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Abstract. Many modern block ciphers are constructed based on the
paradigm of substitution-permutation networks (SPNs). But, somewhat
surprisingly—especially in comparison with Feistel networks, which have
been analyzed by dozens of papers going back to the seminal work
of Luby and Rackoff—there are essentially no provable-security results
about SPNs. In this work, we initiate a comprehensive study of the se-
curity of SPNs as strong pseudorandom permutations when the underly-
ing “S-box” is modeled as a public random permutation. We show that
3 rounds of S-boxes are necessary and sufficient for secure linear SPNs,
but that even 1-round SPNs can be secure when non-linearity is allowed.

1 Introduction

Modern block ciphers are generally constructed using two main paradigms [19]:
Feistel networks [13] or substitution-permutation networks (SPNs) [29, 13]. These
two approaches share the same goal: namely, to extend a “pseudorandom object”
on a small domain to a (keyed) pseudorandom permutation on a larger domain
by repeating a few, relatively simple operations several times across multiple
rounds. Simplifying somewhat, Feistel networks begin with a keyed pseudoran-
dom function on n-bit inputs and extend this to give a keyed pseudorandom
permutation on 2n-bit inputs; SPNs start with one or more public “random
permutations” on n-bit inputs and extend them to give a keyed pseudorandom
permutation on wn-bit inputs for some w. Examples of block ciphers based on
Feistel networks include DES, FEAL, MISTY and KASUMI; block ciphers based
on SPNs include AES, Serpent, and PRESENT.

Although proving security unconditionally for any concrete block cipher is
beyond current techniques, we can still hope to prove that particular approaches
to constructing block ciphers are sound in an appropriate theoretical framework.
Starting with the seminal paper by Luby and Rackoff [20] in the 1980s, there
are by now dozens of papers that use this approach to prove security of Feistel



networks (of sufficiently many rounds), i.e., showing that if the underlying build-
ing block is an n-bit pseudorandom function then the resulting construction is
a 2n-bit pseudorandom permutation. In contrast, it is somewhat surprising that
there are almost no results about provable security of SPNs. (We discuss rele-
vant prior work below.) Here, we address this gap and explore conditions under
which SPNs can be proven secure.

1.1 Our Model and Results

An SPN on wn-bit inputs is computed via repeated invocation of two basic steps:
a substitution step in which a public (unkeyed) “cryptographic” permutation
S : {0, 1}n → {0, 1}n, called an S-box, is computed in a blockwise fashion over
the wn-bit intermediate state, and a permutation step in which a keyed but
“non-cryptographic” permutation on {0, 1}wn is applied. An r-round SPN uses
r rounds of S-boxes (plus an additional permutation step at the beginning). We
consider both linear and non-linear SPNs; in a linear SPN, the keyed permutation
in each round is linear (or, more generally, affine) in both the key and the
intermediate state.

The only “cryptographic hardness” comes from the S-box, and we capture
this by modeling S as a public, random permutation available to all parties as an
oracle. This is a key difference between our work and most prior work analyzing
security of SPNs (see Section 1.2), which treated the S-box as a key-dependent,
random permutation inaccessible to the adversary. In practical constructions of
block ciphers, however, the S-box is typically unkeyed.

We analyze SPNs in the standard sense of security against adaptive chosen-
plaintext and chosen-ciphertext attacks; that is, we analyze the SPN as a strong
pseudorandom permutation [20]. We first characterize the security of linear
SPNs. Based on an attack given by Halevi and Rogaway [16] (credited there
to [18]), we show that no 2-round linear SPN with w ≥ 2 can be secure. (Even a
1-round linear SPN can be secure when w = 1; see below for the significance of
this result.) Complementing this, and giving a tight characterization, we show
that 3-round linear SPNs are secure, for any w, if the keyed permutations satisfy
some mild technical requirements.

In an effort to reduce the number of rounds, we then turn our attention
to non-linear SPNs. Here we show that even a 1-round SPN can be secure if
appropriate keyed permutations are used. We identify a combinatorial property
on the permutations that suffices for security in this case, and then study the
efficiency of constructing permutations satisfying this property. Specifically, we
show a construction of a satisfactory permutation with n-bit keys (but having
high degree), and another construction with longer keys but having degree 3.

