
Analysis of a Proposed Hash-Based Signature

Standard, rev. 4

Jonathan Katz∗

Abstract

We analyze the concrete security provided by a signature scheme described in a recent
Internet Draft by McGrew and Curcio.

1 Overview

McGrew and Curcio [6] recently proposed the LMS scheme for hash-based digital signatures. The
proposed construction instantiates Merkle’s tree-based approach [7, 8] with a one-time signature
scheme (called the LM-OTS scheme) based on work of Lamport, Diffie, Winternitz, and Merkle [4,
7, 8] plus modifications proposed by Leighton and Micali [5] as suggested by [2]. Here, we analyze
the concrete security of the LM-OTS scheme in the multi-instance setting, where multiple public
keys are generated and an attack is successful if it results in a forged signature with respect to any
of those keys. This, in turn, is used to analyze the concrete security of the full LMS scheme.

2 Description of the LM-OTS Scheme

We begin with a detailed description of the LM-OTS scheme, following [6]. LetH : {0, 1}∗ → {0, 1}8n
be a function that we will treat in our analysis as a random oracle. Fix w ∈ {1, 2, 4, 8} as a param-

eter of the scheme, and set e
def
= 2w − 1. Set u

def
= 8n/w; note that the output of H can be viewed

as a sequence of u integers, each w bits long. Set v
def
= ⌈⌊log u · (2w − 1) + 1⌋/w⌉, and p

def
= u + v.

Define a function checksum : ({0, 1}w)u → {0, 1}wv as follows:

checksum(h0, . . . , hu−1)
def
=

u−1∑
i=0

(2w − 1− hi) ,

where each hi ∈ {0, 1}w is viewed as an integer in the range {0, . . . , 2w − 1} and the result is
expressed as an integer using exactly wv bits.1 For positive integers i, b with i < 28b, we let [i]b

denote the b-byte representation of i. For a string s and positive integer j, set H0
s (x; j)

def
= x. For

positive integers i ≥ 1 and j, define

H i
s(x; j)

def
= H

(
H i−1

s (x; j + i− 2), s, [j + i− 1]1, 0x00
)
.

∗Dept. of Computer Science, University of Maryland. Email: jkatz@cs.umd.edu. Work performed under a
consultancy agreement with University Technical Services, Inc. on behalf of the National Security Agency. We thank
Laurie E. Law and Jerome A. Solinas for suggesting we write this paper.

1In [6] the result is expressed as a 16-bit integer, but only the top wv bits are used.

1



Define the LM-OTS scheme as follows:

Key-generation algorithm Gen
Key generation takes as input id = (I, q), where I is a 31-byte identifier and q is a 4-byte diversi-
fication factor. The algorithm proceeds as follows:

1. Choose p uniform values x0, . . . , xp−1 ∈ {0, 1}8n.

2. For i = 0 to p− 1, compute yi := He
id,[i]2

(xi; 0).

3. Compute pk := H(id, y0, . . . , yp−1, 0x01).

The public key is pk, and the private key is sk = (x0, . . . , xp−1).

Signing algorithm Sign
Signing takes as input a private key sk = (x0, . . . , xp−1) and a message M ∈ {0, 1}∗ as usual, as
well as id = (I, q) as above. It does:

1. Choose uniform C ∈ {0, 1}8n.

2. Compute Q := H(M,C, id, 0x02) and c := checksum(Q). Set V := Q∥c, and parse V as a
sequence of w-bit integers V0, . . . , Vp−1.

3. For i = 0, . . . , p− 1, compute σi := HVi

id,[i]2
(xi; 0).

4. Return the signature σ = (C, q, σ0, . . . , σp−1).

Verification algorithm Vrfy
Verification takes as input a message M ∈ {0, 1}∗ and a signature (C, q, σ0, . . . , σp−1) as usual, as
well as I as above. It sets id = (I, q) and does:

1. Compute Q := H(M,C, id, 0x02) and c := checksum(Q). Set V := Q∥c, and parse V as a
sequence of w-bit integers V0, . . . , Vp−1.

2. For i = 0, . . . , p− 1, compute yi := He−Vi

id,[i]2
(σi;Vi).

