
Analysis of a Proposed Hash-Based Signature
Standard

Jonathan Katz⋆

Dept. of Computer Science
University of Maryland
jkatz@cs.umd.edu

Abstract. We analyze the concrete security of a hash-based signature
scheme described in a recent series of Internet Drafts by McGrew and
Curcio. We show that an original version of their proposal achieves only
a “loose” security bound, but that the latest version can be proven to
have tighter security in the random-oracle model.

1 Introduction

There has been growing interest in standardizing “post-quantum” public-key
cryptosystems, i.e., schemes that are not based on the hardness of factoring or
computing discrete logarithms, but are instead based on other problems that
are not known (or believed) to be solvable in polynomial time by a quantum
computer. In the context of digital signatures, where it is known that one-way
functions suffice to construct secure schemes [7, 11–14] (see [5]), a number of
proposals based on cryptographic hash functions have been suggested recently
for standardization [1, 4, 10].

We analyze the security of a signature scheme described in two successive
versions of an Internet Draft by McGrew and Curcio [9, 10]. Both versions of
their proposal construct a (stateful, many-time) signature scheme by instantiat-
ing Merkle’s tree-based approach [11, 12] with an underlying one-time signature
scheme based on work of Lamport, Diffie, Winternitz, and Merkle [7, 11, 12]. We
provide a concrete-security analysis of their proposals in themulti-user setting [3,
6], where we explicitly model an adversary who simultaneously attacks multiple
users running independent instances of the scheme, and who succeeds if it is able
to forge a signature with respect to any one of those users.1 In the context of

⋆ Work performed under a consultancy agreement with University Technical Services,
Inc. on behalf of the National Security Agency. Portions of this work were also
supported by a gift from the Cisco University Research Program Fund, a corporate
advised fund of Silicon Valley Community Foundation.

1 It is easy to see that if no attack (subject to some time bound T ) targeting a single
user can succeed with probability better than ϵ, then no attack (subject to roughly
the same time bound) can succeed in attacking one out of N independent users of
that scheme with probability better than N · ϵ. But we are interested in settings
where N is large and we do not want to lose the factor of N in the security bound.



the McGrew-Curcio drafts, a single instance of the tree-based (many-time) sig-
nature scheme is itself composed of multiple instances of an underlying one-time
signature scheme, and so obtaining a tight security reduction for the many-time
signature scheme—even in the single-user setting—inherently requires tight se-
curity for the underlying one-time signature scheme in the multi-user setting.

As noted above, we study two versions of the McGrew-Curcio draft. We
show that the many-time signature scheme in version 02 of their proposal [9]
does not have a tight security reduction (even in the single-user setting), be-
cause the underlying one-time signature scheme used is not tightly secure in the
multi-user setting. Fortunately, we show that the many-time signature scheme in
version 04 of their proposal [10], which incorporates modifications first suggested
by Leighton and Micali [8], is tightly secure—even in the multi-user setting—if
the underlying hash function is modeled as a random oracle.

Note that we restrict ourselves to an analysis of the one-time signature scheme
and the many-time signature scheme described in Sections 4–5 of the McGrew-
Curcio draft, respectively. We leave an analysis of their hierarchical signature
scheme (proposed in Section 6 of their draft) for future work.

1.1 Organization of the Paper

As explained above, both versions of the McGrew-Curcio proposal construct
a (stateful, many-time) tree-based signature scheme based on an underlying
one-time signature scheme. In both cases, concrete security of the tree-based
scheme—even in the single-user setting—depends on the concrete security of
the underlying one-time signature scheme in the multi-user setting.

In Section 2, we look at the one-time signature scheme used in version 02 of
the McGrew-Curcio draft [9]. After describing the scheme, we show that it is not
tightly secure in the multi-user setting. This implies that the tree-based signature
scheme of that draft is not tightly secure, even in the single-user setting.

We look at the most recent version of the McGrew-Curcio draft (version 04)
in Section 3. We begin by focusing on the underlying one-time signature scheme
used there, showing that it does have a tight security reduction in the multi-user
setting if the hash functions used are modeled as random oracles. Building on
this analysis, we then study the tree-based scheme proposed in that version of
their draft, proving that it is tightly secure in the multi-user setting as well.

1.2 Related Work

There are several other works proposing candidate tree-based signature schemes,
and analyzing their (concrete) security based on various assumptions about the
underlying hash function(s) [2, 1, 4]. It is not the goal of this work to propose
a new scheme, or to weigh the pros and cons of the various competing propos-
als; our aim is simply to provide a concrete analysis of the tree-based scheme
described in the McGrew-Curcio draft.



