application
of Fy), and the edges correspond to (intermediate) values,

outputs an initial ciphertext block, € {0,1}" and state which are all n-bit strings. A node applies its associated

information zo € {0, 1}". operation on the value(s) contained on its ingoing edge(s),
« Block: This is a deterministic algorithm that takes as inputith the result(s) of the operation assigned to its outgoing

a message block € {0,1}" and state information € edge(s). As an example, consider the graph version of CBC

{0,1}", and outputs a ciphertext bloeke {0,1}" and mode in Figure 2. Thénit portion of the graph corresponds to

updated state informatiosl € {0, 1}". the generation of a random IV (tt@ENRAND node) which

(The above could be generalized so that, eBiock outputs S then duplicated (th®UP node) and output as part of the
two ciphertext blocks for each message block processed,chertext (through the@©UT node) as well as passed on to
both Init and Block output two-block state. While this would the Block algorithm (through theNEXTIV node). TheBlock

require modifications to our constraints, our approach wouportion of the graph contains &TART node, which is how
be able to handle such generalizations.) the state information is provided as input (this informatio

With some block cipherF fixed, a mode of operation COMes frqm th_eNEXT_IV node of either thenit algorithm
(Init, Block) induces an encryption algorithrinc. Specif- ©F @ Previous invocation oBlock), as well as arM node,
ically, if m = myl|---|me is an £-block message, then Which is how the current message block is provided as input.
Enci(m) does the following: In the case of CBC mode, those input values are XORed and
. L the result is then passed throudgh. That resulting value is

1) Compute(cy,) « Init(1"), wherelnit is given oracle g pjicated, and again one copy is output as the next block of

access tary. the ciphertext (viaOUT) and another copy is passed on as

2) Fori = 1,_. .y, set(cy, z;) = Block(my, zi—1), where giatae (ViaNEXTIV).

Block is given oracle access . From now on, we view a mode of encryption as being

3) Output the ciphertexty||ci | - - [[c,. defined by a pair of directed, acyclic graphs, corresponding

As an example, consider the CBC mode of operation ia the Init and Block algorithms, whose nodes are labeled
Figure 1. In CBC mode, thinit algorithm simply generates awith instructions from the list below and which also satisfy
uniform initialization vector (IV); the IV is both output ascertain constraints described next. The instructions vp@er
the initial ciphertext block and also passed along as statelude:
information. TheBlock algorithm XORs the incoming state « DUP: Has in-degree one and out-degree two. Replicates
information z with the current message bloek, passes the the ingoing value on both its outgoing edges.
result through a block ciphef,, and uses the resulting value « GENRAND: Has in-degree zero and out-degree one.
Fy(m @ z) as both the next ciphertext block and the updated Generates a uniform value 0, 1}".
state. « M: Has in-degree zero and out-degree one. This corre-

In this paper, a modélnit, Block) is secureif the induced sponds to the current message block being provided as
encryption scheme iND-CPA secure whenevefl' is a input. This instruction appears exactly once in Bleck

« Init: This is a probabilistic algorithm that, on input,

secure block cipher. (Here, we do not concern ourselves with
decryption since we are only interested in security. Fovamgi
mode to be meaningful, it will also need to possess a corre-
sponding decryption algorithm. When we synthesize modes,
we check for existence of a suitable decryption algorithm in
addition to verifying security.)

graph, and does not appear in tiaé graph.

PRF andPRP: Have in-degree one and out-degree one.
These instructions both apply the block cipher to the
value on the ingoing edge and assign the result to the
outgoing edgePRP is invertible butPRF need not be.
With regard to security, we rely on the PRF/PRP switch-

B. Edge Labels and Constraints
GENRAND _ _) : .
In the previous section we defined what it means for a pair

of directed, acyclic graphs to correspond ttegal mode. But

DUP not all legal modes are secure! In this section we introduce a
set of edge labels, and also describe a set of constrairtts tha
(OUT) [NEXTIV] a valid labeling must satisfy. Our meta-theorem states ithat

a legal mode of operation has a valid edge labeling, then that
Init algorithm TART mode is secure.
@ We now give the details of the edge labeling for some
XOR (legal) mode of operation specified by directed, acyclipbsa
(Init, Block). Let G denote the union dhit andBlock, and let
E denote the total number of edgesah A labelis a 3-tuple
ERP (fam, type, flags) where
« fam C {1,...,E} represents the set dlamilies to
which the edge belongs. Two edges e with families
DUP fam,, fam,, respectively, areelatedif fam; Nfam, # (.
« type € {R, L} represents a “type,” where, intuitively,
(OUTJ (NEXTNJ R denotes “random” and. denotes “adversarially con-
trolled.” We impose the ordering < R.
. flags € {0,1}? is a bit-vector denoting whether the
edge can be used as input@JT or PRF, respectively.
Fig. 2. CBC mode expressed as a graph. We index into this bit-vector by using the notation
flags.OUT andflags.PRF. We define the (partial) or-
ing lemma and treat botRRF and PRP instructions as deringflags < flagé’ iff flags.OUT < flags’.OUT and
pseudorandom functions (rather than permutations). For flags-PRF < flags". PRF.
this reason, in the rest of this and the next section we!n trying to labelG, we begin by assigning each edgeGn
only speak of @PRF instruction. We will later treaPRF @ set of families using the following, deterministic prooeel
and PRP differently with regard tocorrectness that first handles edges Init before moving on to the edges
XOR: Has in-degree two and out-degree one. XORs tfié Block:
values on its two ingoing edges and assigns the result tal) While there is an instruction node whose ingoing edges

Block algorithm

its outgoing edge. have all been assigned a set of families, assign its
NEXTIV: Has in-degree one and out-degree zero. (The outgoing edge(s) a set of families using the following
outgoing edge fronNEXTIV in Figure 2 is conceptual.) rules:

The value on the ingoing edge is treated as the state thatis ~« DUP: The outgoing edges are both assigned the
output bylnit or Block. This instruction appears exactly same set of families as the ingoing edge.

once in each of thénit andBlock graphs. e PRF: Let int be the least unused value in
START: Has in-degree zero and out-degree one. (The {1,..., E}. The outgoing edge is assigned the set
ingoing edge toSTART in Figure 2 is conceptual.) The of families {int}.

value on the outgoing edge is the state information pro- « XOR: Let the ingoing edges have sets of families
vided as input tBlock. This instruction appears exactly fam andfam’. The outgoing edge is assigned the
once in theBlock graph, and does not appear in thé set of familiesfam U fam’.

graph. 2) Otherwise, we choose an instruction node with in-

OUT: Has in-degree one and out-degree zero. The value degree 0, with preference for tH&TART node if its

on its ingoing edge represents the next ciphertext block outgoing edge has not yet been labeled. The outgoing
that is output. This instruction appears exactly once in edge from this node is assignéiht}, whereint is the
each of thelnit and Block graphs. least unused value ifil, ..., E}.