3. Output H(id, y0, . . . , yp−1, 0x01).

We note that, in contrast to the usual convention, Vrfy outputs a string rather than a bit and does
not take a public key as input. A signature σ on some message M is valid relative to some fixed
public key pk if the output of Vrfy is equal to pk.

One can verify that correctness holds in the following sense: for any I, q, any (pk, sk) output
by Gen(I, q), and any message M , we have Vrfy(M, Sign(sk,M, I, q), I) = pk.

3 Security of the LM-OTS Scheme

We adapt the standard notion of security for one-time signature schemes (see [3]) to the multi-
instance setting, where multiple (independent) instances of the scheme are run and the attacker is
considered successful if it generates a signature forgery with respect to any of those instances. (Any
scheme secure in the usual sense is also secure in the multi-instance setting. Here, though, we are

2



interested in a tighter security bound than is implied by that fact.) In addition, we also explicitly
handle the values I, q used as an additional input to the various algorithms of the scheme.

If values id = (I, q) are used for key generation in some instance of the scheme, we refer to id as
the identifier for that instance. Let t be an upper bound on the number of instances overall. We
assume2 some fixed set {idi = (Ii, qi)}ti=1 of identifiers, where idi ̸= idj for i ̸= j.

We are interested in bounding the attacker’s success probability in the following experiment.
(Since we prove security when the hash function H is modeled as a random oracle, we explicitly
incorporate random choice of H into the experiment.)

1. A random function H : {0, 1}∗ → {0, 1}8n is chosen.

2. For i = 1, . . . , t, the key-generation algorithm is run using identifier idi to obtain (pki, ski).
The attacker is given (id1, pk1), . . . , (idt, pkt).

3. The attacker is given oracle access to H, plus a signing oracle Sign(·, ·) such that Sign(i,M)
returns Sign(ski,M, idi). For each i, the attacker may make at most one query Sign(i, ⋆).

Without loss of generality we assume the attacker makes exactly one signing query Sign(i,M i)
for each value of i. We also assume that when the attacker is given a signature, it is addi-
tionally given the answers to all the H-queries needed to verify that signature.

4. The attacker outputs (i,M, σ) withM ̸= M i. The attacker succeeds if σ is a valid signature on
M in the ith instance of the scheme, i.e., if Vrfy(M,σ, Ii) = pki. Without loss of generality we
assume the attacker has previously made (or has been given the answers to) all the H-queries
needed to run the verification algorithm on these inputs.

Instantiating the security experiment above with the algorithms of the LM-OTS scheme, and
performing some syntactic changes that do not change the probability space, we obtain the following
experiment (we use ∥ for string concatenation when using commas would cause confusion):

1. Initialize an empty set H. (H will contain defined query/answer pairs for the function H.
That is, if (x, y) ∈ H then H(x) = y.)

2. For i = 1, . . . , t, do:

(a) For j = 0, . . . , p− 1, choose uniform xij,0 ∈ {0, 1}8n.
(b) For j = 0, . . . , p− 1 and k = 0, . . . , e− 1, choose uniform value xij,k+1 ∈ {0, 1}8n and add(

xij,k ∥ id
i ∥ [j]2 ∥ [k]1 ∥ 0x00, xij,k+1

)
to H. Define yij := xij,e.

(c) Choose uniform pki ∈ {0, 1}8n. Add
(
idi∥yi0∥ · · · ∥yip−1∥0x01, pki

)
to H.

(d) Choose uniform Ci ∈ {0, 1}8n and Qi ∈ {0, 1}8n.
(e) Give (idi, pki) to the attacker.

3. When the attacker makes a query H(x), answer it as follows:

(a) If there is an entry (x, y) ∈ H for some y, then return y.

2These identifiers could be chosen adaptively by the attacker (subject to being distinct) without any significant
change to the proof in the following section, but for simplicity we treat them as fixed in advance. When LM-OTS is
used in the LMS scheme, the identifiers can be viewed as being fixed in advance.

3



(b) Otherwise, choose uniform y ∈ {0, 1}8n, return y to the attacker, and store (x, y) in H.

4. When the attacker makes a query Sign(i,M i), answer it as follows:

(a) If there is an entry (M i∥Ci∥idi∥0x02, Q) ∈ H for some Q, then redefine Qi := Q. Store
(M i∥Ci∥idi∥0x02, Qi) in H.