2 Version 02 of the McGrew-Curcio Draft

As noted earlier, we focus in this section on the one-time signature scheme from
version 02 of the McGrew-Curcio draft, and show that it does not have tight
security in the multi-user setting. Because of the way the many-time signature
scheme in version 02 of their draft is constructed from the one-time signature
scheme, our result implies that their many-time scheme does not have a tight
security proof even in the single-user setting.

2.1 Description of the One-Time Signature Scheme

We begin by describing the one-time signature scheme, called the LDWM scheme,
contained in version 02 of the internet draft by McGrew and Curcio [9]. Let
H : {0, 1}∗ → {0, 1}8n and F : {0, 1}8m → {0, 1}8m be cryptographic hash func-
tions. Let F i, for integer i ≥ 1, denote i-fold iterated application of F , and let F 0

denote the identity function. Fix w ∈ {1, 2, 4, 8} as a parameter of the scheme,

and set e
def
= 2w−1. Set u def

= 8n/w; note that outputs of H can be viewed as a se-

quence of u integers, each exactly w bits long. Set v
def
= ⌈⌊log u · (2w − 1) + 1⌋/w⌉,

and define a function checksum : ({0, 1}w)u → {0, 1}wv as follows:

checksum(h0, . . . , hu−1)
def
=

u−1∑
i=0

(2w − 1− hi) ,

where each hi ∈ {0, 1}w is viewed as an integer in the range {0, . . . , 2w − 1} and
the result is written as an integer using exactly wv bits. Set p

def
= u+ v.

Define a one-time signature scheme as follows:

Key generation

1. Choose p uniform values x0, . . . , xp−1 ∈ {0, 1}8m.
2. For i = 0 to p− 1, compute yi := F e(xi).
3. Compute pk := H(y0, . . . , yp−1).

The public key is pk, and the private key is x0, . . . , xp−1.

Signing
To sign a message M ∈ {0, 1}∗ using private key x0, . . . , xp−1 do:

1. Compute h := H(M) and c := checksum(h). Set V := h∥c, and parse V as
a sequence of w-bit integers V0, . . . , Vp−1.

2. For i = 0, . . . , p− 1, compute σi := FVi(xi).
3. Return the signature σ0, . . . , σp−1.

Verifying
To verify a signature σ0, . . . , σp−1 on a message M ∈ {0, 1}∗ with respect to the
public key pk do:



1. Compute h := H(M) and c := checksum(h). Set V := h∥c, and parse V as
a sequence of w-bit integers V0, . . . , Vp−1.

2. For i = 0, . . . , p− 1, compute yi := F e−Vi(σi).
3. Return 1 if and only if pk = H(y0, . . . , yp−1).

2.2 Security Analysis

We are interested in understanding the concrete security of the one-time sig-
nature scheme described above, as a function of the total number q of H- and
F -evaluations performed by an attacker. (Thus, we will effectively be treating
H and F as independent random oracles.) We sketch two approaches that may
be used to attempt a signature forgery in the multi-user setting. In each case,
for simplicity, we assume all signers use the same value for w.

First approach. Assume N instances of the LDWM scheme are run, either by
the same signer or by multiple signers. Recall that the ith public key pki has
the form

pki = H(yi0, . . . , y
i
p−1) .

Consider computing the Q values y∗0 := F e(x∗
0), . . . , y

∗
Q−1 := F e(x∗

Q−1), for
distinct x∗

i , and evaluating H on all (ordered) length-p lists of the y∗i . (There

are q
def
= Q!/(Q − p)! such lists. Note that eQ ≪ q for practical settings of the

parameters, so the overall work is dominated by the q evaluations of H.) If any
of the resulting hashes is equal to some pki, then it becomes trivial to forge
arbitrary signatures with respect to that public key. The probability that this
occurs is roughly qN · 2−8n.

Second approach. A similar issue as above arises because F is used in all
instances of the scheme. As above, let pki (for 1 ≤ i ≤ N) denote the ith
public key, and assume a signature with respect to each public key has been
released so that, in particular, values yi0, . . . , y

i
p−1 with pki = H(yi0, . . . , y

i
p−1)

are known for all i. Consider evaluating F e on q/e random inputs, looking for
an input x such that F e(x) = yij for some i, j. If such an x is found, a forgery

becomes possible with high probability.2 The probability that such an x is found
is roughly (q/e) · pN · 2−8m. (Small variants of this approach, having slightly
better parameters, are also possible.)