The above provide a “basic” instruction set that we consiiler Once each edge it¥ has been assigned a set of families,

the main body of this paper. In the appendix we additionallye then try to assign &pe and flags to each edge G
consider the following instruction: subject to the following constraints:

« INC: Has in-degree one and out-degree one. Increments START: Say there is &NEXTIV node inG (whether in
the value on its ingoing edge (moduly), and assigns Init or in Block) whose ingoing edge has typgpe and
the result to its outgoing edge. flags flags. Then the outgoing edge frolBTART has

The above instructions (includin®yC) are sufficient to model type’ < type andflags’ < flags.
all the standard modes such as ECB, OFB, CFB, CBC, CTR,. GENRAND: The outgoing edge gets typrandflags =
and PCBC. 11.

« M: The outgoing edge gets type andflags = 00.
« DUP: Say the input edge has typgpe and flagsflags.
The two output edges get typege, = type, = type,

insecure) does not. See Figure 3 for a valid labeling of CBC
mode.
We now briefly describe some intuition behind these labels

and flagsflags, andflags, such that the following hold: and constraints. We define two types for the edge labels:

(1) flags, & flags, = 00 and (2)flags, | flags, = flags,

“random” (a.k.a.R) and “adversarially controlled” (a.k.al,).

where & and | refer to bit-wise AND and OR, respec-For instructions likePRF andXOR, we want a guarantee that

tively.

the output from these instructions is random. Thus, we dp not

« PRF: We require that the ingoing edge RRF has type for example, allow adversarially controlled values as iripto

R andflags.PRF = 1. The outgoing edge gets typge
andflags = 11.
« XOR: We require that the ingoing edges to 40@R node

a PRF node, as the output is not “random” to an attacker who
can query the®RF node on the same input multiple times.
There are only two instructions that introduce values:

are unrelated, and that at least one of them has Bippe GENRAND produces a random value, amdl produces an
The outgoing edge gets type Say the input edges haveadversarially controlled value (as the adversary supjlies

flagsflags, andflags,, respectively. Then:

message to be encrypted). For random values, we want to

1) If both ingoing edges have typR, the outgoing enforce that they are used in ways that do not void their

edge gets flagfags, | flags,.
2) If only one edge (say, the first) has type the
outgoing edge gets flagkags, .
« OUT: We require the ingoing edge to &®UT node to
have typeR andflags.OUT = 1.

GENRAND

({1}, R, 11)

({1}, R, 10 29 (113 R, 01)

(out) (NEXTIV)
Init algorithm

({3}, L, 00)

({2}, R, 01)

({23}, R, 01)
(PrRP
({4}, R, 11)

({4}, R, 10) PR (141 R, 01)

(out) (NEXTIV)
Block algorithm

Fig. 3. A valid labeling for CBC mode.

A labeling of G that satisfies all of the above constraints
is called avalid labeling One can verify that the graphs

“randomness.” This is where thféags bit-vector comes into
play: by accounting for whether a random value can be input
into anOUT node or aPRF node, we prevent a random value
from both being output as cipherteanhd input into aPRF
node, which can lead to insecure schemes. (This does not mean
there do not exist secure schemes which have this property;
however, our tool does not allow such schemes.)

In the next section we prove thathy mode that has a valid
labeling is secure. Importantly, determining the exisee€
a valid labeling for a given mode requires reasoning over
a finite graphG and a finite set of constraints, and we can
therefore use an SMT solver to check whether a valid labeling
is possible.

IV. META-THEOREM AND PROOF

Theorem 1. Let (Init, Block) be a legal mode of operation.

If it has a valid labeling, then it is secure. In other words,
when the mode is instantiated with any secure block cipher,
the resulting encryption schemeliSD$-CPA secure.

Proof: Consider the encryption scheme that results from
instantiating Init/Block with a secure block ciphef’. The
experiment in which a polynomial-time adversary interacts
with this scheme proceeds as follows:

« A uniform key for the block cipher is chosen.

« The attacker may then (adaptively) specify messages to be
encrypted. After ar/-block messagen = || - - - ||my
is specified, we imagine creating a connected gréph
consisting of one copy afit and ¢ copies ofBlock by
simply adding an edge fromMEXTIV node ofinit/Block
to the START node of the subsequent copy Bfock.
To encrypt the message, we begin by assigningithe
message blockr; to be the value on the outgoing edge
of the M-instruction in theith copy of Block. We then
iteratively assign values to the edgestn(based on the
instruction at each node) until every edge is assigned a

corresponding to each of CBC, CFB, and OFB modes have
valid labelings’ whereas ECB mode (which is known to be

2If we include thelNC instruction (and add constraints for this instruction
as discussed in the appendix), then CTR mode has a validrighako.

value. (The outgoing edge from MEXTIV node or a
START node is assigned the same value as the ingoing
edge to that node.) This, in particular, assigns values to
the ingoing edges to eve@UT node, and so defines an
(¢ 4 1)-block ciphertext that is given to the attacker.