(b) Let ci := checksum(Qi), and set V i := Qi∥ci. Parse V i as a sequence of w-bit integers
V i
0 , . . . , V

i
p−1.

(c) Return the signature (Ci, xi
0,V i

0
, . . . , xi

p−1,V i
p−1

).

5. The attacker outputs (i,M, σ) with M ̸= M i. The attacker succeeds if Vrfy(M,σ, Ii) = pki.

We define the following events in the above experiment:

• Coll1,i is the event that the attacker queriesH(Ii, q, y0, . . . , yp−1, 0x01) with (q, y0, . . . , yp−1) ̸=
(qi, yi0, . . . , y

i
p−1), and receives the response pki.

• Coll2,i is the event the attacker queries H(⋆, Ci, idi, 0x02) before making the query Sign(i, ⋆).

• Coll∗2,i is the event that either Coll2,i occurs, or either of the following occur: (1) before making

the query Sign(i, ⋆), the attacker queries H(⋆, ⋆, idi, 0x02) and receives the response Qi, or
(2) after making the query Sign(i,M i), the attacker queries H(M,⋆, idi, 0x02) with M ̸= M i,
and receives the response Qi.

• Coll3,i,j,k is the event that the attacker queries H(xij,k, id
i, [j]2, [k]1, 0x00) either before making

the query Sign(i, ⋆), or after making the query Sign(i, ⋆) but with k < V i
j .

• Coll∗i,j,k is the event that either Colli,j,k occurs, or the attacker queries H(x, idi, [j]2, [k]1, 0x00)

with x ̸= xij,k, and receives the response xij,k+1.

We first observe that the probability of forgery can be upper-bounded by the probability that
one of the above events occurs.

Claim 1. If the attacker succeeds, then either Coll1,i or Coll
∗
2,i occur for some i ∈ {1, . . . , t}, or else

Coll∗i,j,k occurs for some i ∈ {1, . . . , t}, j ∈ {0, . . . , p− 1}, and k ∈ {0, . . . , e− 1}.

Proof. Say the attacker outputs (i,M, σ) withM ̸= M i and σ a valid signature onM with respect to
Ii, pki. By assumption, all the H-queries needed to verify σ on M with respect to Ii, pki are defined
when the attacker outputs (i,M, σ). Parse σ as (C, q, σ0, . . . , σp−1) and set id = (Ii, q). Define

Q = H(M,C, id, 0x02) and c = checksum(Q), and let V0, . . . , Vp−1 = Q∥c and yj = H
e−Vj

id,[j]2
(σj ;Vj)

be the values computed by running the verification algorithm with respect to Ii, pki on the message
M and signature σ. Since the attacker succeeds, H(id, y0, . . . , yp−1, 0x01) = pki.

We show that if Coll1,i and Coll∗2,i have not occurred, then Coll∗i,j,k must have occurred for

some j, k. If Coll1,i has not occurred, we must have (q, y0, . . . , yp−1) = (qi, yi0, . . . , y
i
p−1) and so

id = idi. If Coll∗2,i (and hence Coll2,i) has not occurred, the value of Qi was not changed during the
experiment, and also Q ̸= Qi. By construction of checksum, we must therefore have Vj < V i

j for
some j. But then one can verify by inspection that Coll∗3,i,j,k must have occurred for some k.

4



Thus, to bound the success probability of the attacker it suffices to bound the probabilities of
the above events.

Claim 2. For all i, Pr[Coll1,i] ≤ q1,i · 2−8n, where q1,i is the number of H-queries of the form
H(Ii, ⋆, ⋆, . . . , ⋆, 0x01).

Proof. Any query H(Ii, q, y0, . . . , yp−1, 0x01) with (q, y0, . . . , yp−1) ̸= (qi, yi0, . . . , y
i
p−1) returns a

uniform value in {0, 1}8n that is independent of pki. The claim follows.

Claim 3. For all i, Pr[Coll2,i] ≤ q2,i · 2−8n, where q2,i is the number of H-queries of the form
H(⋆, ⋆, idi, 0x02).

Proof. Ci is a uniform 8n-bit string, and the attacker has no information about Ci until it queries
Sign(i, ⋆). The claim follows.