We thus see that in the multi-user setting, security of the LDWM scheme can
be no better than O(qN · (2−8n +2−8m)), and so in particular degrades linearly
in the number of users N .

3 Version 04 of the McGrew-Curcio Draft

In analyzing the most recent version of the McGrew-Curcio proposal, we begin
by showing that their underlying one-time signature scheme has tight security
in the multi-user setting. We then build on this to prove tight security for the
(tree-based, stateful, many-time) signature scheme they propose.

2 A precise calculation depends on the messages that have already been signed.



3.1 Description of the LM-OTS Scheme

We begin with a description of the LM-OTS scheme [10], the underlying one-
time signature scheme used. Let H : {0, 1}∗ → {0, 1}8n be a cryptographic hash

function. Fix w ∈ {1, 2, 4, 8} as a parameter of the scheme, and set e
def
= 2w − 1.

Set u
def
= 8n/w; note that the output of H can be viewed as a sequence of u

integers, each w bits long. Set v
def
= ⌈⌊log u · (2w − 1) + 1⌋/w⌉, and p

def
= u + v.

Define a function checksum : ({0, 1}w)u → {0, 1}wv as follows:

checksum(h0, . . . , hu−1)
def
=

u−1∑
i=0

(2w − 1− hi) ,

where each hi ∈ {0, 1}w is viewed as an integer in the range {0, . . . , 2w − 1} and
the result is expressed as an integer using exactly wv bits.3 For integers i, b with
0 ≤ i < 28b, we let [i]b denote the b-byte representation of i. For a string s and

integer j ≥ 0, set H0
s (x; j)

def
= x. For integers k ≥ 1, j ≥ 0, define

Hk
s (x; j)

def
= H

(
Hk−1

s (x; j), s, [j + k − 1]1, 0x00
)
.

The LM-OTS scheme is defined as follows:

Key-generation algorithm Gen
Key generation takes as input id = (I, q), where I is a 31-byte identifier and q
is a 4-byte diversification factor.4 The steps of the algorithm are:

1. Choose p uniform values x0, . . . , xp−1 ∈ {0, 1}8n.
2. For i = 0 to p− 1, compute yi := He

id,[i]2
(xi; 0).

3. Compute pk := H(id, y0, . . . , yp−1, 0x01).

The public key is pk, and the private key is sk = (x0, . . . , xp−1).

Signing algorithm Sign
Signing takes as input a private key sk = (x0, . . . , xp−1) and messageM ∈ {0, 1}∗
as usual, as well as id = (I, q) as above. It does:

1. Choose uniform C ∈ {0, 1}8n.
2. Compute Q := H(M,C, id, 0x02) and c := checksum(Q). Set V := Q∥c, and

parse V as a sequence of w-bit integers V0, . . . , Vp−1.

3. For i = 0, . . . , p− 1, compute σi := HVi

id,[i]2
(xi; 0).

4. Return the signature σ = (C, q, σ0, . . . , σp−1).

Verification algorithm Vrfy
Verification takes as input a messageM ∈ {0, 1}∗ and a signature (C, q, σ0, . . . , σp−1)
as usual, as well as I as above. It sets id := (I, q) and does:

3 In [10] the result is expressed as a 16-bit integer, but only the top wv bits are used.
4 The purpose of I and q will become clear later, when we describe the many-time
scheme based on LM-OTS.



1. Compute Q := H(M,C, id, 0x02) and c := checksum(Q). Set V := Q∥c, and
parse V as a sequence of w-bit integers V0, . . . , Vp−1.

2. For i = 0, . . . , p− 1, compute yi := He−Vi

id,[i]2
(σi;Vi).

3. Output H(id, y0, . . . , yp−1, 0x01).

We note that, in contrast to the usual convention, Vrfy outputs a string rather
than a bit and does not take a public key as input. A signature σ on some
message M is valid relative to some fixed public key pk if the output of Vrfy is
equal to pk. One can verify that correctness holds in the following sense: for any
I, q, any (pk, sk) output by Gen(I, q), and any message M , we have

Vrfy(M,Sign(sk,M, I, q), I) = pk.

3.2 Security of the LM-OTS Scheme

We adapt the standard notion of security for one-time signature schemes (see [5])
to the multi-user setting, where multiple (independent) instances of the scheme
are run and the attacker is considered successful if it generates a signature forgery
with respect to any of those instances. We also explicitly handle the values I, q
used as additional input to the various algorithms of the scheme.