Using a standard hybrid argument, we may replace theeans declaring the ingoing edge to that instruction as no
block cipher (and choice of uniform key) with a functiononger being active, but instead being “output” as part & th
chosen uniformly from the space of all functions fram ciphertext. Processing the finAlIEXTIV node means giving
bit inputs ton-bit outputs. This means th&RF instructions the computed ciphertext to the adversary.) For simpliity,
in the above process can now be handled as follows: If tassume all edges in a given copyBibck are assigned a value
value on the ingoing edge to BRF node was previously before assigning a value to the outgoing edge ofNEXTIV
input to aPRF node (whether in the course of encrypting theode in that copy oBlock.
current message, or during encryption of some prior meysage When we are done encrypting a message we give the
then assign to the outgoing edge the same output value useslilting ciphertext to the attacker, who then chooses éx¢ n
previously. Otherwise, assign to the outgoing edge a umifomessage to be encrypted. We then create another graph and
value in{0,1}". Once we make this substitution, the entirassign values as above. We stress that previous graphs are
experiment becomes information-theoretic and we no longarintained: even though none of their edges are active, we
need to be concerned with the running time of the attackemnay still refer to the values taken by edges in previous ggaph
(However, we continue to assume a polynomial upper boundAt any step in the above process, define the following sets
on the number of messages the attacker can request toobedges:
encrypted as well as the block-length of each such message.) _

As the adversary is computationally unbounded we may, [RF.= edges of typ&R with flags. PRF = 1

without loss of generality, treat the attacker as deterstimi that are active

The probability space of the attacker’s interaction is ttaken OUT,= edges of typeR with flags.OUT = 1

only over choice of the random function and any internal
randomness of the mode (i.e., BENRAND instructions).
For each edge in all the graplis (corresponding to all the
messages whose encryption is requested by the attacker), th being processed
value assigned to that edge is a random variable.vaék)
gsr:]r;egggg?rl? ?ri;agligfgfzzgzg:rl%;?a}?g)vzgso?:??;]ee with all but negligible pr(?bability the following invarias hold
multiset{val(e) | e € E'}. We show that the joint distribution at the end of each step:

of the random variables corresponding to all the ingoing * Invariant 1: For anyS C PRF;, the random variables
edges toOUT nodes—and hence the joint distribution of all ~ Vval(:5) are jointly uniform, even conditioned on the values
ciphertext blocks returned to the attacker—is statidtjazlbse on all active edges unrelated to edgesiand the values
to uniform. This implies the scheme iID$-CPA secure. of all edges previously used as input t®RF instruction.

Fix some valid labeling ofinit and Block. As discussed ¢ Invariant 2: For anyS € OUT,, the random variables
above, each time the attacker requests an encryption of some Val(5) are jointly uniform, even conditioned on the values

that are active
OUT = edges output for the message currently

C]I' pese sets change as instructions are processed. We pabve th

(-block message we imagine creating a graphonsisting of of all previous ciphertext blocks (including those in
one copy oflnit and¢ copies ofBlock. The valid labeling of OUT) and the values on all active edges unrelated to
Init andBlock naturally extends to a labeling of this gragh edges inS.

the edges inlnit are labeled in the obvious way, and the ¢ Invariant 3: The random variablegal(OUT) are jointly
corresponding edges in each copyRibck are assigned the u_niform, even conditioned on the values of all previous
same label. (The only special case is an edge frasEXTIV ciphertexts.

node in one block to START node in the next block, which Invariant 3 implies that when encryption of the given
we assign the same label as the ingoing edge toNEXTIV message is done, the resulting ciphertext is (statisficitise
node.) to) uniform, which is what we wanted to show. The other
Consider the step-by-step process by which edgés are two invariants are used as part of proving that Invariant 3 is
assigned values when a messagés encrypted. (Although maintained. (Intuitively, Invariant 1 enforces that thepurs
we speak here of “assigning values,” we will continue tottreanto everyPRF instruction are uniform, and thus distinct with
these as random variables and so “assigning a value” is ynerieigh probability; this, in turn, means that all the outpufs o
conceptual.) Edges are assigned values in topologicak;ordbe PRF instructions are uniform and independent. Invariant 2
i.e., the value of an edge is not assigned unless values hanforces that values on ingoing edge$XdT instructions are
been assigned to its parents. We say an edgective if it uniform, and thus when we “output” these values the regyltin
has been assigned a value but its children have not. (Whsphertext is also uniform.)
we begin encrypting a message, the only active edges are th€learly the above invariants all hold when beginning to
outgoing edges from all th&1-nodes.) The only exceptionsencrypt some message. (At that point in tinkfR F,,, OUT,,
are ingoing edges t®UT nodes as well as the ingoing edgeand OUT are all empty.) Now, assume the invariants hold
to the final NEXTIV node; these become active when thepefore executing some instruction; we show that, with high
are assigned a value, and remain active until the relevambbability, they continue to hold after executing the in-
instruction is processed. (Processing@uaT instruction just struction. We letPRF,, OUT,, and OUT denote the sets

in qt@s\tion before the instruction, and Ié’t/RE, O/U?a is also re@@ t@;. .
and OUT denote the (possibly modified) sets following the If e1 ¢ PRF,, theney, e, ¢ PRF,; thus PRF, =
instruction. (Observe th&@UT only changes when processing ~ PRF; and the invariant continues to hold.

an OUT instruction. Thus, Invariant 3 trivially holds for all Otherwise,e; € PRF, and at least one af or ¢ (say
other instructions, and we only consider it when we analyze eo) is in PRF,. By Invariant 1 we have thatal(e) is
the OUT instruction.) uniform even conditioned omal(ej). Thus,val(e;) =

val(eg) @ val(ep) is uniform and the invariant continues
o NEXTIV: The ingoing and outgoing edges have the same to hold.

label and the same value; thus, the invariants trivially « OUT: Let e be the ingoing edge. This instruction reduces

continue to hold. the number of active edges, so clearly Invariant 1 and
o START: We consider Invariant 1; the argument is iden- |nvariant 2 continue to hold.

tical for Invariant 2. The labeling constraints ensure thate OUT,. Also,

Let ¢, labeled(fam, type, flags), be the ingoing edge to note thatDUT = OUTU{e}. Using Invariant 2, we have

this instruction and let’, labeled (fam’, type’, flags’), that val(e) is uniform even conditioned omal(OUT),

be the outgoing edge. The labeling constraints imply that and thus Invariant 3 continues to hold.

