
Automated Analysis and Synthesis of Block-Cipher
Modes of Operation

Alex J. Malozemoff
Department of Computer Science

University of Maryland
amaloz@cs.umd.edu

Jonathan Katz
Department of Computer Science

University of Maryland
jkatz@cs.umd.edu

Matthew D. Green
Department of Computer Science

Johns Hopkins University
mgreen@cs.jhu.edu

Abstract—Block ciphers such as AES are deterministic, keyed
functions that operate on small, fixed-size blocks. Block-cipher
modes of operation define a mechanism for probabilistic en-
cryption of arbitrary length messages using any underlying
block cipher. A mode of operation can be proven secure (say,
against chosen-plaintext attacks) based on the assumptionthat
the underlying block cipher is a pseudorandom function. Such
proofs are complex and error-prone, however, and must be done
from scratch whenever a new mode of operation is developed.

We propose anautomated approach for the security analysis
of block-cipher modes of operation based on a “local” analysis of
the steps carried out by the mode when handling asingle message
block. We model these steps as a directed, acyclic graph, with
nodes corresponding to instructions and edges corresponding
to intermediate values. We then introduce a set oflabels and
constraints on the edges, and prove a meta-theorem showing that
any mode for which there exists a labeling of the edges satisfying
these constraints is secure (against chosen-plaintext attacks). This
allows us to reduce security of a given mode to a constraint-
satisfaction problem, which in turn can be handled using an
SMT solver. We couple our security-analysis tool with a routine
that automatically generates viable modes; together, these allow
us to synthesize hundreds of secure modes.

Index Terms—symmetric-key encryption, modes of operation,
program synthesis

I. I NTRODUCTION

Designing and proving security of cryptographic construc-
tions can be difficult, time-consuming, and error-prone. Devel-
oping a protocol for some task meeting various requirements
involves creativity and hard work; even when only small
changes to an existing construction are involved, each change
typically requires a cryptographic proof of security to be
redone from scratch.

To simplify, streamline, and speed up this process, it would
be hugely beneficial toautomate(parts of) this design pro-
cess. Being able to automate the analysis of cryptographic
constructions would enable rapid examination of proposed
candidates with less chance of error; coupling this with a
systematic way of generating candidates that satisfy a given set
of functional requirements would enable automated synthesis
of secure constructions. Here we can draw inspiration from the
field of program synthesis[1], which has recently witnessed
several successes (see Srivastava’s Ph.D. thesis [2] for a recent
survey).

The past few years have seen the first steps toward auto-
mated analysis and synthesis of cryptographic constructions;

we refer the reader to Section I-A for a review of prior
work. In this work we focus on automated analysis and
synthesis ofblock-cipher modes of operation. A block cipher
is a deterministic, keyed functionF ; with a key k fixed,
the functionFk : {0, 1}n → {0, 1}n operates on small,n-
bit blocks. (A prominent example is the standardized block
cipher AES, which has a 128-bit block size.) Secure1 en-
cryption using a block cipher requires choosing somemode
of operationto handle both probabilistic encryption (so that
the same message, encrypted twice, does not yield the same
ciphertext) as well as messages of arbitrary length. Several
secure modes of operation were specified as part of the DES
standard in the 1970s, and modes such as CTR and CBC
are in widespread use today. More recently, various modes
of operation with stronger security properties, or based on
newer primitives such as tweakable block ciphers, have been
proposed; see http://csrc.nist.gov/groups/ST/toolkit/BCM for
some examples.

The core idea of our approach to the automated analysis of
block-cipher modes of operation is to focus on the operations
carried out by a given mode when handling asinglemessage
block. We model these steps as a directed, acyclic graph in
which nodes correspond to atomic operations (such as XORing
two values together, evaluating a pseudorandom function on
some value, etc.) and edges correspond to intermediate values.
We introduce a set of labels for the edges in such graphs, along
with a set of constraints on how edges can be labeled. Our
central result is a meta-theorem stating that if a given graph,
corresponding to some mode, can be labeled while satisfying
the constraints, then that mode is secure. We thus reduce the
security of any mode of operation to a constraint-satisfaction
problem, which in turn can be addressed by an SMT solver.

Our meta-theorem shows that our constraints aresound,
in that any mode classified as secure is, indeed, secure; it
is not complete, and so may falsely reject a secure mode.
Nevertheless, we show that our constraints are permissive
enough to capture all commonly used (secure) modes we are
aware of, including CBC, CTR, OFB, CFB, and PCBC.

Based on the above meta-theorem, we implemented a model
checker designed to evaluate candidate modes of operation.

1Here we mean the default notion of CPA-security, a.k.a., security against
chosen-plaintext attacks.

Our model checker takes as input a mode specified as a graph,
and determines both whether the mode iscorrect (i.e., whether
there exists a corresponding decryption algorithm that recovers
the message from the ciphertext) and whether it issecure. We
then use our model checker to synthesize secure modes of
operation in the natural way. That is, we implement a program
synthesizer that automatically generates candidate modesof
operation for analysis, and then filters out those modes that
are not identified as being secure by our model checker. Doing
this in a naı̈ve manner would be prohibitively slow due to the
combinatorial explosion in the number of candidate modes. To
deal with this, we use several pruning strategies that allowus
to eliminate more than 99.99% of potential candidates from
consideration before invoking our model checker. Using our
approach we are able to synthesize hundreds of secure modes
of operation. Our implementation could easily be integrated
with a simple tool assigning scores to different modes (e.g.,
expressing a preference for minimizing calls to the block
cipher or for avoiding integer addition) to synthesize secure
modes with desired properties.

Although our approach currently only addresses security
against chosen-plaintext attacks, we are hopeful that our ideas
can be extended to handle stronger security definitions such
as authenticated encryption. More generally, we believe our
techniques could find application to the automated design and
verification of other cryptographic primitives and protocols.

A. Prior Work

Several works have recently considered automated gener-
ation and/or analysis of cryptographic algorithms. Akinyele
et al. [3], [4] developed tools for automatically generating
batch-verification algorithms for digital-signature schemes [3],
for converting schemes using symmetric bilinear groups into
ones using asymmetric bilinear groups [4], and for compiling
signature schemes to schemes achieving stronger security
properties [4]. In all these cases, their tools do not directly
analyze or verify security of new constructions; instead, they
take as input schemes that are assumed to be secure, and then
attempt to apply a fixed set of transformations that have been
proven to preserve (or amplify) security. Closer to our results
are those of Barthe et al. [5], who propose a technique for the
automated analysis ofpublic-key encryption schemes based
on trapdoor permutations and a small set of other instructions.
They also use their analysis tool to synthesize secure schemes.
The proof techniques and analysis methods are very different
in the public-key setting as compared to the symmetric-key
setting we consider here.

The work most similar to our own is that of Gagné et
al. [6], [7]. Building on earlier work [8], they propose using
a compositional Hoare logic to analyze block-cipher modes
of operation. They use an imperative language in which each
operation updates a distribution over states of the program,
and then use their Hoare logic to reason about the output
distribution of modes expressed in this language. Roughly,
they show that if, after the execution of a mode, all variables
are marked as indistinguishable from uniform, then the modeis

secure. The required property can be proven for a given mode
by applying their Hoare-logic rules to the entire sequence of
operations used by the mode when encrypting some message.
A drawback of their approach is that it can only reason about
the encryption of messages of some pre-specified, fixed length,
and their proofs provide no “inductive” guarantee about what
happens when the mode is used to encrypt messages of other
(arbitrary) lengths. Thus, to use their approach one would
have to provide a separate proof for all possible message
lengths one would expect to encounter in practice. Moreover,
our “local” approach is fundamentally different from their
“global” perspective. In contrast to Gagné et al., we analyze
the operations carried out by a given mode when processing
a single message block; our meta-theorem guarantees that
if that (finite) set of operations has a valid labeling, then
it corresponds to a mode of operation that is secure for
encrypting messages of arbitrary (polynomial) length. Besides
this conceptual difference, our approach also ensures that
analysis of a given mode (for messages of unbounded length)
can be reduced to the satisfiability of afinite set of constraints.
This, in turn, can be easily solved (in practice) using an
SMT solver. Our approach is thus particularly suited for the
synthesis ofnewmodes of operation.