Implications. We view our results as providing support for the SPN approach
to constructing block ciphers, but we caution that they say little about any
concrete SPN-based block cipher. This is especially true since our positive results
(inherently) achieve security only for q < 2n queries, yet practical constructions
tend to use S-boxes with a very small domain (e.g., n ≤ 32).



Although an SPN with w = 1 (i.e., no domain extension) may seem unin-
teresting, it captures the well-known Even-Mansour construction [12] of a keyed
pseudorandom permutation from a public random permutation. Our positive
results imply security of the Even-Mansour construction (with similar concrete
security bounds) as a special case, even in the setting where the pre- and post-
whitening keys are identical [11].

An SPN structure can also be used for domain extension of a block cipher,
i.e., for building a block cipher F ′ with wn-bit block length from a block cipher
F having n-bit block length. Our results imply security in that setting as well.
Although several prior papers have considered this problem (see below), we
appear to be the first to analyze it in the case where the attacker is given access
to the internal function F , which would correspond in practice to publicly fixing
the key to F (thus potentially improving the efficiency of F ′).

1.2 Related Work

There are only a few prior papers looking at provable security of SPNs. The vast
majority of such work analyzes the case of secret, key-dependent S-boxes (rather
than public S-boxes as we consider here), and so we survey that work first.

SPNs with secret S-boxes.Naor and Reingold [24] prove security for what can
be viewed as a non-linear, 1-round SPN. Their ideas were further developed, in
the context of domain extension for block ciphers (see further discussion below),
by Chakraborty and Sarkar [5] and Halevi [14].

Iwata and Kurosawa [17] analyze SPNs in which the linear permutation step
is based on the specific permutations used in the block cipher Serpent. They
show an attack against 2-round SPNs of this form, and prove security for 3-round
SPNs against non-adaptive adversaries. In addition to the fact that we consider
public S-boxes, our linear SPN model considers generic linear permutations and
we prove security against adaptive attackers.

Miles and Viola [23] study SPNs from a complexity-theoretic viewpoint. Two
of their results are relevant here. First, they analyze the security of linear SPNs
using S-boxes that are not necessarily injective (so the resulting keyed functions
are not, in general, invertible). They show that r-round SPNs of this type (for
r ≥ 2) are secure against chosen-plaintext attacks. (In contrast, our results
show that 2-round, linear SPNs are not secure against a combination of chosen-
plaintext and chosen-ciphertext attacks when w ≥ 2.) They also analyze SPNs
based on a concrete set of S-boxes, but in this case they only show security
against linear/differential attacks (a form of chosen-plaintext attack), rather
than all possible attacks, and only when the number of rounds is r = Θ(log n).

SPNs with public S-boxes. A difference between our work and all the work
discussed above is that we treat the S-boxes as public. We are aware of only
one prior work analyzing the provable security of SPNs in this setting. Dodis
et al. [10] recently studied the indifferentiability [21] of confusion-diffusion net-
works, which can be viewed as unkeyed SPNs. One could translate their results to
the keyed setting, but that would require using multiple, key-dependent S-boxes



(rather than a fixed, public S-box) and so would not imply our results. We
remark further that they show positive results only for 5 rounds and above.

As observed earlier, the Even-Mansour construction [12] of a (keyed) pseu-
dorandom permutation from a public random permutation can be viewed as a
1-round, linear SPN in the degenerate case where w = 1 (i.e., no domain ex-
tension) and all round permutations are instantiated using simple key mixing.
Security of the 1-round Even-Mansour construction against adaptive chosen-
plaintext/ciphertext attacks, using independent keys for the initial and final key
mixing, was shown in the original paper [12]. Dunkelman, Keller, and Shamir [11]
showed that security holds even if the keys used are the same. Our positive re-
sults imply security of the 1-round Even-Mansour construction (with similar
concrete security bounds) as a special case.