type’ < type andflags’ < flags. Note further that the This completes the proof. -

only. other active_edges at the time this instructipn IS |t is possible to extract from our proof a bound on the
applied are outgoing efjges fravh nodes, none of which o cretesecurity of the mode of operation as a function of
is related to eithee or ¢’, and none of which is ilPRF, the number (and type) of instructions limit/Block as well as

or PRF,. If ¢ ¢ PRF, then Invariant 1 trivially holds the total number of message blocks encrypted.
after the instruction is applied. Otherwise, the fact that

type’ < type andflags’ < flags means that € PRF,. V. IMPLEMENTATION
Sincee ande’ have the same value and Invariant 1 holds \We have developed a prototype model checker for veri-
before the instruction is applied, the invariant continugging whether a given mode has a valid labeling, as well

to hold after the instruction is applied. ~ as a synthesizer for generating modes. The code is written
« DUP: We consider Invariant 1; the argument is identicdh OCaml, and is freely available from the authors. The
for Invariant 2. implementation includes use of thRC instruction, with the

Let eo be the ingoing edge to this instruction, and lefnodified constraints as described in the appendix.
e; and es be the two outgoing edges. #y ¢ PRF,,
theney,es & ﬁ%?a; this means thaPRF, = P/R?a A. Model Checker
and—sinces, e1, andes all have the same families—the The core of our system is a model checker designed to
invariant continues to hold. If, € PRF,, then exactly evaluate a candidate encryption mode. Our model checker
one ofe; Or es is in ﬁ{?ﬂ Since the values ofy, ¢;, takes as input a description of the mode of operation (defined
ande, are the same, and all these edges have the safmderms of itslnit and Block routines) and determines both
families, the invariant again continues to hold. whether the corresponding encryption algorithmcisrrect
. GENRAND: Because of the way outgoing edges of &.€., whether there exists an efficient decryption aldonit
GENRAND instruction are labeled, this instruction add@nd whether it isecure(i.e., whether the mode I8D$-CPA-
an edge toPRF, and OUT,. Since the value on this secure).
edge is uniform and independent of any previous values,1) Correctness\We have developed an algorithm that takes
the invariants continue to hold. as input a mode of operation, and determines whether decryp-
« PRF: Using Invariant 1, the value on the ingoing edge tfon of that mode is possible (with knowledge of the key).sThi
the PRF instruction is uniform, even conditioned on thds useful for pruning out uninteresting modes. The alganith
values of all previous ingoing edges t®&F instruction. Works by examining the description &flock to see whether
Therefore, with all but negligible probability, the valueeach message block can be recovered from the ciphertext. To
on this edge is distinct from all values previously use@0 this, we proceed as follows:
as input to @PRF instruction. When this is the case, the « If the value on the outgoing edge of thd node in
value on the outgoing edge is uniform and both invariants Block (i.e., the current message block) can be recovered

continue to hold just as for GENRAND instruction. from the ingoing edge to th®UT node (i.e., the current
« XOR: We consider Invariant 1; the argument is identical ~ ciphertext block), the mode is decryptable. (This is not
for Invariant 2. typical, but is true for, e.g., ECB mode.)

Let ey and e, labeled (famg,type,,flags,) and « Otherwise, we checBlock to see whether the requisite
(famy,, typey,, flagsy), respectively, be the two ingoing message block can be recovered from both the current

edges, and let,, labeled(fam,type,,flags,), be the ciphertext block and the value on the outgoing edge of the
outgoing edge. Note that, and e;, must be unrelated START node (i.e., the state passed from one invocation
and at least one ofy and e; must have typeR. Also, of Init/Block to the next). If not, we reject the mode as

fam; = famy Ufam; and so anything related tg or ¢, being undecryptable.

If so, then we need to verify that the state can bassertion which forces the proper labels on the input anglbut
recovered from the previous ciphertext block(s). So: variables of that node. We then run this through Z3, which
— We check thenit algorithm to see whether the valuet€lls us whether the expression is satisfiable or not given th
on the ingoing edge to thAIEXTIV node can be asserted constraints.
recovered from the value on the ingoing edge to Figure 4 presents an example encoding ob&P node.
the OUT node. If not, we reject the mode as beindgines 1-6 define the labels for the outgoing edges. We
undecryptable. encode the edgetype as an integer, treating as 0 andR
— We check theBlock algorithm to see whether theas 2. (In the appendix we add a third type which we treat
value on the ingoing edge to téEXTIV node can as 1.) Each bit inflags is treated as a Boolean value. In
be recovered from the value on the ingoing edge the referenced figurejup_| _type, dup_l _flag_out, and
the OUT node and the value on the outgoing edgéup_! _f1ag_prf denotetype, flags.OUT, andflags. PRF,

of the START node. respectively, for the left outgoing edge of tB&JP node, and
Our algorithm is sound, and successfully identifies thedziesh IKeWise, dup_r_type, etc., denote the corresponding values
modes as being decryptable. for the right outgoing edge. In this example, the ingoingesdg