B. Outline

We introduce some background material in Section II, and in
Section III we discuss our approach to modeling block-cipher
modes of operation. Section IV contains our central meta-
theorem and proof. Section V describes our implementation of
the model checker and a program synthesizer that together can
be used to automatically generate secure modes of encryption;
the results of our experiments using those tools are described
in Section VI. We conclude in Section VII.

II. PRELIMINARIES

We use the standard definitions of private-key encryption
schemes and block ciphers (i.e., pseudorandom permuta-
tions) [9]. We let n denote the block length of a block
cipher F ; thus, for a fixed keyk, the functionFk defines
a bijection onn-bit strings. Formally we treatn as a security
parameter, and so “polynomial” (resp., “negligible”) means
“polynomial in n” (resp., “negligible inn”). A message/ci-
phertext block is just ann-bit string.

We utilize a notion of security for private-key encryption
called IND$-CPA [10], which is stronger than indistinguisha-
bility against chosen-plaintext attacks in that it requires cipher-
texts to be indistinguishable from uniform strings.

Definition 1. Let Π = (Enc,Dec) be an encryption scheme in
which the encryption of aǹ-block message yields an(`+1)-
block ciphertext, and let$(·) be an oracle that, when queried
on input m ∈ {0, 1}`·n, returns a uniform string of length
(`+ 1) · n. We sayΠ is IND$-CPA secure if the following is
negligible for all probabilistic polynomial-time algorithmsA:

∣∣∣∣ Pr
k←{0,1}n

[
AEnck(·)(1n) = 1

]
− Pr

[
A$(·)(1n) = 1

]∣∣∣∣ .

Since the issue will arise in our analysis, we remark that
the decryption algorithmDec is irrelevant as far as security is
concerned (although it is, of course, critical for correctness).

III. M ODELING MODES OFOPERATION

A mode of operation refers to a mechanism for encrypting
arbitrary length messages based on any underlying block
cipher. For simplicity, we assume all messages being encrypted
have length a multiple of the block length. (This is without
loss of generality, as messages can be padded unambiguously
to such a length using known techniques.) For our purposes
in this and the next section, a mode is defined by a pair of
efficient algorithmsInit and Block that each expect oracle
access to a functionFk : {0, 1}n → {0, 1}n. These algorithms
have the following functionality:

• Init: This is a probabilistic algorithm that, on input1n,
outputs an initial ciphertext blockc0 ∈ {0, 1}n and state
informationz0 ∈ {0, 1}n.

• Block: This is a deterministic algorithm that takes as input
a message blockm ∈ {0, 1}n and state informationz ∈
{0, 1}n, and outputs a ciphertext blockc ∈ {0, 1}n and
updated state informationz′ ∈ {0, 1}n.

(The above could be generalized so that, e.g.,Block outputs
two ciphertext blocks for each message block processed, or
both Init andBlock output two-block state. While this would
require modifications to our constraints, our approach would
be able to handle such generalizations.)

With some block cipherF fixed, a mode of operation
(Init,Block) induces an encryption algorithmEnc. Specif-
ically, if m = m1‖ · · · ‖m` is an `-block message, then
Enck(m) does the following:

1) Compute(c0, z0)← Init(1n), whereInit is given oracle
access toFk.

2) For i = 1, . . . , `, set(ci, zi) := Block(mi, zi−1), where
Block is given oracle access toFk.

3) Output the ciphertextc0‖c1‖ · · · ‖c`.

As an example, consider the CBC mode of operation in
Figure 1. In CBC mode, theInit algorithm simply generates a
uniform initialization vector (IV); the IV is both output as
the initial ciphertext block and also passed along as state
information. TheBlock algorithm XORs the incoming state
information z with the current message blockm, passes the
result through a block cipherFk, and uses the resulting value
Fk(m⊕ z) as both the next ciphertext block and the updated
state.

In this paper, a mode(Init,Block) is secureif the induced
encryption scheme isIND$-CPA secure wheneverF is a
secure block cipher. (Here, we do not concern ourselves with
decryption since we are only interested in security. For a given
mode to be meaningful, it will also need to possess a corre-
sponding decryption algorithm. When we synthesize modes,
we check for existence of a suitable decryption algorithm in
addition to verifying security.)

IV

IV

Fk

m1

Fk Fk

m2 m3

c1 c2 c3

Fig. 1. CBC mode.

A. Viewing Modes as Graphs

The Init and Block algorithms constituting a mode of
encryption can be viewed as directed, acyclic graphs, where
the nodes correspond to instructions (such as⊕ or application
of Fk), and the edges correspond to (intermediate) values,
which are all n-bit strings. A node applies its associated
operation on the value(s) contained on its ingoing edge(s),
with the result(s) of the operation assigned to its outgoing
edge(s). As an example, consider the graph version of CBC
mode in Figure 2. TheInit portion of the graph corresponds to
the generation of a random IV (theGENRAND node) which
is then duplicated (theDUP node) and output as part of the
ciphertext (through theOUT node) as well as passed on to
the Block algorithm (through theNEXTIV node). TheBlock
portion of the graph contains aSTART node, which is how
the state information is provided as input (this information
comes from theNEXTIV node of either theInit algorithm
or a previous invocation ofBlock), as well as anM node,
which is how the current message block is provided as input.
In the case of CBC mode, those input values are XORed and
the result is then passed throughFk. That resulting value is
duplicated, and again one copy is output as the next block of
the ciphertext (viaOUT) and another copy is passed on as
state (viaNEXTIV).

From now on, we view a mode of encryption as being
defined by a pair of directed, acyclic graphs, corresponding
to the Init and Block algorithms, whose nodes are labeled
with instructions from the list below and which also satisfy
certain constraints described next. The instructions we support
include:

• DUP: Has in-degree one and out-degree two. Replicates
the ingoing value on both its outgoing edges.

• GENRAND: Has in-degree zero and out-degree one.
Generates a uniform value in{0, 1}n.

• M: Has in-degree zero and out-degree one. This corre-
sponds to the current message block being provided as
input. This instruction appears exactly once in theBlock

graph, and does not appear in theInit graph.
• PRF andPRP: Have in-degree one and out-degree one.

These instructions both apply the block cipher to the
value on the ingoing edge and assign the result to the
outgoing edge;PRP is invertible butPRF need not be.
With regard to security, we rely on the PRF/PRP switch-

GENRAND

DUP

OUT NEXTIV

START

XOR

M

PRP

DUP

OUT NEXTIV

Init algorithm

Block algorithm

Fig. 2. CBC mode expressed as a graph.

ing lemma and treat bothPRF andPRP instructions as
pseudorandom functions (rather than permutations). For
this reason, in the rest of this and the next section we
only speak of aPRF instruction. We will later treatPRF
andPRP differently with regard tocorrectness.

• XOR: Has in-degree two and out-degree one. XORs the
values on its two ingoing edges and assigns the result to
its outgoing edge.

• NEXTIV: Has in-degree one and out-degree zero. (The
outgoing edge fromNEXTIV in Figure 2 is conceptual.)
The value on the ingoing edge is treated as the state that is
output byInit or Block. This instruction appears exactly
once in each of theInit andBlock graphs.