Cryptanalysis of SPNs. Researchers have also explored cryptanalytic attacks
on generic SPNs [3, 1, 9, 2]. These works generally consider a model of SPNs in
which round permutations are secret, random (invertible) linear transformations,
and S-boxes may be secret as well; this makes the attacks stronger but positive
results weaker. In many cases the complexities of the attacks are exponential
in n (though still faster than a brute-force search for the key), and hence do
not rule out asymptotic security results. On the positive side, Biryukov et al. [1]
show that 2-round SPNs (of the stronger form just mentioned) are secure against
some specific types of attacks, but other attacks on such schemes have recently
been identified [9].

Domain extension of block ciphers. It is worth noting that our results also
address the problem of domain extension for block ciphers. That is, we may view
a block cipher F having an n-bit block length as an n-bit S-box (either viewing F
as an ideal cipher, fixing its key, and thus viewing it as a public S-box, or viewing
F as a pseudorandom permutation, keeping the key secret, and so viewing it as
a secret S-box), and then use it in a SPN construction to obtain a block cipher
on wn-bit inputs for w > 1. As mentioned earlier, non-linear, 1-round SPNs with
secret S-boxes have been used for domain extension of block ciphers before [5,
14]. Other approaches for domain extension, not relying on (pure) SPNs, have
also been considered [4, 15, 16, 22, 7]. Our main motivation, however, is not to
beat prior approaches to domain extension, but rather to study the security of
SPNs as used in practice to construct block ciphers.

2 Preliminaries

For i ∈ N, we let [i] denote the set {1, . . . , i}. We write Perm(m) for the set of
permutations of {0, 1}m. We view n as a cryptographic security parameter and

let F
def
= GF(2n), which is identified with {0, 1}n. If x ∈ F

w = {0, 1}wn, then we
denote the jth entry of x (for j ∈ [w]) by x[j].



2.1 Substitution-Permutation Networks

A substitution-permutation network (SPN) defines a keyed permutation via re-
peated invocation of two transformations: blockwise computation of a public,
cryptographic permutation called an “S-box,” and application of a keyed, non-
cryptographic permutation. Formally, an r-round SPN taking inputs of length
wn is defined by r + 1 keyed permutations {πi : Ki × {0, 1}wn → {0, 1}wn}ri=0,
a distribution K over4 K0 × · · · ×Kr, and a permutation S : {0, 1}n → {0, 1}n.
Given round keys k0, . . . , kr and input x ∈ {0, 1}wn, the output of the SPN is
computed as follows (cf. Figure 1):

– Let5 x1 := π0(k0, x).
– For i = 1 to r do:

1. yi := S̃(xi), where S̃ (x[1] ‖ · · · ‖ x[w])
def
= S(x[1]) ‖ · · · ‖S(x[w]).

2. xi+1 := πi(ki, yi).
– The output is xr+1.

If S is efficiently invertible and each πi is efficiently invertible (given the appro-
priate key), then the above process is reversible given the round keys k0, . . . , kr.

In our definition of an SPN, we apply a fixed permutation S to all w blocks of
the intermediate state in each round. More generally, one could consider using w
different functions S1, . . . , Sw in each round, or even different S-boxes in different
rounds. Our positive results hold even when a single permutation S is used, and
our negative result holds even if multiple permutations are used.

Linear SPNs. We are interested in understanding the security of both linear
and non-linear SPNs. We now define what we mean by these terms.

Definition 1. Keyed permutation π : Fw × F
w → F

w is linear6 if

π(k, x) = Tk · k ⊕ Tx · x⊕∆,

where Tk, Tx ∈ F
w×w are linear transformations, Tx is invertible, and ∆ ∈ F

w.
An SPN is linear if all its round permutations {πi}ri=0 are linear.

If π(k, x) = Tkk ⊕ Tx⊕∆ is linear, then we may write

π(k, x) = T · (T−1Tkk ⊕ T−1∆⊕ x);

thus, by setting k′ = T−1Tkk ⊕ T−1∆ we can express π as

π(k′, x) = T · (k′ ⊕ x). (1)

In other words, if an SPN is linear, then we may assume (by redefining the
distribution K on keys appropriately) that each of its permutations πi takes the

4 In practice, the round keys are derived from a single, master key using a prescribed
key schedule, but for our purposes we leave this process implicit in the distribution K.

5 Initial application of a keyed permutation is necessary, since otherwise the attacker
could compute S̃ in round 1 on its own, making that round ineffective.