If values id = (I, q) are used for key generation in some instance of the scheme,
we refer to id as the identifier for that instance. Let N be an upper bound on
the number of instances overall. We assume5 some fixed set {idi = (Ii, qi)}Ni=1

of identifiers, where idi ̸= idj for i ̸= j.
We are interested in bounding the attacker’s success probability in the fol-

lowing experiment. (We explicitly incorporate choice of the random oracle H
into the experiment.)

1. A random function H : {0, 1}∗ → {0, 1}8n is chosen.
2. For i = 1, . . . , N , the key-generation algorithm is run using identifier idi to

obtain (pki, ski). The attacker is given (id1, pk1), . . . , (idN , pkN ).
3. The attacker is given oracle access to H, plus a signing oracle Sign(·, ·) such

that Sign(i,M) returns Sign(ski,M, idi). For each i, the attacker may make at
most one query Sign(i, ⋆). Without loss of generality we assume the attacker
makes exactly one signing query Sign(i,M i) for each value of i. We also
assume that when the attacker is given a signature, it is additionally given
the answers to all the H-queries needed to verify that signature.

4. The attacker outputs (i,M, σ) with M ̸= M i. The attacker succeeds if σ is a
valid signature on M for the ith instance, i.e., if Vrfy(M,σ, Ii) = pki. With-
out loss of generality we assume the attacker has previously made (or has
been given the answers to) all the H-queries needed to run the verification
algorithm on these inputs.

5 These identifiers could be chosen adaptively by the attacker (subject to being dis-
tinct) without any significant change to the proof in the following section, but for
simplicity we treat them as fixed in advance. When LM-OTS is subsequently used
in the many-time signature scheme, the identifiers will be fixed in advance.



Instantiating the security experiment above with the algorithms of the LM-
OTS scheme, and performing some syntactic changes that do not change the
probability space, we obtain the following experiment (we use ∥ for string con-
catenation when using commas would cause confusion):

1. Initialize an empty set H. (H will contain defined query/answer pairs for
the function H. That is, if (x, y) ∈ H then H(x) = y.)

2. For i = 1, . . . , N , do:
(a) For j = 0, . . . , p− 1, choose uniform xi

j,0 ∈ {0, 1}8n.
(b) For j = 0, . . . , p−1 and k = 0, . . . , e−1, choose uniform xi

j,k+1 ∈ {0, 1}8n

and add
(
xi
j,k ∥ id

i ∥ [j]2 ∥ [k]1 ∥ 0x00, xi
j,k+1

)
to H. Define yij := xi

j,e.

(c) Choose uniform pki ∈ {0, 1}8n. Add
(
idi∥yi0∥ · · · ∥yip−1∥0x01, pki

)
to H.

(d) Choose uniform Ci ∈ {0, 1}8n and Qi ∈ {0, 1}8n.
(e) Give (idi, pki) to the attacker.

3. When the attacker makes a query H(x), answer it as follows:
(a) If there is an entry (x, y) ∈ H for some y, then return y.
(b) Otherwise, choose uniform y ∈ {0, 1}8n, return y to the attacker, and

store (x, y) in H.
4. When the attacker makes a query Sign(i,M i), answer it as follows:

(a) If there is an entry (M i∥Ci∥idi∥0x02, Q) ∈ H for some Q, then redefine
Qi := Q. Store (M i∥Ci∥idi∥0x02, Qi) in H.

(b) Let ci := checksum(Qi), and set V i := Qi∥ci. Parse V i as a sequence of
w-bit integers V i

0 , . . . , V
i
p−1.

(c) Return the signature (Ci, xi
0,V i

0
, . . . , xi

p−1,V i
p−1

).

5. The attacker outputs (i,M, σ) with M ̸= M i. The attacker succeeds if
Vrfy(M,σ, Ii) = pki.

Note we assume that all instances of the scheme use the same value e; however,
one can check that the proof can be suitably modified if this is not the case.

We define the following events in the above experiment:

– Coll1,i is the event that the attacker queries H(Ii, q, y0, . . . , yp−1, 0x01) with
(q, y0, . . . , yp−1) ̸= (qi, yi0, . . . , y

i
p−1), and receives the response pki.

– Coll2,i is the event the attacker queries H(⋆, Ci, idi, 0x02) before making the
query Sign(i, ⋆).

– Coll∗2,i is the event that either Coll2,i occurs, or either of the following occur:

(1) before making the query Sign(i, ⋆), the attacker queries H(⋆, ⋆, idi, 0x02)
and receives the response Qi, or (2) after making the query Sign(i,M i),
the attacker queries H(M,⋆, idi, 0x02) with M ̸= M i, and receives the re-
sponse Qi.