• START: Has in-degree zero and out-degree one. (The
ingoing edge toSTART in Figure 2 is conceptual.) The
value on the outgoing edge is the state information pro-
vided as input toBlock. This instruction appears exactly
once in theBlock graph, and does not appear in theInit

graph.
• OUT: Has in-degree one and out-degree zero. The value

on its ingoing edge represents the next ciphertext block
that is output. This instruction appears exactly once in
each of theInit andBlock graphs.

The above provide a “basic” instruction set that we considerin
the main body of this paper. In the appendix we additionally
consider the following instruction:
• INC: Has in-degree one and out-degree one. Increments

the value on its ingoing edge (modulo2n), and assigns
the result to its outgoing edge.

The above instructions (includingINC) are sufficient to model
all the standard modes such as ECB, OFB, CFB, CBC, CTR,
and PCBC.

B. Edge Labels and Constraints

In the previous section we defined what it means for a pair
of directed, acyclic graphs to correspond to alegal mode. But
not all legal modes are secure! In this section we introduce a
set of edge labels, and also describe a set of constraints that
a valid labeling must satisfy. Our meta-theorem states thatif
a legal mode of operation has a valid edge labeling, then that
mode is secure.

We now give the details of the edge labeling for some
(legal) mode of operation specified by directed, acyclic graphs
(Init,Block). LetG denote the union ofInit andBlock, and let
E denote the total number of edges inG. A label is a 3-tuple
(fam, type, flags) where
• fam ⊆ {1, . . . , E} represents the set offamilies to

which the edge belongs. Two edgese1, e2 with families
fam1, fam2, respectively, arerelated if fam1∩ fam2 6= ∅.

• type ∈ {R,⊥} represents a “type,” where, intuitively,
R denotes “random” and⊥ denotes “adversarially con-
trolled.” We impose the ordering⊥< R.

• flags ∈ {0, 1}2 is a bit-vector denoting whether the
edge can be used as input toOUT or PRF, respectively.
We index into this bit-vector by using the notation
flags.OUT and flags.PRF . We define the (partial) or-
deringflags ≤ flags′ iff flags.OUT ≤ flags′.OUT and
flags.PRF ≤ flags′.PRF .

In trying to labelG, we begin by assigning each edge inG
a set of families using the following, deterministic procedure
that first handles edges inInit before moving on to the edges
in Block:

1) While there is an instruction node whose ingoing edges
have all been assigned a set of families, assign its
outgoing edge(s) a set of families using the following
rules:
• DUP: The outgoing edges are both assigned the

same set of families as the ingoing edge.
• PRF: Let int be the least unused value in
{1, . . . , E}. The outgoing edge is assigned the set
of families {int}.

• XOR: Let the ingoing edges have sets of families
fam and fam′. The outgoing edge is assigned the
set of familiesfam ∪ fam′.

2) Otherwise, we choose an instruction node with in-
degree 0, with preference for theSTART node if its
outgoing edge has not yet been labeled. The outgoing
edge from this node is assigned{int}, whereint is the
least unused value in{1, . . . , E}.

Once each edge inG has been assigned a set of families,
we then try to assign atype and flags to each edge inG
subject to the following constraints:
• START: Say there is aNEXTIV node inG (whether in

Init or in Block) whose ingoing edge has typetype and
flags flags. Then the outgoing edge fromSTART has
type′ ≤ type andflags′ ≤ flags.

• GENRAND: The outgoing edge gets typeR andflags =
11.

• M: The outgoing edge gets type⊥ andflags = 00.
• DUP: Say the input edge has typetype and flagsflags.

The two output edges get typestype1 = type2 = type,
and flagsflags1 andflags2 such that the following hold:
(1) flags1 & flags2 = 00 and (2)flags1 | flags2 = flags,
where& and | refer to bit-wise AND and OR, respec-
tively.

• PRF: We require that the ingoing edge toPRF has type
R and flags.PRF = 1. The outgoing edge gets typeR
andflags = 11.

• XOR: We require that the ingoing edges to anXOR node
are unrelated, and that at least one of them has typeR.
The outgoing edge gets typeR. Say the input edges have
flagsflags1 andflags2, respectively. Then:

1) If both ingoing edges have typeR, the outgoing
edge gets flagsflags1 | flags2.

2) If only one edge (say, the first) has typeR, the
outgoing edge gets flagsflags1.

• OUT: We require the ingoing edge to anOUT node to
have typeR andflags.OUT = 1.

GENRAND

DUP

OUT NEXTIV

START

XOR

M

PRP

DUP

OUT NEXTIV

({1}, R, 11)

({1}, R, 10) ({1}, R, 01)

({2}, R, 01) ({3}, ⊥, 00)

({2,3}, R, 01)

({4}, R, 11)

({4}, R, 10) ({4}, R, 01)

Init algorithm

Block algorithm

Fig. 3. A valid labeling for CBC mode.

A labeling of G that satisfies all of the above constraints
is called a valid labeling. One can verify that the graphs
corresponding to each of CBC, CFB, and OFB modes have
valid labelings,2 whereas ECB mode (which is known to be

2If we include theINC instruction (and add constraints for this instruction
as discussed in the appendix), then CTR mode has a valid labeling also.

insecure) does not. See Figure 3 for a valid labeling of CBC
mode.

We now briefly describe some intuition behind these labels
and constraints. We define two types for the edge labels:
“random” (a.k.a.,R) and “adversarially controlled” (a.k.a.,⊥).
For instructions likePRF andXOR, we want a guarantee that
the output from these instructions is random. Thus, we do not,
for example, allow adversarially controlled values as input into
a PRF node, as the output is not “random” to an attacker who
can query thePRF node on the same input multiple times.

There are only two instructions that introduce values:
GENRAND produces a random value, andM produces an
adversarially controlled value (as the adversary suppliesthe
message to be encrypted). For random values, we want to
enforce that they are used in ways that do not void their
“randomness.” This is where theflags bit-vector comes into
play: by accounting for whether a random value can be input
into anOUT node or aPRF node, we prevent a random value
from both being output as ciphertextand input into a PRF
node, which can lead to insecure schemes. (This does not mean
there do not exist secure schemes which have this property;
however, our tool does not allow such schemes.)

In the next section we prove thatanymode that has a valid
labeling is secure. Importantly, determining the existence of
a valid labeling for a given mode requires reasoning over
a finite graphG and a finite set of constraints, and we can
therefore use an SMT solver to check whether a valid labeling
is possible.

IV. M ETA-THEOREM AND PROOF

Theorem 1. Let (Init,Block) be a legal mode of operation.
If it has a valid labeling, then it is secure. In other words,
when the mode is instantiated with any secure block cipher,
the resulting encryption scheme isIND$-CPA secure.

Proof: Consider the encryption scheme that results from
instantiating Init/Block with a secure block cipherF . The
experiment in which a polynomial-time adversary interacts
with this scheme proceeds as follows:

• A uniform key for the block cipher is chosen.
• The attacker may then (adaptively) specify messages to be

encrypted. After aǹ -block messagem = m1‖ · · · ‖m`

is specified, we imagine creating a connected graphG

consisting of one copy ofInit and ` copies ofBlock by
simply adding an edge from aNEXTIV node ofInit/Block
to the START node of the subsequent copy ofBlock.
To encrypt the message, we begin by assigning theith
message blockmi to be the value on the outgoing edge
of the M-instruction in theith copy ofBlock. We then
iteratively assign values to the edges inG (based on the
instruction at each node) until every edge is assigned a
value. (The outgoing edge from aNEXTIV node or a
START node is assigned the same value as the ingoing
edge to that node.) This, in particular, assigns values to
the ingoing edges to everyOUT node, and so defines an
(`+ 1)-block ciphertext that is given to the attacker.