6 We could also call it affine, but we show shortly that ∆ = 0 without loss of generality.
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Fig. 1. A 2-round, linear SPN.



form (1). This matches what is often done in practice (e.g., in AES, Serpent,
PRESENT, etc.), where round permutations are computed by first performing
a key-mixing step followed by an invertible linear transformation [19]. Since the
linear transformation and key mixing commute, and the adversary can compute
T and T−1 on its own (as T is public), we may further assume without loss of
generality that the first and last permutations involve only a key-mixing step.
In other words, we may set πi(ki, x) = ki ⊕ x for i ∈ {0, r}.

Security of an SPN. Our goal is to prove that certain SPNs are strong pseu-
dorandom permutations. We cannot hope to prove such a result uncondition-
ally; instead, we look at SPN constructions that are defined by permutations
{πi : Ki × {0, 1}wn → {0, 1}wn}ri=0 and a distribution K, and that take oracle
access to a public, random function S : {0, 1}n → {0, 1}n; we write this as CS .
We then analyze security of the construction against unbounded-time attackers
making a bounded number of queries to the construction and to S. Formally, we
consider the ability of an adversaryD to distinguish two worlds: the “real world,”
in which it is given oracle access to S and CSk0,...,kr

(for unknown keys k0, . . . , kr
sampled according to K), and an “ideal world” in which it has access to S and
an independent, random permutation P : {0, 1}wn → {0, 1}wn. By default, we
always allow D to make forward and inverse queries to both its oracles (though
we do not write this explicitly). We have:

Definition 2. The strong-PRP advantage of a distinguisher D against SPN con-
struction C is:

AdvC(D)
def
=

∣∣∣Pr
[
(k0, . . . , kr)← K : DC

S
k0,...,kr

,S = 1
]
− Pr

[
DP,S = 1

]∣∣∣ ,

where P and S are independent, uniform permutations on {0, 1}wn and {0, 1}n,
respectively. The strong-PRP security of C is

AdvC(qC , qS)
def
= maxD{AdvC(D)},

where the maximum is taken over all distinguishers that make at most qC queries
to their left oracle and qS queries to their right oracle.

2.2 The H-coefficient Technique

We use the H-coefficient technique [25–27] to prove various indistinguishability
results. We provide a quick overview of its main ingredients here. Our presenta-
tion borrows heavily from that of Chen and Steinberger [6]; for further details,
refer there or to the tutorial by Patarin [28].

Fix a distinguisher D that makes at most q queries to its oracles. As in
the security definition presented above, D’s aim is to distinguish between two
worlds: a “real world” and an “ideal world”. Assume without loss of generality
that D is deterministic. The execution of D defines a transcript that includes
the sequence of queries and answers received from its oracles; D’s output is a
deterministic function of its transcript. Thus if X , Y denote the probability



distributions on transcripts induced by the real and ideal worlds, respectively,
then D’s distinguishing advantage is upper bounded by the statistical distance

∆(X,Y ) :=
1

2

∑
τ |Pr[X = τ ] − Pr[Y = τ ]|,

where the sum is taken over all possible transcripts τ .
Let T denote the set of all transcripts that can be generated by D in either

world. We look for a partition of T into two sets T1 and T2 of “good” and “bad”
transcripts, respectively, along with a constant ε1 ∈ [0, 1) such that

τ ∈ T1 =⇒ Pr[X = τ ]/Pr[Y = τ ] ≥ 1− ε1. (2)

It is then possible to show (see [6] for details) that

∆(X,Y ) ≤ ε1 + Pr[Y ∈ T2] (3)

is an upper bound on the distinguisher’s advantage. One should think of ε1 and
Pr[Y ∈ T2] as “small,” so “good” transcripts have nearly the same probability
of appearing in the real world and the ideal world, whereas “bad” transcripts
have low probability of occurring in the ideal world.

An appeal of the H-coefficient technique is that it handles arbitrary adap-
tive distinguishers even though the technical calculations involve a posteriori
probabilities computed with respect to finalized transcripts.