Claim 4. For all i, Pr[Coll∗2,i] ≤ 2q2,i · 2−8n, where q2,i is as in the previous claim.

Proof. We have Pr[Coll∗2,i] ≤ Pr[Coll2,i]+Pr[Coll∗2,i | ¬Coll2,i]. The previous claim provides an upper
bound on the first term. As for the second term, when Coll2,i does not occur, the value of Qi does
not change during the experiment. Each time the attacker queries H(⋆, ⋆, idi, 0x02) before making
the query Sign(i, ⋆), or queries H(M,⋆, idi, 0x02) with M ̸= M i after the query Sign(i,M i), the
value returned is uniform in {0, 1}8n and independent of Qi. The claim follows.

Claim 5. For all i, j, k,

Pr
[
Coll3,i,j,k |

∧k−1
ℓ=0 ¬Coll

∗
3,i,j,ℓ

]
≤ q3,i,j,k · 2−8n,

where q3,i,j,k is the number of H-queries of the form H(⋆, idi, [j]2, [k]1, 0x00).

Proof. When Coll∗3,i,j,k−1 does not occur, the attacker gets no information about xij,k until it queries

H(xij,k, id
i, [j]2, [k]1, 0x00) or Sign(i,M

i) with V i
j ≤ k. In the latter case Coll3,i,j,k cannot occur once

the signature query is made. Since xij,k is uniform in {0, 1}8n, the claim follows.

Claim 6. For all i, j, k,

Pr
[
Coll∗3,i,j,k |

∧k−1
ℓ=0 ¬Coll

∗
3,i,j,ℓ

]
≤ 2q3,i,j,k · 2−8n,

where q3,i,j,k is as in the previous claim.

Proof. We have

Pr
[
Coll∗3,i,j,k |

∧k−1
ℓ=0 ¬Coll

∗
3,i,j,ℓ

]
≤ Pr

[
Coll3,i,j,k |

∧k−1
ℓ=0 ¬Coll

∗
3,i,j,ℓ

]
+ Pr

[
Coll∗3,i,j,k |

∧k−1
ℓ=0 ¬Coll

∗
3,i,j,ℓ

∧
¬Coll3,i,j,k

]
.

The previous claim provides an upper bound on the first term. As for the second term, note that
when Coll3,i,j,k does not occur then whenever the attacker queries H(⋆, idi, [j]2, [k]1, 0x00), the value
returned is uniform in {0, 1}8n and independent of xij,k+1. The claim follows.

5



Claim 7. For all i, j, Pr
[∨e−1

k=0 Coll
∗
3,i,j,k

]
≤ 2 ·

∑e−1
k=0 q3,i,j,k ·2−8n, where q3,i,j,k is as in the previous

claim.

Proof. We have

Pr
[∨e−1

k=0 Coll
∗
3,i,j,k

]
≤

e−1∑
k=0

Pr
[
Coll∗3,i,j,k |

∧k−1
ℓ=0 ¬Coll

∗
3,i,j,ℓ

]
≤

e−1∑
k=0

2q3,i,j,k · 2−8n,

using the previous claim.

Putting everything together, we have:

Theorem 8. For any adversary attacking arbitrarily many instances of the LM-OTS scheme, and
making at most q hash queries of the form H(⋆, n) with n ∈ {0x00, 0x01, 0x02}, the probability with
which the adversary forges a signature with respect to any of the instances is at most 2q · 2−8n.

Proof. Let t denote the number of instances of the scheme. Using Claim 1 and a union bound, the
probability with the the adversary forges a signature is at most∑t

i=1 Pr[Coll1,i] +
∑t

i=1 Pr[Coll
∗
2,i] +

∑t
i=1

∑p−1
j=0 Pr

[∨e−1
k=1 Coll

∗
3,i,j,k

]
.

Using Claims 2, 4, and 7, the above is at most

t∑
i=1

q1,i · 2−8n + 2 ·
t∑

i=1

q2,i · 2−8n + 2 ·
t∑

i=1

p−1∑
j=0

e−1∑
k=0

q3,i,j,k · 2−8n

≤ 2 ·

 t∑
i=1

q1,i +
t∑

i=1

q2,i +
t∑

i=1

p−1∑
j=0

e−1∑
k=0

q3,i,j,k

 · 2−8n.