Using a standard hybrid argument, we may replace the
block cipher (and choice of uniform key) with a function
chosen uniformly from the space of all functions fromn-
bit inputs ton-bit outputs. This means thatPRF instructions
in the above process can now be handled as follows: If the
value on the ingoing edge to aPRF node was previously
input to aPRF node (whether in the course of encrypting the
current message, or during encryption of some prior message),
then assign to the outgoing edge the same output value used
previously. Otherwise, assign to the outgoing edge a uniform
value in {0, 1}n. Once we make this substitution, the entire
experiment becomes information-theoretic and we no longer
need to be concerned with the running time of the attacker.
(However, we continue to assume a polynomial upper bound
on the number of messages the attacker can request to be
encrypted as well as the block-length of each such message.)
As the adversary is computationally unbounded we may,
without loss of generality, treat the attacker as deterministic.
The probability space of the attacker’s interaction is thentaken
only over choice of the random function and any internal
randomness of the mode (i.e., inGENRAND instructions).
For each edge in all the graphsG (corresponding to all the
messages whose encryption is requested by the attacker), the
value assigned to that edge is a random variable. Letval(e)
be the random variable corresponding to the value assigned to
some edgee. If E is a set of edges, thenval(E) denotes the
multiset{val(e) | e ∈ E}. We show that the joint distribution
of the random variables corresponding to all the ingoing
edges toOUT nodes—and hence the joint distribution of all
ciphertext blocks returned to the attacker—is statistically close
to uniform. This implies the scheme isIND$-CPA secure.

Fix some valid labeling ofInit and Block. As discussed
above, each time the attacker requests an encryption of some
`-block message we imagine creating a graphG consisting of
one copy ofInit and` copies ofBlock. The valid labeling of
Init andBlock naturally extends to a labeling of this graphG;
the edges inInit are labeled in the obvious way, and the
corresponding edges in each copy ofBlock are assigned the
same label. (The only special case is an edge from aNEXTIV
node in one block to aSTART node in the next block, which
we assign the same label as the ingoing edge to thatNEXTIV
node.)

Consider the step-by-step process by which edges inG are
assigned values when a messagem is encrypted. (Although
we speak here of “assigning values,” we will continue to treat
these as random variables and so “assigning a value” is merely
conceptual.) Edges are assigned values in topological order;
i.e., the value of an edge is not assigned unless values have
been assigned to its parents. We say an edge isactive if it
has been assigned a value but its children have not. (When
we begin encrypting a message, the only active edges are the
outgoing edges from all theM-nodes.) The only exceptions
are ingoing edges toOUT nodes as well as the ingoing edge
to the final NEXTIV node; these become active when they
are assigned a value, and remain active until the relevant
instruction is processed. (Processing anOUT instruction just

means declaring the ingoing edge to that instruction as no
longer being active, but instead being “output” as part of the
ciphertext. Processing the finalNEXTIV node means giving
the computed ciphertext to the adversary.) For simplicity,we
assume all edges in a given copy ofBlock are assigned a value
before assigning a value to the outgoing edge of theNEXTIV
node in that copy ofBlock.

When we are done encrypting a message we give the
resulting ciphertext to the attacker, who then chooses the next
message to be encrypted. We then create another graph and
assign values as above. We stress that previous graphs are
maintained: even though none of their edges are active, we
may still refer to the values taken by edges in previous graphs.

At any step in the above process, define the following sets
of edges:

PRFa= edges of typeR with flags.PRF = 1

that are active

OUTa= edges of typeR with flags.OUT = 1

that are active

OUT = edges output for the message currently

being processed

These sets change as instructions are processed. We prove that
with all but negligible probability the following invariants hold
at the end of each step:

• Invariant 1: For anyS ⊆ PRFa, the random variables
val(S) are jointly uniform, even conditioned on the values
on all active edges unrelated to edges inS and the values
of all edges previously used as input to aPRF instruction.

• Invariant 2: For anyS ⊆ OUTa, the random variables
val(S) are jointly uniform, even conditioned on the values
of all previous ciphertext blocks (including those in
OUT) and the values on all active edges unrelated to
edges inS.

• Invariant 3: The random variablesval(OUT) are jointly
uniform, even conditioned on the values of all previous
ciphertexts.

Invariant 3 implies that when encryption of the given
message is done, the resulting ciphertext is (statistically close
to) uniform, which is what we wanted to show. The other
two invariants are used as part of proving that Invariant 3 is
maintained. (Intuitively, Invariant 1 enforces that the inputs
into everyPRF instruction are uniform, and thus distinct with
high probability; this, in turn, means that all the outputs of
thePRF instructions are uniform and independent. Invariant 2
enforces that values on ingoing edges toOUT instructions are
uniform, and thus when we “output” these values the resulting
ciphertext is also uniform.)

Clearly the above invariants all hold when beginning to
encrypt some message. (At that point in time,PRFa, OUTa,
and OUT are all empty.) Now, assume the invariants hold
before executing some instruction; we show that, with high
probability, they continue to hold after executing the in-
struction. We letPRFa, OUTa, and OUT denote the sets

in question before the instruction, and let̂PRFa, ÔUTa,
and ÔUT denote the (possibly modified) sets following the
instruction. (Observe thatOUT only changes when processing
an OUT instruction. Thus, Invariant 3 trivially holds for all
other instructions, and we only consider it when we analyze
the OUT instruction.)

• NEXTIV: The ingoing and outgoing edges have the same
label and the same value; thus, the invariants trivially
continue to hold.

• START: We consider Invariant 1; the argument is iden-
tical for Invariant 2.
Let e, labeled(fam, type, flags), be the ingoing edge to
this instruction and lete′, labeled(fam′, type′, flags′),
be the outgoing edge. The labeling constraints imply that
type′ ≤ type and flags′ ≤ flags. Note further that the
only other active edges at the time this instruction is
applied are outgoing edges fromM nodes, none of which
is related to eithere or e′, and none of which is inPRFa

or P̂RFa. If e′ 6∈ P̂RFa then Invariant 1 trivially holds
after the instruction is applied. Otherwise, the fact that
type′ ≤ type andflags′ ≤ flags means thate ∈ PRFa.
Sincee ande′ have the same value and Invariant 1 holds
before the instruction is applied, the invariant continues
to hold after the instruction is applied.

• DUP: We consider Invariant 1; the argument is identical
for Invariant 2.
Let e0 be the ingoing edge to this instruction, and let
e1 and e2 be the two outgoing edges. Ife0 6∈ PRFa,
then e1, e2 6∈ P̂RFa; this means thatPRFa = P̂RFa

and—sincee0, e1, ande2 all have the same families—the
invariant continues to hold. Ife0 ∈ PRFa, then exactly
one of e1 or e2 is in P̂RFa. Since the values ofe0, e1,
and e2 are the same, and all these edges have the same
families, the invariant again continues to hold.

• GENRAND: Because of the way outgoing edges of a
GENRAND instruction are labeled, this instruction adds
an edge toPRFa and OUTa. Since the value on this
edge is uniform and independent of any previous values,
the invariants continue to hold.

• PRF: Using Invariant 1, the value on the ingoing edge to
the PRF instruction is uniform, even conditioned on the
values of all previous ingoing edges to aPRF instruction.
Therefore, with all but negligible probability, the value
on this edge is distinct from all values previously used
as input to aPRF instruction. When this is the case, the
value on the outgoing edge is uniform and both invariants
continue to hold just as for aGENRAND instruction.

• XOR: We consider Invariant 1; the argument is identical
for Invariant 2.
Let e0 and e′0, labeled (fam0, type0, flags0) and
(fam′0, type′0, flags′0), respectively, be the two ingoing
edges, and lete1, labeled(fam1, type1, flags1), be the
outgoing edge. Note thate0 and e′0 must be unrelated
and at least one ofe0 and e′0 must have typeR. Also,
fam1 = fam0 ∪ fam′0 and so anything related toe0 or e′0

is also related toe1.
If e1 6∈ P̂RFa, then e0, e

′
0 6∈ PRFa; thus P̂RFa =

PRFa and the invariant continues to hold.
Otherwise,e1 ∈ P̂RFa and at least one ofe0 or e′0 (say
e0) is in PRFa. By Invariant 1 we have thatval(e0) is
uniform even conditioned onval(e′0). Thus, val(e1) =
val(e0)⊕ val(e′0) is uniform and the invariant continues
to hold.