3 Linear SPNs

We begin by exploring the security of linear SPNs. We first show that 2-round lin-
ear SPNs cannot be secure against adaptive chosen-plaintext/ciphertext attacks
when w ≥ 2. Complementing this result, and giving a tight characterization, we
then prove that 3-round linear SPNs can be secure when the round permutations
and keys are chosen appropriately.

3.1 Insecurity of 2-Round, Linear SPNs

We present an attack showing that 2-round, linear SPNs (cf. Figure 1) cannot be
secure for w ≥ 2. The attack is based on one shown by Halevi and Rogaway [16]
in a different context; our contribution here is to observe that the attack is
applicable to any 2-round, linear SPN.

Recall from the previous section that any 2-round, linear SPN can be ex-
pressed in the following form. On input x0 ∈ F

w and keys k0, k1, k2 ∈ F
w do:

1. Compute x1 := x0 ⊕ k0 followed by y1 := S̃(x1).
2. Compute x2 := π1(k1, y1) = T · (y1 ⊕ k1) for some invertible linear transfor-

mation T .
3. Compute y2 := S̃(x2) followed by x3 := y2 ⊕ k2, and return x3.



We show an attacker D, given access to an oracle O : {0, 1}wn → {0, 1}wn

(with w ≥ 2), that distinguishes whether O is an instance of the above construc-
tion (using uniform keys k0, k1, k2) or a random permutation on {0, 1}wn. The
attacker D proceeds as follows:

1. Choose inputs x0, x
′
0 that are equal on all blocks except the first.

2. Query O(x0) and O(x′0) to obtain x3 and x′3 respectively.
3. Set x̂3 := x′3[1] ‖ x3[2] ‖ · · · ‖ x3[w] and x̂′3 := x3[1] ‖ x′3[2] ‖ · · · ‖ x

′
3[w]. Then

query O−1(x̂3) and O−1(x̂′3) to obtain x̂0 and x̂′0 respectively.
4. If x̂0[2] ‖ · · · ‖ x̂0[w] = x̂′0[2] ‖ · · · ‖ x̂

′
0[w], then output 1; otherwise, output 0.

It is not hard to see that if O is a random permutation on {0, 1}wn then D
outputs 1 with negligible probability. On the other hand, we claim that when O
is an instance of the above construction then D always outputs 1. To see this,
let y1, x2 be the intermediate values during evaluation of O(x0); let y

′
1, x
′
2 be the

intermediate values during evaluation of O(x′0); let ŷ1, x̂2 be the intermediate
values during evaluation of O−1(x̂3); and let ŷ′1, x̂

′
2 be the intermediate values

during evaluation of O−1(x̂′3). Observe first that x̂2⊕ x̂′2 = x2⊕ x′2. From this it
follows that

ŷ1 ⊕ ŷ′1 =
(
T−1x̂2 ⊕ k1

)
⊕
(
T−1x̂′2 ⊕ k1

)

= T−1 · (x̂2 ⊕ x̂′2)

= T−1 · (x2 ⊕ x′2)

= T−1 · (Ty1 ⊕ Ty′1)

= T−1 · (T · (y1 ⊕ y′1))

= y1 ⊕ y′1.

Since y1 and y′1 are equal on all but their first blocks (by construction of x0, x
′
0),

we conclude that ŷ1 and ŷ′1 also agree everywhere but in their first blocks. But
this implies that x̂0 and x̂′0 are equal everywhere except in their first blocks, and
so D outputs 1.

We remark that D makes only four queries to the construction—two in the
forward direction, and two in the inverse direction—and no queries to S. We
also note that the attack does not require linearity of T ; it suffices for the per-
mutation T to be additive, i.e., for T to satisfy

∀x, y ∈ {0, 1}wn : T (x+ y) = T (x) + T (y).

(Note that additivity of T implies additivity of T−1.) Since F has characteristic 2,
the “blockwise squaring” transformation T : Fw → F

w where T (x)[j] = x[j]2 for
all j ∈ [w] is an example of a transformation that is additive but nonlinear.