– Coll3,i,j,k is the event that the attacker queries H(xi
j,k, id

i, [j]2, [k]1, 0x00)
either before making the query Sign(i, ⋆), or after making the query Sign(i, ⋆)
but with k < V i

j .
– Coll∗3,i,j,k is the event that either Coll3,i,j,k occurs, or that the attacker queries

H(x, idi, [j]2, [k]1, 0x00) with x ̸= xi
j,k, and receives the response xi

j,k+1.



We first observe that the probability of forgery can be upper-bounded by the
probability that one of the above events occurs.

Lemma 1. If the attacker succeeds, then either Coll1,i or Coll∗2,i occur for some
i ∈ {1, . . . , N}, or else Coll∗i,j,k occurs for some i ∈ {1, . . . , N}, j ∈ {0, . . . , p−1},
and k ∈ {0, . . . , e− 1}.

Proof. Say the attacker outputs (i,M, σ) with M ̸= M i and σ a valid signature
on M with respect to Ii, pki. By assumption, all the H-queries needed to verify
σ on M with respect to Ii, pki are defined when the attacker outputs (i,M, σ).
Parse σ as (C, q, σ0, . . . , σp−1) and set id = (Ii, q). Define Q = H(M,C, id, 0x02)

and c = checksum(Q), and let V0, . . . , Vp−1 = Q∥c and yj = H
e−Vj

id,[j]2
(σj ;Vj) be

the values computed by running the verification algorithm on M , σ, and Ii.
Since the attacker succeeds, H(id, y0, . . . , yp−1, 0x01) = pki.

We show that if Coll1,i and Coll∗2,i have not occurred (where i is the instance
of the attacker’s forgery), then Coll∗i,j,k must have occurred for some j, k. If

Coll1,i has not occurred, we must have (q, y0, . . . , yp−1) = (qi, yi0, . . . , y
i
p−1) and

so id = idi. If Coll∗2,i (and hence Coll2,i) has not occurred, the value of Qi was

not changed in step 4(a) of the experiment, and Q ̸= Qi. By construction of
checksum, we must therefore have Vj < V i

j for some j. But then one can verify
by inspection that Coll∗3,i,j,k must have occurred for some k.

Thus, to bound the success probability of the attacker it suffices to bound
the probabilities of the above events.

Lemma 2. For all i, Pr[Coll1,i] ≤ q1,i · 2−8n, where q1,i is the number of H-
queries of the form H(Ii, ⋆, ⋆, . . . , ⋆, 0x01).

Proof. Any H-query H(Ii, q, y0, . . . , yp−1, 0x01) for which (q, y0, . . . , yp−1) ̸=
(qi, yi0, . . . , y

i
p−1) returns a uniform value in {0, 1}8n that is independent of pki.

The lemma follows.

Lemma 3. For all i, Pr[Coll2,i] ≤ q2,i · 2−8n, where q2,i is the number of H-
queries of the form H(⋆, ⋆, idi, 0x02).

Proof. Ci is a uniform 8n-bit string, and the attacker has no information about
Ci until it queries Sign(i, ⋆). The lemma follows.

Lemma 4. For all i, Pr[Coll∗2,i] ≤ 2q2,i · 2−8n, where q2,i is as in the previous
lemma.

Proof. We have Pr[Coll∗2,i] ≤ Pr[Coll2,i] + Pr[Coll∗2,i | ¬Coll2,i]. The previous
lemma provides an upper bound on the first term. As for the second term,
when Coll2,i does not occur, the value of Qi does not change in step 4(a) of
the experiment. Each time the attacker queries H(⋆, ⋆, idi, 0x02) before making
the query Sign(i, ⋆), or queries H(M,⋆, idi, 0x02) with M ̸= M i after the query
Sign(i,M i), the value returned is uniform in {0, 1}8n and independent of Qi.



Lemma 5. For all i, j, k,

Pr
[
Coll3,i,j,k |

∧k−1
ℓ=0 ¬Coll

∗
3,i,j,ℓ

]
≤ q3,i,j,k

28n − q3,i,j,k−1
,

where q3,i,j,k for k ≥ 0 is the number of the attacker’s H-queries of the form

H(⋆, idi, [j]2, [k]1, 0x00), and q3,i,j,−1
def
= 0.

Proof. As long as Coll∗3,i,j,k−1 has not occurred, the attacker’s information about

the uniform value xi
j,k (assuming k < V i

j in case the attacker has already made

the query Sign(i,M i)) is limited to the fact that xi
j,k was not the result of one

of the attacker’s previous queries of the form H(⋆, idi, [j]2, [k − 1]1, 0x00). The
lemma follows.