• OUT: Let e be the ingoing edge. This instruction reduces
the number of active edges, so clearly Invariant 1 and
Invariant 2 continue to hold.
The labeling constraints ensure thate ∈ OUTa. Also,
note thatÔUT = OUT∪{e}. Using Invariant 2, we have
that val(e) is uniform even conditioned onval(OUT),
and thus Invariant 3 continues to hold.

This completes the proof.
It is possible to extract from our proof a bound on the

concretesecurity of the mode of operation as a function of
the number (and type) of instructions inInit/Block as well as
the total number of message blocks encrypted.

V. I MPLEMENTATION

We have developed a prototype model checker for veri-
fying whether a given mode has a valid labeling, as well
as a synthesizer for generating modes. The code is written
in OCaml, and is freely available from the authors. The
implementation includes use of theINC instruction, with the
modified constraints as described in the appendix.

A. Model Checker

The core of our system is a model checker designed to
evaluate a candidate encryption mode. Our model checker
takes as input a description of the mode of operation (defined
in terms of itsInit andBlock routines) and determines both
whether the corresponding encryption algorithm iscorrect
(i.e., whether there exists an efficient decryption algorithm)
and whether it issecure(i.e., whether the mode isIND$-CPA-
secure).

1) Correctness:We have developed an algorithm that takes
as input a mode of operation, and determines whether decryp-
tion of that mode is possible (with knowledge of the key). This
is useful for pruning out uninteresting modes. The algorithm
works by examining the description ofBlock to see whether
each message block can be recovered from the ciphertext. To
do this, we proceed as follows:

• If the value on the outgoing edge of theM node in
Block (i.e., the current message block) can be recovered
from the ingoing edge to theOUT node (i.e., the current
ciphertext block), the mode is decryptable. (This is not
typical, but is true for, e.g., ECB mode.)

• Otherwise, we checkBlock to see whether the requisite
message block can be recovered from both the current
ciphertext block and the value on the outgoing edge of the
START node (i.e., the state passed from one invocation
of Init/Block to the next). If not, we reject the mode as
being undecryptable.

If so, then we need to verify that the state can be
recovered from the previous ciphertext block(s). So:

– We check theInit algorithm to see whether the value
on the ingoing edge to theNEXTIV node can be
recovered from the value on the ingoing edge to
the OUT node. If not, we reject the mode as being
undecryptable.

– We check theBlock algorithm to see whether the
value on the ingoing edge to theNEXTIV node can
be recovered from the value on the ingoing edge to
the OUT node and the value on the outgoing edge
of the START node.

Our algorithm is sound, and successfully identifies the standard
modes as being decryptable.

To perform each of the above checks, we recursively
progress through the graphs defining theInit/Block algorithms
in the natural way. We begin, say, with the value on the ingoing
edge to theOUT node known. If we know the value on any
edge of aDUP node, then we can derive the value on all other
edges incident on that node. If we know the values on anytwo
edges incident on anXOR node, we can derive the value on
the remaining edge. In this way we determine whether it is
possible to derive the value on, say, the outgoing edge of the
M node.

As an example, consider again the graph representation of
CBC mode depicted in Figure 2. From the current ciphertext
block (i.e., the value on the ingoing edge of theOUT node),
we can recover the value on the ingoing edge to theDUP node
and then, using the fact that thePRP node is invertible, derive
the value on the outgoing edge of theXOR node. This is not
enough, by itself, to recover the message block; however, ifwe
are additionally given the state (i.e., the value on the outgoing
edge of theSTART node), then we can recover the message
block. We then need to verify that, in bothInit and Block,
the state (i.e., the ingoing edge to theNEXTIV node) can be
derived from the ciphertext block.

2) Security: Theorem 1 states that if a mode has a valid
labeling, it is a secure mode of operation. Thus, determining if
a mode is secure reduces to a constraint-satisfaction problem
in which the goal is to assign a valid label to all the edges
in the Init/Block graphs while satisfying the constraints in
Section III-B. Viewing the problem in this way lets us use
an SMT solver to derive a correct satisfying assignment if
one exists. In our implementation, we use the Z3 Theorem
Prover3.

We check for a valid labeling in several phases. Because as-
signing families to edges is deterministic and straightforward,
we do this first. After this we check whether two ingoing
edges to anyXOR node (if one exists in the graph) are
related. If there are, a valid labeling cannot exist and we
reject the mode as being (potentially) insecure. Otherwise, we
proceed to a second phase in which we encode each constraint
from Section III-B as an assertion in Z3. That is, we encode
each edge of the graph as a variable, and each node as an

3Available at https://z3.codeplex.com.

assertion which forces the proper labels on the input and output
variables of that node. We then run this through Z3, which
tells us whether the expression is satisfiable or not given the
asserted constraints.

Figure 4 presents an example encoding of aDUP node.
Lines 1–6 define the labels for the outgoing edges. We
encode the edge’stype as an integer, treating⊥ as 0 andR
as 2. (In the appendix we add a third type which we treat
as 1.) Each bit inflags is treated as a Boolean value. In
the referenced figure,dup_l_type, dup_l_flag_out, and
dup_l_flag_prf denotetype, flags.OUT , andflags.PRF ,
respectively, for the left outgoing edge of theDUP node, and
likewise, dup_r_type, etc., denote the corresponding values
for the right outgoing edge. In this example, the ingoing edge
to theDUP node comes fromGENRAND, whose labeling is
denoted bygenrand_type, etc.

Lines 7–11 define the constraints. As an example, in
Line 7 we “assert” thatdup_l_type, dup_r_type, and
genrand_type are all equal. This equates to the constraint on
DUP as defined in Section III-B. Likewise, Lines 8–11 enforce
the correct behavior of theflags variable for each edge.

B. Program Synthesizer

We also developed a synthesizer for generating secure
modes. Given a fixed sizeN (where by “size” here we mean
the number of instructions inBlock), one could naı̈vely iterate
over all possible (valid) combinations ofN instructions, feed-
ing each resulting mode into our model checker to determine
whether the mode is secure or not. Such an approach would be
exceedingly slow, as the majority of instruction combinations
result in trivially insecure (or undecryptable) schemes. Thus,
we implement several simple but effective pruning mecha-
nisms to remove incorrect or uninteresting modes from being
analyzed. This pruning process eliminates more than 99.99%
of the possible modes from being passed through the model
checker, greatly improving the running time of our synthesizer.

We now describe some of our pruning techniques. One
approach looks at the current instruction being added to the
generated mode, and checks the previous program instruc-
tion(s) against a set of disallowed neighboring instructions.
One such example is anXOR instruction applied to the two
outgoing edges of aDUP instruction, which can never have a
valid labeling. Another pruning strategy disallows two back-
to-backPRP instructions; while this is not invalid per se, it
only produces uninteresting modes (as no security is gained
by the secondPRP instruction).

VI. RESULTS

We ran our synthesizer to generate modes havingBlock

algorithms containing up to10 instructions4. We do not
currently synthesize anInit algorithm, but instead used a

4 In our implementation we actually encode modes using a stack-based
language which includes some additional instructions for moving items around
the stack. When we say “up to10 instructions,” we include these extra
instructions. However, the instruction count in Table I does not include these
extra instructions, and thus denotes the actual size of the mode.