3.2 Security of 3-Round, Linear SPNs

We now explore conditions under which 3-round, linear SPNs are secure. Recall
from Section 2.1 that a 3-round SPN has four round permutations {πi}3i=0, and



without loss of generality we may assume

πi(ki, x) =

{
x⊕ ki i ∈ {0, 3}

Ti · (x ⊕ ki) i ∈ {1, 2}
, (4)

where T1, T2 ∈ F
w×w are invertible linear transformations. We prove that a 3-

round, linear SPN is secure so long as (i) T1 and T−12 contain no zero entries
(Miles and Viola [23] show that matrices with maximal branch number [8] satisfy
this property), and (ii) round keys k0 and k3 are (individually) uniform.

Theorem 1. Assume w > 1. Let C be a 3-round, linear SPN with round per-
mutations as in (4) and with distribution K over keys k0, k1, k2, k3. If k0 and k3
are uniformly distributed and the matrices T1, T

−1
2 contain no zero entries, then

AdvC(qC , qS) ≤
5w2q2C + 4wqCqS
2n − qS − 2w

+
q2C
2wn

.

Proof. Fix a deterministic distinguisherD. Without loss of generality, we assume
D makes exactly qC (non-redundant) forward/inverse queries to its left oracle
that is either CSk or P , and exactly qS (non-redundant) forward/inverse queries
to its right oracle that is the S-box. We call a query from D to its left oracle a
construction query (even though in the ideal world the oracle is P ), and a query
from D to its right oracle an S-box query.

The interaction between D and its oracles can be recorded in the form of
two sets of pairs QC ⊆ {0, 1}wn × {0, 1}wn and QS ⊆ {0, 1}n × {0, 1}n, where
QC contains every pair (x, y) for which D made a construction query x that was
answered by y or an inverse query y that was answered by x, and QS is defined
similarly with respect to S-box queries. Note that D’s interaction with its oracles
can be unambiguously reconstructed from these sets since D is deterministic.

Following [6], we augment the transcript (QC , QS) with a key value k =
(k0, k1, k2, k3). In the real world, k is the actual key used by the construction. In
the ideal world, k is a dummy key sampled independently from all other values
according to the prescribed key distribution K. Thus, a transcript τ has the final
form τ = (QC , QS , k0, k1, k2, k3).

Let T be set of all transcripts that can be generated with nonzero proba-
bility in the ideal world. (This includes all transcripts that can be generated
with nonzero probability in the real world.) As in Section 2.2, let X , Y be the
distributions over transcripts in the real and ideal worlds, respectively.

We define a set T2 ⊆ T of bad transcripts as follows: a transcript τ =
(QC , QS, k0, k1, k2, k3) is bad if and only if one of these events occurs:

1. There exist a pair (x, y) ∈ QC , a pair (a, b) ∈ QS , and an index j ∈ [w] such
that (x⊕ k0)[j] = a or (y ⊕ k3)[j] = b.

2. There exist a pair (x, y) ∈ QC and distinct indices j, j′ ∈ [w] such that
(x⊕ k0)[j] = (x⊕ k0)[j

′] or (y ⊕ k3)[j] = (y ⊕ k3)[j
′].

3. There exist distinct pairs (x, y), (x′, y′) ∈ QC and distinct indices j, j′ ∈ [w]
such that (x ⊕ k0)[j] = (x′ ⊕ k0)[j

′] or (y ⊕ k3)[j] = (y′ ⊕ k3)[j
′].



As in Section 2.2, T1 := T \T2 denotes the set of good transcripts.
Since, in the ideal world, the values k0, k3 are independent of QC , QS and

(individually) uniform in {0, 1}wn, a simple union bound shows that

Pr[Y ∈ T2] < 2wqCqS/2
n + w(w − 1)qC/2

n + w(w − 1)qC(qC − 1)/2n

where the three terms account for the three events above, in that order. Thus

Pr[Y ∈ T2] ≤ 2wqCqS/2
n + w(w − 1)q2C/2

n. (5)

This gives us “one half” of (3).
In order to finish applying the H-coefficient technique, it remains to lower

bound the ratio
Pr[X = τ ]

Pr[Y = τ ]

for τ ∈ T1. Let ΩX = Perm(n)×K be the probability space underlying the real
world, whose measure is the product of the uniform measure on Perm(n) and
the measure induced by the distribution K on keys. (Thus, each element of ΩX

is a pair (S, k) with S ∈ Perm(n) and k = (k0, k1, k2, k3) ∈ K.) Also let

ΩY = Perm(wn) × Perm(n)×K

be the probability space underlying the ideal world, whose measure is the product
of the uniform measure on Perm(wn) with the measure on ΩX .