To perform each of the above checks, we recursive!? theDUP node comes fronGENRAND, whose labeling is
progress through the graphs defining thie/Block algorithms deénoted bygenrand_t ype, etc. _ _
in the natural way. We begin, say, with the value on the ingoin Lines 7-11 define the constraints. As an example, in
edge to theDUT node known. If we know the value on any-ine 7 we “assert” thatdup_l _type, dup_r_type, and
edge of 2DUP node, then we can derive the value on all othgtenr and_t ype are all equal. This equates to the constraint on
edges incident on that node. If we know the values onteroy DUP as defined m_Sectlon II-B. LllfeW|se, Lines 8-11 enforce
edges incident on aOR node, we can derive the value orfhe correct behavior of thitags variable for each edge.
the r_emaining _edge. In this way we determing whether it ' Program Synthesizer
possible to derive the value on, say, the outgoing edge of the
M node. We also developed a synthesizer for generating secure
As an example, consider again the graph representation@?des. Given a fixed siz& (where by “size” here we mean
CBC mode depicted in Figure 2. From the current cipherteite number of instructions iBlock), one could naively iterate
block (i.e., the value on the ingoing edge of tB&JT node), OVer all possible (valid) combinations &f instructions, feed-
we can recover the value on the ingoing edge toDhé node ing each resulting mode into our model checker to determine
and then, using the fact that tRRP node is invertible, derive Whether the mode is secure or not. Such an approach would be
the value on the outgoing edge of tXOR node. This is not €xceedingly slow, as the majority of instruction combioas
enough, by itself, to recover the message block; howevere if result in trivially insecure (or undecryptable) schemesus,
are additionally given the state (i.e., the value on the ciny We implement several simple but effective pruning mecha-
edge of theSTART node), then we can recover the messag"ésms to remove incorrect or uninteresting modes from being
block. We then need to verify that, in bothit and Block, analyzed. This pruning process eliminates more than 99.99%
the state (i.e., the ingoing edge to tNEXTIV node) can be ©Of the possible modes from being passed through the model
derived from the ciphertext block. checker, greatly improving the running time of our synthesi
2) Security: Theorem 1 states that if a mode has a valid We now describe some of our pruning techniques. One
labeling, it is a secure mode of operation. Thus, deterrgiifin @Pproach looks at the current instruction being added to the
a mode is secure reduces to a constraint-satisfactiongmobdenerated mode, and checks the previous program instruc-
in which the goal is to assign a valid label to all the edgdi¥n(s) against a set of disallowed neighboring instrutio
in the Init/Block graphs while satisfying the constraints ifone such example is aiOR instruction applied to the two
Section 11I-B. Viewing the problem in this way lets us us@utgoing edges of ®UP instruction, which can never have a
an SMT solver to derive a correct satisfying assignment Yglid labeling. Another pruning strategy disallows two kac
one exists. In our implementation, we use the Z3 Theord@rback PRP instructions; while this is not invalid per se, it
Provep. only produces uninteresting modes (as no security is gained
We check for a valid labeling in several phases. Because BY¥-the second®RP instruction).
signing families to edges is deterministic and straiglweond,
we do this first. After this we check whether two ingoing
edges to anyXOR node (if one exists in the graph) are We ran our synthesizer to generate modes haBhgk
related. If there are, a valid labeling cannot exist and walgorithms containing up tol0 instructiond. We do not
reject the mode as being (potentially) insecure. Otherwige currently synthesize armnit algorithm, but instead used a
proceed to a second phase in which we encode each constraint

. . . . 4 ; ; ;
from Section III-B as an assertion in Z3. That is, we encode In our implementation we actually encode modes using a dtaskd
anguage which includes some additional instructions fovimg items around

each edge of the graph as a variable, and each node aspgfiack. When we say “up 00 instructions, we include these extra
instructions. However, the instruction count in Table | sloet include these
SAvailable at https://z3.codeplex.com. extra instructions, and thus denotes the actual size of idem

VI. RESULTS

© ©® N @ U N W NP

PR
P o

(declare-const dupl_type Int)

(declare-const dupl_flag_out Bool)

(declare-const dup|_flag_prf Bool)

(declare-const dupr_type Int)

(declare-const dupr_flag_out Bool)

(declare-const dupr_flag_prf Bool)

(assert (= dup_l_type dupr_type genrandtype))

(assert (= (and dup_l_flag_out dup_r_flag_out) false))

(assert (= (and dup_l_flag_prf dup_r_flag_prf) false))

(assert (= (or dup_Il_flag_out dup_r_flag_out) genrandflag_out))
(assert (= (or dup_l_flag_prf dup_r_flag_prf) genrandflag_prf))

Fig. 4. Example Z3 encoding of RUP instruction.

Instructions Valid ~ Decryptable Secure our synthesizer. Porting our approach to use the Z3 OCaml
1-6 0 0 0 bindings, once available, should greatly improve the diera
7 8 67 7 running time of our tool.
8 661 515 24
9 3467 1823 115
10 136 1187 153 VII. CONCLUSION AND FUTURE WORK

We have introduced a method for reasoning about modes
of operation using only “local” analysis of a single block of
NUMBER OF VALID DECRYPTAI;I-LAEBIA_ﬁDISECURE MODES BY NUMBER OF the g-iven mOde' We mOdel mOdeS as graphs and develop a

’ INSTRUCTIONS. labeling and constraint system on the edges of the graph, and
show that if a mode can be correctly labeled then it is secure.
Using this meta-theorem, we developed a model checker and
)) ,)) synthesizer for both automatically verifying whether a mod
fixed Init algorithm which generates a uniform IV and bothg qo¢\re and automatically generating new modes. Witrethes

outputs it and passes it on (as _state) to Mk algorit_hm tools, we discovered 309 unique secure modes, many of which
(cf. Figure 2). Our experiments include th€C instruction, have never been studied before in the literature.

which increments its input modut#", and the more complex As future work, we plan to investigate whether it is possible

ponstra_mts introduced in the appendix to handle this audtit to adapt our approach to the automated analysis and sysithesi
InStI’L:)(litIOI’I. o I o ¢ this tabl of authenticated encryption schemes and/or message &tithen
Table 1 shows our results. In the context of this table.qiion codes. We hope that the general framework presented

a "valid” mpde_ is defined as a mode whose acyclic gfaRH this paper can be applied to these primitives as well asroth
representation is connected, contains at leasPiie or PRP cryptographic tools

node, contains exactly orld, START, OUT, andNEXTIV |, tarmg of extending the present work, it would be useful

node, and contains NGENRAND nodes. A “decryptable” , ., nle our approach with automated generation of a proof
mode is a valid mode which passes our decryption cheglt.sq ity inEasyCrypt [11]. One could also explore adding

Finally, a_“secure“ mode is one that.also ha_s a valid Iabellng erations such as concatenation or field multiplicatioauo
We also include a check for removing duplicate modes; th,.';‘sll guage

is, modes that have different graph layouts but are equitale
(E.g., in one the left outgoing edge oflJP node is output, ACKNOWLEDGMENTS

and in the other the right outgoing edge oD&P node is work of Alex Malozemoff was conducted with Government
output.)_ Thus, the results in Table | represdrﬂtlnctngdes. support awarded by DoD, Air Force Office of Scientific
We discovered 309 secure modes (out of 9342 valid modegksearch, National Defense Science and Engineering Geadua
The modes containing seven instructions constitute thé WE(NDSEG) Fellowship, 32 CFR 168a. Work of Jonathan Katz
known CBC, OFB, and CFB modes. The modes containiRgas done for Exelis under contract number N00173-11-C-
eight instructions include CTR mode, as well as variants ©H45 to NRL. Work of Matthew Green was supported by the
CBC, OFB, and CFB mode with an additiorRF or PRP .5, Defense Advanced Research Projects Agency (DARPA)
instruction introduced. We also synthesize PCBC mode. and the Air Force Research Laboratory (AFRL) under contract