1 (dec la re−c on s t dup l t ype I n t)
2 (dec la re−c on s t d u p l f l a g o u t Bool)
3 (dec la re−c on s t d u p l f l a g p r f Bool)
4 (dec la re−c on s t dup r t ype I n t)
5 (dec la re−c on s t d u p r f l a g o u t Bool)
6 (dec la re−c on s t d u p r f l a g p r f Bool)
7 (a s s e r t (= dup l t ype dup r type genrand type))
8 (a s s e r t (= (and d u p l f l a g o u t d u p r f l a g o u t) f a l s e))
9 (a s s e r t (= (and d u p l f l a g p r f d u p r f l a g p r f) f a l s e))

10 (a s s e r t (= (or d u p l f l a g o u t d u p r f l a g o u t) g e n r a n d f l a g o u t))
11 (a s s e r t (= (or d u p l f l a g p r f d u p r f l a g p r f) g e n r a n d f l a g p r f))

Fig. 4. Example Z3 encoding of aDUP instruction.

Instructions Valid Decryptable Secure

1–6 0 0 0
7 78 67 7
8 661 515 24
9 3467 1823 115
10 5136 1187 163

Total 9342 3592 309

TABLE I
NUMBER OF VALID , DECRYPTABLE, AND SECURE MODES BY NUMBER OF

INSTRUCTIONS.

fixed Init algorithm which generates a uniform IV and both
outputs it and passes it on (as state) to theBlock algorithm
(cf. Figure 2). Our experiments include theINC instruction,
which increments its input modulo2n, and the more complex
constraints introduced in the appendix to handle this additional
instruction.

Table I shows our results. In the context of this table,
a “valid” mode is defined as a mode whose acyclic graph
representation is connected, contains at least onePRF or PRP
node, contains exactly oneM, START, OUT, and NEXTIV
node, and contains noGENRAND nodes. A “decryptable”
mode is a valid mode which passes our decryption check.
Finally, a “secure” mode is one that also has a valid labeling.
We also include a check for removing duplicate modes; that
is, modes that have different graph layouts but are equivalent.
(E.g., in one the left outgoing edge of aDUP node is output,
and in the other the right outgoing edge of aDUP node is
output.) Thus, the results in Table I representdistinct nodes.

We discovered 309 secure modes (out of 9342 valid modes).
The modes containing seven instructions constitute the well-
known CBC, OFB, and CFB modes. The modes containing
eight instructions include CTR mode, as well as variants of
CBC, OFB, and CFB mode with an additionalPRF or PRP
instruction introduced. We also synthesize PCBC mode.

In terms of performance, we found that we can synthesize
secure modes of operation with≤ 10 instructions in around
10 minutes on a standard laptop. However, we believe this
can be greatly improved. Due to the fact that the Z3 OCaml
bindings were not available at the time of this writing, we
had to write our Z3 input to a file and then run a separate
process to check the result. This additional process creation
constitutes a large portion (nearly half) of the running time of

our synthesizer. Porting our approach to use the Z3 OCaml
bindings, once available, should greatly improve the overall
running time of our tool.

VII. C ONCLUSION AND FUTURE WORK

We have introduced a method for reasoning about modes
of operation using only “local” analysis of a single block of
the given mode. We model modes as graphs and develop a
labeling and constraint system on the edges of the graph, and
show that if a mode can be correctly labeled then it is secure.
Using this meta-theorem, we developed a model checker and
synthesizer for both automatically verifying whether a mode
is secure and automatically generating new modes. With these
tools, we discovered 309 unique secure modes, many of which
have never been studied before in the literature.

As future work, we plan to investigate whether it is possible
to adapt our approach to the automated analysis and synthesis
of authenticated encryption schemes and/or message authenti-
cation codes. We hope that the general framework presented
in this paper can be applied to these primitives as well as other
cryptographic tools.

In terms of extending the present work, it would be useful
to couple our approach with automated generation of a proof
of security inEasyCrypt [11]. One could also explore adding
operations such as concatenation or field multiplication toour
language.

ACKNOWLEDGMENTS

Work of Alex Malozemoff was conducted with Government
support awarded by DoD, Air Force Office of Scientific
Research, National Defense Science and Engineering Graduate
(NDSEG) Fellowship, 32 CFR 168a. Work of Jonathan Katz
was done for Exelis under contract number N00173-11-C-
2045 to NRL. Work of Matthew Green was supported by the
U.S. Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL) under contract
FA8750-11-2-0211. The authors thank M. Hicks and J. Foster
for comments on an earlier draft of this work.

REFERENCES

[1] Z. Manna and R. Waldinger, “A deductive approach to program syn-
thesis,” ACM Transactions on Programming Languages and Systems,
vol. 2, no. 1, pp. 90–121, 1980.

[2] S. Srivastava, “Satisfiability-based program reasoning and program syn-
thesis,” Ph.D. dissertation, University of Maryland, 2010.

[3] J. A. Akinyele, M. Green, S. Hohenberger, and M. W. Pagano,
“Machine-generated algorithms, proofs and software for the batch ver-
ification of digital signature schemes,” in19th ACM Conference on
Computer and Communications Security, T. Yu, G. Danezis, and V. D.
Gligor, Eds. ACM Press, 2012, pp. 474–487.

[4] J. A. Akinyele, M. Green, and S. Hohenberger, “Using SMT solvers to
automate design tasks for encryption and signature schemes,” in 20th
ACM Conference on Computer and Communications Security, A.-R.
Sadeghi, V. D. Gligor, and M. Yung, Eds. ACM Press, 2013, pp.
399–410.

[5] G. Barthe, J. M. Crespo, B. Grégoire, C. Kunz, Y. Lakhnech, B. Schmidt,
and S. Z. Béguelin, “Fully automated analysis of padding-based en-
cryption in the computational model,” in20th ACM Conference on
Computer and Communications Security, A.-R. Sadeghi, V. D. Gligor,
and M. Yung, Eds. ACM Press, 2013, pp. 1247–1260.

[6] M. Gagné, P. Lafourcade, Y. Lakhnech, and R. Safavi-Naini, “Automated
security proof for symmetric encryption modes,” in13th Asian Comput-
ing Science Conference, A. Datta, Ed. Springer, 2009, pp. 39–53.

[7] ——, “Automated verification of block cipher modes of operation, an
improved method,” in5th International Symposium on Foundations and
Practice of Security, ser. Lecture Notes in Computer Science, J. Garcı́a-
Alfaro, F. Cuppens, N. Cuppens-Boulahia, A. Miri, and N. Tawbi, Eds.,
vol. 7743. Springer, 2012, pp. 23–31.

[8] J. Courant, M. Daubignard, C. Ene, P. Lafourcade, and Y. Lakhnech,
“Towards automated proofs for asymmetric encryption schemes in the
random oracle model,” in15th ACM Conference on Computer and
Communications Security, P. Ning, P. F. Syverson, and S. Jha, Eds.
ACM Press, 2008, pp. 371–380.

[9] J. Katz and Y. Lindell,Introduction to Modern Cryptography. CRC
Press, 2007.

[10] P. Rogaway, “Nonce-based symmetric encryption,” inFast Software
Encryption—FSE 2004, ser. Lecture Notes in Computer Science, B. K.
Roy and W. Meier, Eds., vol. 3017. Springer, 2004, pp. 348–359.

[11] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin,“Computer-
aided security proofs for the working cryptographer,” inAdvances in
Cryptology—Crypto 2011, ser. Lecture Notes in Computer Science,
P. Rogaway, Ed., vol. 6841. Springer, 2011, pp. 71–90.

APPENDIX

In this appendix, we modify the labels and constraints to
support theINC instruction, and prove a version of Theorem 1
in this setting.

Edge labels.Recall we have a mode of encryption specified
by directed, acyclic graphsInit andBlock. Let G denote their
union, and letE denote the total number of edges inG. Every
edge is labeled with a 3-tuple(fam, type, flags) where
• fam is as before.
• type ∈ {R,U,⊥} represents the “type” of the edge.