Lemma 6. For all i, j, k,

Pr
[
Coll∗3,i,j,k |

∧k−1
ℓ=0 ¬Coll

∗
3,i,j,ℓ

]
≤ q3,i,j,k

28n − q3,i,j,k−1
+

q3,i,j,k
28n

,

where q3,i,j,k is as in the previous lemma.

Proof. We have

Pr
[
Coll∗3,i,j,k |

∧k−1
ℓ=0 ¬Coll

∗
3,i,j,ℓ

]
≤ Pr

[
Coll3,i,j,k |

∧k−1
ℓ=0 ¬Coll

∗
3,i,j,ℓ

]
+ Pr

[
Coll∗3,i,j,k |

∧k−1
ℓ=0 ¬Coll

∗
3,i,j,ℓ

∧
¬Coll3,i,j,k

]
.

The previous lemma provides an upper bound on the first term. As for the
second term, note that when Coll3,i,j,k does not occur then whenever the attacker
queries H(⋆, idi, [j]2, [k]1, 0x00), the value returned is uniform in {0, 1}8n and
independent of xi

j,k+1. The lemma follows.

Lemma 7. For all i, j, Pr
[∨e−1

k=0 Coll
∗
3,i,j,k

]
≤ 3·

∑e−1
k=0 q3,i,j,k ·2−8n, where q3,i,j,k

is as in the previous lemma.

Proof. Let q∗
def
=

∑e−1
k=0 q3,i,j,k, and note that the lemma is trivially true when

q∗ ≥ 28n/2. Otherwise, we have

Pr
[∨e−1

k=0 Coll
∗
3,i,j,k

]
≤

e−1∑
k=0

Pr
[
Coll∗3,i,j,k |

∧k−1
ℓ=0 ¬Coll

∗
3,i,j,ℓ

]
≤

e−1∑
k=0

q3,i,j,k
28n − q3,i,j,k−1

+
e−1∑
k=0

q3,i,j,k · 2−8n,

using the previous lemma. Since q3,i,j,k−1 ≤ q∗, when q∗ < 28n/2 each term in
the first summation is upper-bounded by 2q3,i,j,k · 2−8n. This proves the lemma.



Putting everything together, we have:

Theorem 1. For any adversary attacking any number of instances of the LM-
OTS scheme and making at most q hash queries of the form H(⋆, . . . , ⋆, n) with
n ∈ {0x00, 0x01, 0x02}, the probability that the adversary forges a signature with
respect to any of the instances is at most 3q · 2−8n.

Proof. Let N denote the number of instances of the scheme. Using Lemma 1
and a union bound, the probability with which the adversary forges a signature
is at most∑N

i=1 Pr[Coll1,i] +
∑N

i=1 Pr[Coll
∗
2,i] +

∑N
i=1

∑p−1
j=0 Pr

[∨e−1
k=1 Coll

∗
3,i,j,k

]
.

Using Lemmas 2, 4, and 7, the above is at most

N∑
i=1

q1,i · 2−8n + 2 ·
N∑
i=1

q2,i · 2−8n + 3 ·
N∑
i=1

p−1∑
j=0

e−1∑
k=0

q3,i,j,k · 2−8n

≤ 3 ·

 N∑
i=1

q1,i +
N∑
i=1

q2,i +
N∑
i=1

p−1∑
j=0

e−1∑
k=0

q3,i,j,k

 · 2−8n.

Each of the adversary’s H-queries of the stated form increases the value of at
most one of q1,i, q2,i, or q3,i,j,k and so the sum in the parentheses is at most q.
This proves the theorem.

3.3 The LMS Scheme

An instance of the LMS scheme is defined by computing a Merkle tree of height
h using 2h LM-OTS public keys at the leaves. We give a formal definition now.

Key-generation algorithm Gen′

Key generation takes as input a 31-byte identifier I and a parameter h. Set
N = 2h − 1. The algorithm proceeds as follows:

1. For q = 0, . . . , N , compute (pkq, skq)← Gen(I, q).

2. For r = 2h, . . . , 2h+1 − 1, set T [r] := H(pkr−2h , I, [r]4, 0x03).
3. For r = 2h − 1, . . . , 1, set T [r] := H(T [2r], T [2r + 1], I, [r]4, 0x04).

The public key is pk = (h, I, T [1]), and the private key is sk = (0, sk0, . . . , skN ).