In terms of performance, we found that we can synthesipag750-11-2-0211. The authors thank M. Hicks and J. Foster
secure modes of operation with 10 instructions in around for comments on an earlier draft of this work.
10 minutes on a standard laptop. However, we believe this
can be greatly improved. Due to the fact that the Z3 OCaml REFERENCES
bindings were not available at the time of this writing, we[1] z. Manna and R. Waldinger, “A deductive approach to peogrsyn-
had to write our Z3 input to a file and then run a separate thesis,” ACM Transactions on Programming Languages and Systems

heck th it This additional . vol. 2, no. 1, pp. 90-121, 1980.

process to check the result. IS adaitional process oreatl [2] S. Srivastava, “Satisfiability-based program reasgrand program syn-

constitutes a large portion (nearly half) of the runningetiof thesis,” Ph.D. dissertation, University of Maryland, 2010

Total 9342 3592 309

[3] J. A. Akinyele, M. Green, S. Hohenberger, and M. W. Pagano Once each edge it¥ has been assigned a set of families,
“Machine-generated algorithms, proofs and software ferlthtch ver- \ya then try to assign &ype and flags to each edge G

ification of digital signature schemes,” ih9th ACM Conference on

Computer and Communications Secuyrily Yu, G. Danezis, and V. D. SUbJeCt to the folIowmg constraints:

Gligor, Eds. ACM Press, 2012, pp. 474-487. .
[4] J. A. Akinyele, M. Green, and S. Hohenberger, “Using SMilvers to

automate design tasks for encryption and signature schieme&0th

ACM Conference on Computer and Communications SecuhifjR.

Sadeghi, V. D. Gligor, and M. Yung, Eds. ACM Press, 2013, pp.

399-410.
[5] G.Barthe, J. M. Crespo, B. Grégoire, C. Kunz, Y. Lakhimes. Schmidt,
and S. Z. Béguelin, “Fully automated analysis of paddiagda en- .

cryption in the computational model,” i20th ACM Conference on
Computer and Communications Securiy-R. Sadeghi, V. D. Gligor,
and M. Yung, Eds. ACM Press, 2013, pp. 1247-1260.

[6] M. Gagné, P. Lafourcade, Y. Lakhnech, and R. SafaviRNdAutomated .
security proof for symmetric encryption modes,”li8th Asian Comput- .
ing Science Conferencd. Datta, Ed. Springer, 2009, pp. 39-53.

[7] ——, “Automated verification of block cipher modes of op&on, an
improved method,” irbth International Symposium on Foundations and
Practice of Securityser. Lecture Notes in Computer Science, J. Garcia-
Alfaro, F. Cuppens, N. Cuppens-Boulahia, A. Miri, and N. BavEds.,
vol. 7743. Springer, 2012, pp. 23-31.

[8] J. Courant, M. Daubignard, C. Ene, P. Lafourcade, and akhnech,
“Towards automated proofs for asymmetric encryption s@gim the
random oracle model,” ir5th ACM Conference on Computer and
Communications SecurjtyP. Ning, P. F. Syverson, and S. Jha, Eds.
ACM Press, 2008, pp. 371-380.

[9] J. Katz and Y. Lindell,Introduction to Modern Cryptography CRC
Press, 2007.

[10] P. Rogaway, “Nonce-based symmetric encryption,” Rast Software
Encryption—FSE 20Q4ser. Lecture Notes in Computer Science, B. K. e
Roy and W. Meier, Eds., vol. 3017. Springer, 2004, pp. 348-35

[11] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguei@omputer-
aided security proofs for the working cryptographer,” Anlvances in
Cryptology—Crypto 2011ser. Lecture Notes in Computer Science, e
P. Rogaway, Ed., vol. 6841. Springer, 2011, pp. 71-90.

APPENDIX

In this appendix, we modify the labels and constraints to
support thdNC instruction, and prove a version of Theorem 1
in this setting.

Edge labels.Recall we have a mode of encryption specified
by directed, acyclic graphsit andBlock. Let G denote their
union, and letE’ denote the total number of edgesGh Every
edge is labeled with a 3-tuplgam, type, flags) where

« fam is as before.

. type € {R,U, L} represents the “type” of the edge.
Intuitively, R denotes “random,”U denotes “unique,”
and L denotes “adversarially controlled.” We impose the
orderingL< U < R.

. flags € {0,1}* is a bit-vector. The first three bits denotg,
whether the edge can be used as input to OUT, PRF, or
INC, respectively, and we index into this bit-vector using *
the notationflags.OUT, flags.PRF, and flags.INC.

In addition, we have a flaflags./ NCd that, intuitively,
indicates whether the given edge or one of its related

START: Say there is aNEXTIV node in G (whether
in Init or in Block) whose ingoing edge has typgpe
and flagsflags. Then the outgoing edge frol8TART
hastype’ < type, flags’ < flags, andflags’.INCd =
flags.INCd.

GENRAND: The outgoing edge gets typ& and
flags.PRF = flags.OUT = 1. The value offlags.INC
can be arbitrary, and we sBags./INCd = flags.INC.
M: The outgoing edge getgpe =1 andflags = 0000.
DUP: Say the input edge has typgpe and flags
flags. The two output edges get typelype, =
type, = type and flags flags, and flags, such
that: (1) flags,.OUT & flags,.OUT = 0, and
(2) flags,.OUT | flags,.OUT = flags.OUT (the rules
for flags.PRF andflags.INC are analogous), and (3)
flags, . INCd = flags,.INCd = flags.INCd.

INC: We require that the ingoing edge ttNC has
type € {U,R} andflags.INC = 1. The outgoing edge
getstype’ = U, flags’.OUT = 0, andflags’.INC =
flags’. PRF = flags’.INCd = 1.

PRF: We require that the ingoing edge ®RF has
type € {U,R} andflags.PRF = 1. The outgoing edge
is treated just like the output GSENRAND.

XOR: We require that the ingoing edges to AOR
node are unrelated, at least one of them has type
and both havdlag./NCd = 0. The outgoing edge gets
typeR. Say the input edges have flaisgs, andflags,,
respectively. Then:

1) If both ingoing edges have typeR, the
outgoing edge gets flagsflags’ such that
flags.OUT = flags,.OUT | flags,.OUT
(the rule for flags’.PRF is analogous), and
flags’.INC = flags’.INCd = 0.