Intuitively, R denotes “random,”U denotes “unique,”
and⊥ denotes “adversarially controlled.” We impose the
ordering⊥< U < R.

• flags ∈ {0, 1}4 is a bit-vector. The first three bits denote
whether the edge can be used as input to OUT, PRF, or
INC, respectively, and we index into this bit-vector using
the notationflags.OUT , flags.PRF , and flags.INC.
In addition, we have a flagflags.INCd that, intuitively,
indicates whether the given edge or one of its related
edges ever hadflags.INC = 1 (either currently or in
the past).

Constraints. In trying to labelG, we begin by assigning each
edge inG a set of families as in Section III-B, with the
following rule for INC nodes:
• INC: The outgoing edge is assigned the same set of

families as the ingoing edge.

Once each edge inG has been assigned a set of families,
we then try to assign atype and flags to each edge inG
subject to the following constraints:

• START: Say there is aNEXTIV node in G (whether
in Init or in Block) whose ingoing edge has typetype
and flagsflags. Then the outgoing edge fromSTART
has type′ ≤ type, flags′ ≤ flags, and flags′.INCd =
flags.INCd.

• GENRAND: The outgoing edge gets typeR and
flags.PRF = flags.OUT = 1. The value offlags.INC

can be arbitrary, and we setflags.INCd = flags.INC.
• M: The outgoing edge getstype =⊥ andflags = 0000.
• DUP: Say the input edge has typetype and flags

flags. The two output edges get typestype1 =
type2 = type and flags flags1 and flags2 such
that: (1) flags1.OUT & flags2.OUT = 0, and
(2) flags1.OUT | flags2.OUT = flags.OUT (the rules
for flags.PRF and flags.INC are analogous), and (3)
flags1.INCd = flags2.INCd = flags.INCd.

• INC: We require that the ingoing edge toINC has
type ∈ {U,R} and flags.INC = 1. The outgoing edge
gets type′ = U, flags′.OUT = 0, and flags′.INC =
flags′.PRF = flags′.INCd = 1.

• PRF: We require that the ingoing edge toPRF has
type ∈ {U,R} andflags.PRF = 1. The outgoing edge
is treated just like the output ofGENRAND.

• XOR: We require that the ingoing edges to anXOR
node are unrelated, at least one of them has typeR,
and both haveflag.INCd = 0. The outgoing edge gets
typeR. Say the input edges have flagsflags1 andflags2,
respectively. Then:

1) If both ingoing edges have typeR, the
outgoing edge gets flagsflags′ such that
flags′.OUT = flags1.OUT | flags2.OUT

(the rule for flags′.PRF is analogous), and
flags′.INC = flags′.INCd = 0.

2) If only one edge (say, the first) has typeR, then
flags′.OUT = flags1.OUT and flags′.PRF =
flags1.PRF but flags′.INC = flags′.INCd = 0.

• OUT: We require the ingoing edge to anOUT node to
have typeR andflags.OUT = 1.

One can verify that the following invariants hold for any
labeling satisfying the above constraints:

• Invariant 1: If an edge hasflags.INC = 1, then it also
hasflags.INCd = 1.

• Invariant 2: If edgee hasflags.INCd = 1 and edgee′

hasflags′.INCd = 0, thene ande′ are unrelated.

We rely on these when proving the following theorem.

Theorem 2. Let (Init,Block) be a legal mode of operation
specified using the instructions above (includingINC). If the
mode has a valid labeling, then it is a secure. In other words,
when the mode is instantiated with any secure block cipher,
the resulting encryption scheme isIND$-CPA secure.

Proof: We assume the reader has read the proof of the

analogous theorem in Section IV, and thus we jump straight
to the details.

Fix some valid labeling ofInit and Block. Each time the
attacker requests encryption of some`-block message we
imagine creating a graphG consisting of one copy ofInit
and ` copies ofBlock. The valid labeling ofInit andBlock

naturally extends to a labeling of this graphG; the edges inInit
are labeled in the obvious way, and the corresponding edges
in each copy ofBlock are assigned the same label. (The only
special case is an edge from aNEXTIV node in one block to
a START node in the next block, which we assign the same
label as the ingoing edge to thatNEXTIV node.)

Consider the step-by-step process by which edges inG are
assigned values when a messagem is encrypted. (Although
we speak here of “assigning values,” these are really random
variables and so “assigning a value” is conceptual.) Edges
are assigned values in topological order; i.e., the value ofan
edge is not assigned unless values have been assigned to its
parents. We say an edge isactive if it has been assigned a
value but its children have not. (When we begin encrypting a
message, the only active edges are the outgoing edges from all
the M-nodes.) The only exceptions are ingoing edges toOUT
nodes and the ingoing edge to the finalNEXTIV node; these
become active when they are assigned a value, and remain
active until the relevant instruction is processed. (Processing
an OUT instruction just means declaring the ingoing edge to
that instruction as no longer being active, but instead being
“output” as part of the ciphertext. Processing the finalNEXTIV
node means giving the computed ciphertext to the adversary.)
For simplicity, we assume all edges in a given copy ofBlock

are assigned a value before assigning a value to the outgoing
edge of theNEXTIV node in that copy ofBlock.

When we are done encrypting a message we give the
resulting ciphertext to the attacker, who then chooses the next
message to be encrypted. We then create another graph and
assign values as above. We stress that previous graphs are
maintained: even though none of their edges are active, we
may still refer to the values taken by edges in previous graphs.

At any step in the above process, define the following sets
of edges in the graph:

PRF = edges with type ∈ {U,R} and
flags.PRF = 1 that are either active or
have entered aPRF node in the past

PRF ∗= active edges with type = R,
flags.PRF = 1, andflags.INCd = 0

INC = active edges withtype ∈ {U,R} and
flags.INC = 1

OUTa= active edges with type = R and
flags.OUT = 1

OUT = edges output for the message currently
being processed

Let T be a bound on the number of instructions in the graph
G defined earlier. (Note thatT must be polynomial, since the
number of message blocks is assumed to be polynomial.) We

prove that with all but negligible probability the following
invariants hold at the end of each step:

• Invariant 3: For all e, e′ ∈ PRF , val(e) 6= val(e′). (For-
mally, val(e) andval(e′) are random variables, and what
we mean here is that with all but negligible probability
they take on different values.)

• Invariant 4: After executing theith instruction, for all
e ∈ INC ande′ ∈ PRF :

val(e) 6∈ {val(e′)− T + i, . . . , val(e′)− 1}.

Moreover, for all distincte, e′ ∈ INC:

val(e) 6∈ {val(e′)− T + i, . . . , val(e′)}.

(Formally, val(e) and val(e′) are random variables, and
what we mean formally in the first case—and analogously
for the second case—is that with all but negligible
probability the valuex taken byval(e) is not in the set
{x′ − T + i, . . . , x′ − 1}, wherex′ is the value taken
by val(e′).)

• Invariant 5: For all e ∈ PRF ∗ and any setE of active
edges unrelated toe, val(e) is uniform even conditioned
on val(E) andval(PRF \ {e}).

• Invariant 6: (a) Random variablesval(OUT) are jointly
uniform, even conditioned on the values of all previous
ciphertext blocks. Moreover, (b) for anyS ⊆ OUTa,
random variablesval(S) are jointly uniform, even con-
ditioned on the values of all previous ciphertext blocks,
val(OUT), and the values on all active edges unrelated
to edges inS.

Note that Invariant 6(a) proves the theorem.
Clearly, the invariants hold at the beginning of the exper-

iment. Now, assume the invariants hold before executing an
instruction; we show that, with high probability, they continue
to hold after executing the instruction. As in the proof of
Theorem 1, we let “unhatted” variables denote the sets in
question before executing the instruction, and let “hatted”
variables denote the relevant sets following the instruction.
We now consider the possible instructions:

• Begin processing the next message: Note there are no
active edges before this instruction, and the active edges
after this instruction are just the set of outgoing edges
from M-nodes.P̂RF = PRF and P̂RF

∗
= ÎNC =

ÔUT a = ÔUT = ∅. Invariant 3 holds by the inductive
assumption, and the remaining invariants trivially hold.