Signing algorithm Sign′

Signing takes as input a private key (q, sk0, . . . , skN ) and a message M ∈ {0, 1}∗
as usual, as well as I as above. It sets id = (I, q) and does:

1. Compute σ := Sign(skq,M, id).
2. Also compute p0, . . . , ph−1, the siblings of the nodes on the path from leaf q

to the root in the Merkle tree.
3. Return the signature Σ = (σ, p0, . . . , ph−1).



After generating a signature, the value of q is incremented. (Signing is stateful.)
If q = 2h the key is erased, and no more signatures can be issued.

Verification algorithm Vrfy′

Verification takes as input a public key (h, I, T ), a message M ∈ {0, 1}∗, and a
signature Σ = (σ, p0, . . . , ph−1). It does:

1. Compute pk := Vrfy(M,σ, I).
2. Extract value q from σ. Compute T [q + 2h] := H(pk, I, [q + 2h]4, 0x03).
3. Using p0, . . . , ph−1, compute a value T [1]. Return 1 if and only if T [1] = T .

3.4 Security of the LMS Scheme

Security of the LMS scheme can be proven generically based on any one-time
signature scheme and any second preimage-resistant hash function. However,
since the hash function H was modeled as a random oracle in our analysis of the
LM-OTS scheme, we continue to model it as a random oracle here. Note also
that although the same function H is used both to compute the Merkle tree and
in the underlying one-time signature scheme, the fact that domain separation is
used means that we can cleanly separate these two usages.

Here, we are interested in the attacker’s success probability in the following
experiment:

1. A random function H : {0, 1}∗ → {0, 1}8n is chosen.
2. The key-generation algorithm for the LMS scheme is run using I and h to

obtain (pk, sk). The attacker is given pk.
3. The attacker is given oracle access toH, plus a stateful signing oracle Sign′(·)

such that Sign′(M) returns Sign′(sk,M, I) and updates the private key.
We assume that when the attacker is given a signature, it is additionally
given the answers to all the H-queries needed to verify that signature.

4. The attacker outputs (M,Σ), where M was not previously submitted to its
signing oracle. The attacker succeeds if Σ is a valid signature on M , i.e., if
Vrfy′(pk,M,Σ) = 1. Without loss of generality we assume the attacker has
previously made (or has been given the answers to) all the H-queries needed
to run the verification algorithm on these inputs.

We remark that we consider the single-user setting for simplicity, but one can
verify that security does not degrade in the multi-user setting as long as each
instance uses a distinct value of I.

Considering an execution of the above experiment, let pk0, . . . , pk2
h−1 be the

LM-OTS public keys at the leaves, and let T [r] denote the intermediate values
computed during the course of key generation. Denote the components of the
signature output by the attacker by Σ = (σ, p0, . . . , ph−1). (We may assume Σ
has this form, since otherwise the signature will surely be invalid. In particular,
we may assume without loss of generality that Σ consists of a value σ in the
format of an LM-OTS signature and h values p0, . . . , ph−1.) Let q be the value
contained in σ, and let pk be the value computed during verification of Σ on M .



Let Forge1 be the event that that attacker succeeds and pk = pkq, and let Forge2
be the event that the attacker succeeds but pk ̸= pkq.

We have

Lemma 8. Pr[Forge1] ≤ 3q1 · 2−8n, where q1 is the number of H-queries of the
form H(⋆, . . . , ⋆, n) with n ∈ {0x00, 0x01, 0x02}.

Proof. Let A be an adversary attacking the LMS scheme; we construct an at-
tacker A′ attacking the LM-OTS scheme.

Fix some I, h, and let idq = (I, q) for q = 0, . . . , 2h − 1. Attacker A′ is given

public keys pk0, . . . , pk2
h−1 and does as follows:

1. Compute T [1] from pk0, . . . , pk2
h−1 as in algorithm Gen′. Give public key

pk = (h, I, T [1]) to A.
2. When A requests the ith signature on a message M i (for i = 0, . . . , 2h − 1),

attacker A′ queries Sign(i,M) to obtain σ. It then computes p0, . . . , ph−1 as
in algorithm Sign′, and returns the signature (σ, p0, . . . , ph−1) to A.

3. A′ answers H-queries of A by forwarding them to its own H-oracle.
4. When A outputs a forgery (M,Σ = (σ, p0, . . . , ph−1)), adversary A′ extracts

the value q contained in σ and outputs (q,M, σ).

Observe that A′ succeeds if Forge1 occurs. Moreover, although A′ may make
H-queries in addition to those made by A (to compute T [1]), all those queries
are of the form H(⋆, . . . , ⋆, n) with n ∈ {0x03, 0x04}; the number of H-queries
of the form H(⋆, . . . , ⋆, n) with n ∈ {0x00, 0x01, 0x02} is exactly the same as
the number made by A. Theorem 1 thus implies the claim.