2) If only one edge (say, the first) has type then
flags’. OUT = flags,.OUT and flags’.PRF =
flags,.PRF butflags’.INC = flags".INCd = 0.

OUT: We require the ingoing edge to &UT node to
have typeR andflags.OUT = 1.

One can verify that the following invariants hold for any
beling satisfying the above constraints:

Invariant 1: If an edge hadlags.INC = 1, then it also
hasflags.INCd = 1.

Invariant 2: If edgee hasflags./NCd = 1 and edge’’
hasflags’.INCd = 0, thene ande’ are unrelated.

edges ever haflags.INC = 1 (either currently or in We rely on these when proving the following theorem.

the past). Theorem 2. Let (Init, Block) be a legal mode of operation
Constraints. In trying to label, we begin by assigning eaChspecified using the instructions above (includifg). If the

edge inG a set of families as in Section IlI-B, with the
following rule for INC nodes:
« INC: The outgoing edge is assigned the same set 0
families as the ingoing edge.

mode has a valid labeling, then it is a secure. In other words,
when the mode is instantiated with any secure block cipher,
thfe resulting encryption schemeliD-CPA secure.

Proof: We assume the reader has read the proof of the

analogous theorem in Section 1V, and thus we jump straightove that with all but negligible probability the followgn

to the details.

Fix some valid labeling ofnit and Block. Each time the
attacker requests encryption of somiélock message we
imagine creating a graplr consisting of one copy ofnit
and ¢ copies ofBlock. The valid labeling ofinit and Block
naturally extends to a labeling of this gra@ghthe edges irnit

invariants hold at the end of each step:
« Invariant 3: Foralle,e’ € PRF, val(e) # val(e’). (For-

mally, val(e) andval(e’) are random variables, and what
we mean here is that with all but negligible probability
they take on different values.)

« Invariant 4: After executing theith instruction, for all

are labeled in the obvious way, and the corresponding edges ¢ ¢ INC ande’ € PRF:

in each copy oBlock are assigned the same label. (The only

special case is an edge fromNEXTIV node in one block to

a START node in the next block, which we assign the same

label as the ingoing edge to thEXTIV node.)
Consider the step-by-step process by which edges are

val(e) € {val(¢) = T +1,...,val(e’) — 1}.
Moreover, for all distincte,e’ € INC:

val(e) ¢ {val(e) — T +1,...,val(e')}.

assigned values when a messagds encrypted. (Although
we speak here of “assigning values,” these are really random (Formally, val(e) andval(e’) are random variables, and
variables and so “assigning a value” is conceptual.) Edges what we mean formally in the first case—and analogously
are assigned values in topological order; i.e., the valuanof for the second case—is that with all but negligible
edge is not assigned unless values have been assigned to its probability the valuer taken byval(e) is not in the set
parents. We say an edge astive if it has been assigned a {£/ =T +14,...,2/ — 1}, wherez’ is the value taken
value but its children have not. (When we begin encrypting a by val(e’).)
message, the only active edges are the outgoing edges from al Invariant 5: For alle € PRF* and any set? of active
the M-nodes.) The only exceptions are ingoing edge®tsr edges unrelated te, val(e) is uniform even conditioned
nodes and the ingoing edge to the fiNEXTIV node; these onval(E) andval(PRF \ {e}).
become active when they are assigned a value, and remai@ Invariant 6: (a) Random variablegal(OUT) are jointly
active until the relevant instruction is processed. (Psetg uniform, even conditioned on the values of all previous
an OUT instruction just means declaring the ingoing edge to ciphertext blocks. Moreover, (b) for any C OUT,,
that instruction as no longer being active, but instead dein random variablesal(S) are jointly uniform, even con-
“output” as part of the ciphertext. Processing the fiKEXTIV ditioned on the values of all previous ciphertext blocks,
node means giving the computed ciphertext to the adveysary. val(OUT), and the values on all active edges unrelated
For simplicity, we assume all edges in a given copyBdck to edges inS.
are assigned a value befqre assigning a value to the outgoilge that Invariant 6(a) proves the theorem.
edge of theNEXTIV node in that copy oBlock. _ Clearly, the invariants hold at the beginning of the exper-

When we are done encrypting a message we give thgent. Now, assume the invariants hold before executing an
resulting ciphertext to the attacker, who then chooses éxé Ninstruction; we show that, with high probability, they cionte
message to be encrypted. We then create another graph @hflo|d after executing the instruction. As in the proof of
assign values as above. We stress that previous graphs@{gorem 1, we let “unhatted” variables denote the sets in
maintained: even though none of their edges are active, Wgestion before executing the instruction, and let “hatted
may still refer to the values taken by edges in previous gaplyariables denote the relevant sets following the instoucti

At any step in the above process, define the following seige now consider the possible instructions:

of edges in the graph: « Begin processing the next message: Note there are no
active edges before this instruction, and the active edges
after this instruction are just the set of* outgoing edges
from M-noge\s.P/R? = PRF and PRF = INC =
OUT, = OUT = (. Invariant 3 holds by the inductive
assumption, and the remaining invariants trivially hold.

« NEXTIV: The ingoing and outgoing edges have the same
label and value; thus, the invariants are not affected.

PRF =edges with type € {U/R} and
flags.PRF = 1 that are either active or
have entered RF node in the past

PRF*= active edges with type = R,
flags.PRF =1, andflags.INCd =0

INC = active edges withtype € {U,R} and

flags.INC =1] .
OUT, = active edges withtype = R and . START. _Let e, with ty!oe type and flag/sflags, be
flags.OUT = 1 the ingoing edge and’, with type type’ and flags

flags’, be the outgoing edge. Edgesand ¢/ have the
same value but possibly different labels. However, the
constraints ensure thaype’ < type, flags’ éjags,

Let T be a bound on the number of instructions in the graph andflags./NCd = flags’.INCd. Thus,val(PRF) C

G defined earlier. (Note thal must be polynomial, since the val(PRF) and val(INC) C val(INC), even when
number of message blocks is assumed to be polynomial.) We viewed as multisets, and thus Invariant 3 and Invariant 4

OUT = edges output for the message currently
being processed

continue to hold.OUT (fJ\T so Invariant 6(a)
continues to hold.