• NEXTIV: The ingoing and outgoing edges have the same
label and value; thus, the invariants are not affected.

• START: Let e, with type type and flags flags, be
the ingoing edge ande′, with type type′ and flags
flags′, be the outgoing edge. Edgese and e′ have the
same value but possibly different labels. However, the
constraints ensure thattype′ ≤ type, flags′ ≤ flags,
and flags.INCd = flags′.INCd. Thus, val(P̂RF) ⊆

val(PRF) and val(ÎNC) ⊆ val(INC), even when
viewed as multisets, and thus Invariant 3 and Invariant 4

continue to hold.OUT = ÔUT , so Invariant 6(a)
continues to hold.
When processing theSTART instruction, the only active
edges—besidese itself—are outgoing edges fromM-
nodes, which are not inOUTa or PRF ∗ and do not have
flags.INC = 1. It is thus easy to verify the remaining
invariants:

– If e′ 6∈ P̂RF ∗, then P̂RF ∗ = ∅ and Invariant 5 is
trivial; otherwise,e ∈ PRF ∗ and by induction the
invariant holds.

– If e′ 6∈ ÔUT a, then ÔUT a = ∅ and Invariant 6(b)
is trivial; otherwise,e ∈ OUTa and by induction the
invariant holds.

• DUP: Let e0 be the ingoing edge ande1, e2 the outgoing
edges.

– Invariant 3: If e0 6∈ PRF , then e1, e2 6∈ P̂RF . If
e0 ∈ PRF , thene0 6∈ P̂RF and exactly one ofe1
or e2 is in P̂RF . Sinceval(e0) = val(e1) = val(e2),
this means thatval(PRF) = val(P̂RF) (even
viewed as multisets), so Invariant 3 continues to hold.

– Invariant 4: Arguing as above,val(ÎNC) =
val(INC) even viewed as multisets. Since
val(PRF) = val(P̂RF) also, the invariant
continues to hold.

– Invariant 5: Fix ê ∈ P̂RF ∗ and a setÊ of active
edges unrelated tôe. There are two cases to consider:

∗ ê ∈ {e1, e2}. Then e0 ∈ PRF ∗. Note that
val(e0) = val(ê). Since ê and e0 are related,
all edges inÊ are unrelated toe0, and thus by
inductionval(e0) is uniform even conditioned on
val(Ê) and val(PRF \ {e0}). Since val(e0) =
val(ê), the invariant continues to hold.

∗ ê 6∈ {e1, e2}. In this case, ê ∈ PRF ∗. If
Ê ∩ {e1, e2} 6= ∅, then let Ẽ be the same aŝE
except withe0 in place ofe1 and/ore2; otherwise,
let Ẽ = Ê. Clearly, val(Ẽ) = val(E) and the
invariant continues to hold.

– Invariant 6: We haveOUT = ÔUT and so Invari-
ant 6(a) is trivial. Note thate0 ∈ OUTa iff exactly
one of e1 or e2 is in ÔUT a; thus, val(OUTa) =

val(ÔUT a), even when viewed as multisets. Since
e1 ande2 are related, ande0, e1, ande2 are all related
to the same edges, Invariant 6(b) continues to hold
as well.

• GENRAND: This instruction adds an edge toPRF and
OUTa, and possiblyPRF ∗ and INC. Since the value
of this edge is uniform and independent of any previous
edges, and the edge is not related to any other edges, all
the invariants continue to hold (with high probability).

• PRF: By Invariant 3, the value on the ingoing edge to
thePRF instruction is distinct from all values previously
used as input to aPRF instruction. Thus, the value on the
outgoing edge is uniform, and all the invariants continue
to hold (with high probability) just as in the case of a

GENRAND instruction.
• INC: Denote the input edge bye0 and the output edge

by e1. Note thate0 ∈ INC, e0 6∈ PRF ∗ (by Invariant 1)
ande1 ∈ ÎNC∩P̂RF , e1 6∈ P̂RF ∗. Because Invariant 4
holds before this step, Invariant 3 and Invariant 4 hold
after this step.

– Invariant 5: Note first thatP̂RF ∗ = PRF ∗. Fix
e ∈ P̂RF ∗ = PRF ∗ and a set of active edges
Ê unrelated toe. Let E denote the active edges
unrelated toe. The setÊ∪(P̂RF \{e}) is identical to
E∪(PRF \{e}) except thate1 is in the former (since
e1 ∈ P̂RF but e1 6= e) ande0 is in the latter (since
e0 ∈ E by Invariant 2). Sincee1 is a deterministic
function of e0, the invariant continues to hold.

– Invariant 6: Invariant 6(a) clearly continues to hold.
SinceÔUT a ⊆ OUTa andval(e1) is a deterministic
function of val(e0), Invariant 6(b) also continues to
hold.

• XOR: Let e0, e
′
0 be the two ingoing edges, ande1

the outgoing edge. We know thate0, e′0 are unrelated,
flags0.INCd = flags′0.INCd = 0, and at least one of
e0, e

′
0 (say,e0) hastype0 = R.

– Invariant 3: Ifflags1.PRF = 0 the invariant trivially
continues to hold. Otherwise, there are two cases to
consider:

∗ flags1.PRF = 1 and flags0.PRF = 1: In
this case,e0 ∈ PRF ∗. Let E be the set of
active edges unrelated toe0, and notee′0 ∈ E.
Invariant 5 implies thatval(e0) is uniform even
conditioned onval(e′0) and val(PRF \ {e0}).
Thus val(e1) = val(e0) ⊕ val(e′0) is uniform
conditioned onval(P̂RF \ {e1}), and so Invari-
ant 3 continues to hold with all but negligible
probability.

∗ flags1.PRF = 1 and flags0.PRF = 0: Here
it must be the case thate′0 has type R and
flags′0.PRF = 1. An argument as above, swap-
ping e′0 and e0, shows that Invariant 3 continues
to hold except with negligible probability.

– Invariant 4: Note that ÎNC = INC. If
flags1.PRF = 0, the invariant trivially continues
to hold. Otherwise,e1 ∈ P̂RF ∗ and so at least
one of e0 or e′0 (say e0) is in PRF ∗. Invariant 2
says that every edge inINC is unrelated toe0.
Arguing as above (using Invariant 5) gives that
val(e1) is uniform even conditioned onval(ÎNC)
and so Invariant 4 continues to hold.

– Invariant 5: Fix ê ∈ P̂RF ∗ and a setÊ of active
edges unrelated tôe. There are two cases to consider:

∗ ê = e1. As above, one can show thatval(ê) =
val(e1) = val(e0) ⊕ val(e′0) is uniform even
conditioned onval(Ê) andval(P̂RF \ {ê}).

∗ ê 6= e1. Thus, ê ∈ PRF ∗. If e1 ∈ Ê, then let
Ẽ be the same aŝE except withe0 and e′0 in

place ofe1; otherwise, letẼ = Ê. By induction,
val(ê) is uniform even conditioned onval(E) and
val(PRF \{ê}), and thus we conclude thatval(ê)
is also uniform even conditioned onval(Ê) and
val(P̂RF \ {ê}).

– Invariant 6: Invariant 6(a) clearly holds. As for In-
variant 6(b), an argument as above shows theval(e1)
is uniform even conditioned on all the required
values, and so this invariant continues to hold.

• OUT: This instruction reduces the number of active
edges, so Invariant 3, Invariant 4, and Invariant 5 trivially
continue to hold. Invariant 6 continues to hold because
of how OUTa is defined.

The above prove the theorem.