We turn to bounding Forge2. For some fixed I, h, define the following events:

– Collr, for r = 2h, . . . , 2h+1−1, is the event that the attacker makes a query of

the formH(pk, I, [r]4, 0x03) with pk ̸= pkr−2h and receives the response T [r].
– Collr, for r = 1, . . . , 2h − 1, is the event that the attacker makes a query of

the form H(T, T ′, I, [r]4, 0x04) with (T, T ′) ̸= (T [2r], T [2r+1]) and receives
the response T [r].

Lemma 9. Pr[Forge2] ≤ q′ · 2−8n, where q′ is the number of H-queries of the
form H(⋆, . . . , ⋆, n) with n ∈ {0x03, 0x04}.

Proof. If Forge2 occurs then Collr occurs for some r. It is also easy to see
that Pr[Collr] ≤ qr · 2−8n, where qr is the number of H-queries of the form
H(⋆, I, [r]4, ⋆). Since each of the adversary’s queries of the stated form increases
the value of at most one qr, the claim follows.

Theorem 2. For any adversary attacking the LMS scheme and making at most
q hash queries, the probability the adversary forges a signature is at most 3q·2−8n.

Proof. The attacker forges a signature with probability Pr[Forge1] + Pr[Forge2].
By Lemmas 8 and 9, this is bounded by 3q1 · 2−8n + q′ · 2−8n, where q1, q

′ are
as in those claims. Since each H-query by the attacker increases the value of at
most one of q1 or q′, the claimed bound follows.



Acknowledgments

I thank Laurie E. Law and Jerome A. Solinas for their encouragement and sug-
gestions, as well as for bringing the Leighton-Micali patent [8] to my attention.

References

1. D.J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Pa-
pachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn. SPHINCS:
Practical stateless hash-based signatures. Advances in Cryptology—Eurocrypt 2015,
Part I, LNCS vol. 9056, pp. 368–397, Springer, 2015.

2. J. Buchmann, E. Dahmen, and M. Szydlo. Hash-based digital signature schemes. In
D.J. Bernstein, J. Buchmann, and E. Dahmen, eds., Post-Quantum Cryptography,
pp. 35–93. Springer, 2009.

3. S.D. Galbraith, J. Malone-Lee, and N. Smart. Public-key signatures in the multi-
user setting. Information Processing Letters 83(5): 263–266, 2002.

4. A. Hülsing, D. Butin, S. Gazdag, and A. Mohaisen. XMSS: Extended hash-based sig-
natures. Internet Draft draft-irtf-cfrg-xmss-hash-based-signatures-06, July 6, 2016.
Available from http://datatracker.ietf.org.

5. J. Katz and Y. Lindell. Introduction to Modern Cryptography, 2nd edition. Chapman
& Hall/CRC Press, 2014.

6. E. Kiltz, D. Masny, and J. Pan. Optimal security proofs for signatures from iden-
tification schemes. Advances in Cryptology—Crypto 2016, Part II, LNCS vol. 9815,
pp. 33–61, Springer, 2016.

7. L. Lamport. Constructing digital signatures from a one-way function. Tehcnical
Report SRI-CSL-98, SRI Intl. Computer Science Laboratory, 1979.

8. F.T. Leighton and S. Micali. Large provably fast and secure digital signature schemes
based on secure hash functions. U.S. Patent 5,432,852, July 11, 1995.

9. D. McGrew and M. Curcio. Hash-based signatures. Inter-
net Draft draft-mcgrew-hash-sigs-02, July 4, 2014. Available at
https://datatracker.ietf.org/doc/draft-mcgrew-hash-sigs/02.

10. D. McGrew and M. Curcio. Hash-based signatures. Internet
Draft draft-mcgrew-hash-sigs-04, March 21, 2016. Available at
https://datatracker.ietf.org/doc/draft-mcgrew-hash-sigs.

11. R.C. Merkle. Secrecy, authentication, and public-key systems. PhD Thesis, Stan-
ford University, 1979.

12. R.C. Merkle. A certified digital signature. Advances in Cryptology—Crypto ’89,
LNCS vol. 435, pp. 218–238, Springer-Verlag, 1989.

13. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. Proc. 21st Annual Symposium on Theory of Computing (STOC), pp.
33–44, ACM, 1989.

14. J. Rompel. One-way functions are necessary and sufficient for secure signatures.
Proc. 22nd Annual ACM Symposium on Theory of Computing (STOC), pp. 387–
394, ACM, 1990.