When processing th8TART instruction, the only active
edges—besides itself—are outgoing edges frorvi-
nodes, which are not i©OUT, or PRF* and do not have
flags.INC = 1. It is thus easy to verify the remaining

invariants:

—-Ife ¢ PRF*, then PRF* = () and Invariant 5 is
trivial; otherwise,e € PRF* and by induction the
invariant holds. -

- If ¢ ¢ OUT,, thenOUT, = 0 and Invariant 6(b)
is trivial; otherwisee € OUT, and by induction the
invariant holds.

DUP: Let ¢ be the ingoing edge and, e, the outgoing
edges.

— Invariant 3: Ifeq & P}Qlthen e1,es & PREF. If
e € PRF,/thn eo ¢ PRF and exactly one oé;
or ey is in PRF'. Sinceval(eg) = val(e1) = val(e),
this means thatval(PRF') val(PRF') (even
viewed as multisets), so Invariant 3 continues to hold.
Invariant 4: Arguing as aboveyal(INC) =

val(INC) even viewed as multisets. Since
val(PRF) = val(PRF) also, the invariant

continues to hold. R
Invariant 5: Fixé € PRF* and a setE of active
edges unrelated t& There are two cases to consider:

x ¢ € {ej,ea}. Theney € PRF*. Note that
val(eg) = val(é). Sinceé and ey are related,
all edges inE are unrelated ta,, and thus by
indugtionval(eo) is uniform even conditioned on
val(F) and val(PRF \ {eo}). Sinceval(eg) =
val(é), the invariant continues to hold.

x ¢ & {ej,e2}. In this case,é € PRF*. If
EN{ey,es} # 0, then letE be the same a&
except witheg in place ofe; and/ores; otherwise,
let E = E. Clearly, val(E) = val(E) and the
invariant continues to hold.

Invariant 6: We haveOUT = OUT and so Invari-

ant 6(a) is trivial. Note/tgaéo € OUT, iff exactly

onegf\el or ey is in OUT,; thus,val(OUT,) =
val(OUT,), even when viewed as multisets. Since
e1 ande; are related, andy, e;, andes are all related

to the same edges, Invariant 6(b) continues to hold

as well.

« GENRAND: This instruction adds an edge foRF' and
OUT,, and possiblyPRF* and INC. Since the value
of this edge is uniform and independent of any previous

edges, and the edge is not related to any other edges, all

the invariants continue to hold (with high probability).
PRF: By Invariant 3, the value on the ingoing edge to
the PRF instruction is distinct from all values previously
used as input to BRF instruction. Thus, the value on the
outgoing edge is uniform, and all the invariants continue
to hold (with high probability) just as in the case of a

GENRAND instruction.

INC: Denote the input edge by, and the output edge
by e;. Not/et\hateo/e\INC, eo ¢ PRF™ (by Invariant 1)
ande; € INCNPRF, e; ¢ PRF*. Because Invariant 4
holds before this step, Invariant 3 and Invariant 4 hold
after this step.

— Invariant 5: Note first thatPRF* = PRF*. Fix
e € PRF* = PRF* and a set of active edges
E unrelated toe. Let F Qeiote the active edges
unrelated ta:. The setEU(PRE\ {e}) is identical to
EU(PRF\{e}) except that, is in the former (since
e1 € PRF bute; # ¢) andeg is in the latter (since
ep € F by Invariant 2). Sinces; is a deterministic
function of eg, the invariant continues to hold.
Invariant 6: Invariant 6(a) clearly continues to hold.
SinceOUT, C OUT, andval(e;) is a deterministic
function of val(eg), Invariant 6(b) also continues to
hold.

XOR: Let eg, e, be the two ingoing edges, ane
the outgoing edge. We know tha, e;, are unrelated,
flags,./NCd = flags,.INCd = 0, and at least one of
eo, €, (say,ep) hastype, = R.
— Invariant 3: Ifflags,. PRF = 0 the invariant trivially
continues to hold. Otherwise, there are two cases to
consider:

x flags;.PRF = 1 and flags,.PRF = 1: In
this case,eq € PRF*. Let E be the set of
active edges unrelated), and notee, € E.
Invariant 5 implies thawal(ey) is uniform even
conditioned onval(e) and val(PRF \ {eo}).
Thus val(e1) = val(eg) @ val(ep) is uniform
conditioned orval(PRF \ {e1}), and so Invari-
ant 3 continues to hold with all but negligible
probability.

x flags,.PRF = 1 and flags,.PRF = 0: Here
it must be the case that, has typeR and
fIagsg.PRF = 1. An argument as above, swap-
ping e, and ey, shows that Invariant 3 continues
to hold except with negligible probability.

Invariant 4: Note that INC INC. |If
flags,.PRF = 0, the invariant trivially continues
to hold. Otherwise,e; € PRF* and so at least
one of ey oOr ¢) (say ep) is in PRF™*. Invariant 2
says that every edge idANC is unrelated toey.
Arguing as above (using Invariant 5) gil(_ei that
val(eq) is uniform even conditioned omal(INC)
and so Invariant 4 continues to hold.
— Invariant 5: Fixé € PRF* and a setE' of active
edges unrelated t& There are two cases to consider:
x é = e;. As above, one can show thaal(é) =
val(er) = val(eo) @ val(ep) is_uniform even
conditioned orval(E) andval(PRF \ {e}).
* € # e;. Thus,é € PRF*. If e; € E, then let
FE be the same a# except withey and e, in

place ofe;; otherwise, letE = E. By induction,
val(é) is uniform even conditioned oval(E) and
val(PRF\ {¢é}), and thus we conclude theal(¢)
is also_uniform even conditioned oral(E) and
val(PRF \ {é}).
— Invariant 6: Invariant 6(a) clearly holds. As for In-
variant 6(b), an argument as above showswlée,)
is uniform even conditioned on all the required
values, and so this invariant continues to hold.

« OUT: This instruction reduces the number of active
edges, so Invariant 3, Invariant 4, and Invariant 5 triyiall
continue to hold. Invariant 6 continues to hold because
of how OUT, is defined.

The above prove the theorem. []