Each of the adversary’s H-queries of the stated form increases the value of at most one of q1,i, q2,i,
or q3,i,j,k and so the sum in the parentheses is at most q. This proves the theorem.

4 Description of the LMS Scheme

An instance of the LMS scheme is defined by computing a Merkle tree of height h using 2h LM-OTS
public keys at the leaves. We give a formal definition now.

Key-generation algorithm Gen′

Key generation takes as input a 31-byte identifier I and a parameter h. Set N = 2h − 1. The
algorithm proceeds as follows:

1. For q = 0, . . . , N , compute (pkq, skq)← Gen(I, q).

2. For r = 2h, . . . , 2h+1 − 1, set T [r] := H(pkr−2h , I, r, 0x03).

3. For r = 2h − 1, . . . , 1, set T [r] := H(T [2r], T [2r + 1], I, r, 0x04).

6



The public key is pk = (h, I, T [1]), and the private key is sk = (0, sk0, . . . , skN ).

Signing algorithm Sign′

Signing takes as input a private key (q, sk0, . . . , skN ) and a message M ∈ {0, 1}∗ as usual, as well
as I as above. It sets id = (I, q) and does:

1. Compute σ := Sign(skq,M, id).

2. Also compute p0, . . . , ph−1, the siblings of the nodes on the path from leaf q to the root in
the Merkle tree.

3. Return the signature Σ = (σ, p0, . . . , ph−1).

After generating a signature, the value of q is incremented. (Signing is stateful.) If q = 2h the key
is erased, and no more signatures can be issued.

Verification algorithm Vrfy′

Verification takes as input a public key (h, I, T ), a message M ∈ {0, 1}∗, and a signature Σ =
(σ, p0, . . . , ph−1). It does:

1. Compute pk := Vrfy(M,σ).

2. Extract value q from σ. Compute T [q + 2h] := H(pk, I, q + 2h, 0x03).

3. Using p0, . . . , ph−1, compute a value T [1]. Return 1 if and only if T [1] = T .

5 Security of the LMS Scheme

Security of the LMS scheme can be proven generically based on any one-time signature scheme and
any second preimage-resistant hash function. However, since the hash function H was modeled as
a random oracle in our analysis of the LM-OTS scheme, we continue to model it as a random oracle
here. Note also that although the same function H is used both to compute the Merkle tree and
in the underlying one-time signature scheme, the fact that domain separation is used means that
we can cleanly separate these two usages.

Here, we are interested in the attacker’s success probability in the following experiment:

1. A random function H : {0, 1}∗ → {0, 1}8n is chosen.

2. The key-generation algorithm for the LMS scheme is run using I and h to obtain (pk, sk).
The attacker is given pk.

3. The attacker is given oracle access to H, plus a stateful signing oracle Sign′(·) such that
Sign′(M) returns Sign′(sk,M, I) and updates the private key.

We assume that when the attacker is given a signature, it is additionally given the answers
to all the H-queries needed to verify that signature.

4. The attacker outputs (M,Σ), where M was not previously submitted to its signing oracle.
The attacker succeeds if Σ is a valid signature on M , i.e., if Vrfy′(pk,M,Σ) = 1. Without loss
of generality we assume the attacker has previously made (or has been given the answers to)
all the H-queries needed to run the verification algorithm on these inputs.

7



We remark that we consider the single-instance setting for simplicity; one can verify that security
does not degrade in the multi-instance setting as long as each instance uses a distinct I value.

Considering an execution of the above experiment, let pk0, . . . , pk2
h−1 be the LM-OTS public

keys at the leaves, and let T [r] denote the intermediate values computed during the course of key
generation. Denote the components of the signature output by the attacker by Σ = (σ, p0, . . . , ph−1).
(We may assume Σ has this form, since otherwise the signature will surely be invalid. In particular,
we may assume without loss of generality that Σ consists of a value σ in the format of an LMS-OTS
signature and h values p0, . . . , ph−1.) Let q be the value contained in σ, and let pk be the value
computed during verification of Σ on M . Let Forge1 be the event that that attacker succeeds and
pk = pkq, and let Forge2 be the event that the attacker succeeds but pk ̸= pkq.

We have

Claim 9. Pr[Forge1] ≤ 2q1 · 2−8n, where q1 is the number of H-queries of the form H(⋆, n) with
n ∈ {0x00, 0x01, 0x02}.

Proof. Let A be an adversary attacking the LMS scheme; we construct an attacker A′ attacking
the LM-OTS scheme.

Fix some I, h, and let idq = (I, q) for q = 0, . . . , 2h − 1. Attacker A′ is given public keys

pk0, . . . , pk2
h−1 and does as follows:

1. Compute T [1] from pk0, . . . , pk2
h−1 as in algorithm Gen′. Give public key pk = (h, I, T [1])

to A.

2. When A requests the ith signature on some message M (for i = 0, . . . , 2h − 1), attacker
A′ queries Sign(i,M) to obtain σ. It then computes p0, . . . , ph−1 as in algorithm Sign′, and
returns the signature (σ, p0, . . . , ph−1) to A.

3. A′ answers H-queries of A by forwarding them to its own H-oracle.

4. When A outputs a forgery (M,Σ = (σ, p0, . . . , ph−1)), adversary A′ extracts the value q
contained in σ and outputs (q,M, σ).

Observe that A′ succeeds if Forge1 occurs. Moreover, although A′ may make H-queries in ad-
dition to those made by A (to compute T [1]), all those queries are of the form H(⋆, n) with
n ∈ {0x03, 0x04}; the number of H-queries of the form H(⋆, n) with n ∈ {0x00, 0x01, 0x02} is
exactly the same as the number made by A. Theorem 8 thus implies the claim.

We turn to bounding Forge2. For some fixed I, h, define the following events:

• Collr, for r = 2h, . . . , 2h+1 − 1, is the event that the attacker queries H(pk, I, r, 0x03) with

pk ̸= pkr−2h and receives the response T [r].

• Collr, for r = 1, . . . , 2h − 1, is the event that the attacker queries H(T, T ′, I, r, 0x04) with
(T, T ′) ̸= (T [2r], T [2r + 1]) and receives the response T [r].

Claim 10. Pr[Forge2] ≤ q′ · 2−8n, where q2 is the number of H-queries of the form H(⋆, n) with
n ∈ {0x03, 0x04}.

Proof. If Forge2 occurs then Collr occurs for some r. It is also easy to see that Pr[Collr] ≤ qr · 2−8n,
where qr is the number of H-queries of the form H(⋆, I, r, ⋆). Since each of the adversary’s queries
of the stated form increases the value of at most one qr, the claim follows.

8



Theorem 11. For any adversary attacking the LMS scheme and making at most q hash queries,
the probability with which the adversary can forge a signature is at most 2q · 2−8n.

Proof. The probability that the attacker forges a signature is Pr[Forge1] + Pr[Forge2]. By Claims 9
and 10, this is bounded by 2q1 · 2−8n + q2 · 2−8n, where q1, q2 are as in those claims. Since each
H-query by the attacker increases the value of at most one of q1 or q2, the claimed bound follows.

References

[1] J. Buchmann, E. Dahmen, and M. Szydlo. Hash-based digital signature schemes. Technical
Report, Technische Universitat Darmstadt, 2008.

[2] J. Katz. Analysis of a Proposed Hash-Based Signature Standard. Contribution to IRTF, 2015.
Available at http://www.cs.umd.edu/~jkatz/papers/HashBasedSigs.pdf

[3] J. Katz and Y. Lindell. Introduction to Modern Cryptography, 2nd edition. Chapman &
Hall/CRC Press, 2014.

[4] L. Lamport. Constructing digital signatures from a one-way function. Tehcnical Report SRI-
CSL-98, SRI Intl. Computer Science Laboratory, 1979.

[5] F.T. Leighton and S. Micali. Large provably fast and secure digital signature schemes based on
secure hash functions. US Patent 5,432,852, July 11, 1995.

[6] D. McGrew and M. Curcio. Hash-based signatures. Internet Draft draft-mcgrew-hash-sigs-04,
March 21, 2016.

[7] R.C. Merkle. Secrecy, authentication, and public-key systems. PhD Thesis, Stanford University,
1979.

[8] R.C. Merkle. A certified digital signature. Advances in Cryptology—Crypto ’89, LNCS vol. 435,
pages 218–238, Springer-Verlag, 1989.

9