Let ν = (Qν
C , Q

ν
S , k

ν) be a transcript. An element ω = (S∗, k∗) ∈ ΩX is
compatible with ν if k∗ = kν , if S∗(a) = b for all (a, b) ∈ Qν

S , and if CS
∗

k∗ (x) = y
for all (x, y) ∈ Qν

C . An element ω = (P ∗, S∗, k∗) ∈ ΩY is compatible with ν if
k∗ = kν , if S∗(a) = b for all (a, b) ∈ Qν

S, and if P ∗(x) = y for all (x, y) ∈ Qν
C .

We write
ω ↓ ν

to indicate that an element ω ∈ ΩX ∪ΩY is compatible with ν.
For the rest of the proof we fix a transcript τ = (QC , QS, k) ∈ T1 so, in

particular, QC , QS , and k will be fixed for the rest of the proof. Since τ ∈ T , it
is easy to see (cf. [6]) that

Pr[X = τ ] = Prw←ΩX
[ω ↓ τ ] (6)

Pr[Y = τ ] = Prw←ΩY
[ω ↓ τ ], (7)

where the notation indicates that ω is sampled from the relevant probability
space according to that space’s probability measure. (In other words, the proba-
bility of obtaining τ in each world is just the probability that the random coins
of that world are “compatible” with τ in the sense outlined above.) We bound
Pr[X = τ ]/Pr[Y = τ ] by reasoning about the latter probabilities.

As additional notation/terminology:

– Say that S∗ ∈ Perm(n) is compatible with a transcript ν = (Qν
C , Q

ν
S , k

ν),
and write S∗ ↓ ν, if (S∗, k) ∈ ΩX is compatible with ν, where k is the key
value of the fixed transcript τ .



– Likewise, say that (P ∗, S∗) ∈ Perm(wn) × Perm(n) is compatible with a
transcript ν = (Qν

C , Q
ν
S, k

ν), and write (P ∗, S∗) ↓ ν, if (P ∗, S∗, kν) ↓ ν.

Incorporating these notations, the product structure of ΩX , ΩY implies

Prω←ΩX
[ω ↓ τ ] = Pr[K = k] · PrS∗ [S∗ ↓ τ ]

Prω←ΩY
[ω ↓ τ ] = Pr[K = k] · PrP∗,S∗ [(P ∗, S∗) ↓ τ ],

where S∗ and (P ∗, S∗) are sampled uniformly from Perm(n) and Perm(wn) ×
Perm(n), respectively. Thus,

Pr[X = τ ]

Pr[Y = τ ]
=

PrS∗ [S∗ ↓ τ ]

PrP∗,S∗ [(P ∗, S∗) ↓ τ ]
. (8)

It is immediate that

Pr
P∗,S∗

[(P ∗, S∗) ↓ τ ] =
(2wn − qC)!

2wn!
·
(2n − qS)!

2n!
(9)

since QC , QS have size exactly qC , qS , respectively.
To compute PrS∗ [S∗ ↓ τ ] we start by writing

Pr
S∗

[S∗ ↓ τ ] = Pr
S∗

[S∗ ↓ (QC , QS , k)]

= Pr
S∗

[S∗ ↓ (∅, QS , k)] · Pr
S∗

[S∗ ↓ (QC , QS , k) | S
∗ ↓ (∅, QS , k)]

=
(2n − qS)!

2n!
· Pr
S∗

[S∗ ↓ (QC , QS, k) | S
∗ ↓ (∅, QS , k)] . (10)

Define

Dom(τ)
def
= {a ∈ {0, 1}n : (a, b) ∈ QS for some b ∈ {0, 1}n}

Range(τ)
def
= {b ∈ {0, 1}n : (a, b) ∈ QS for some a ∈ {0, 1}n}

ExtDom(τ)
def
= {(x⊕ k0)[j] : (x, y) ∈ QC , j ∈ [w]}

ExtRange(τ)
def
= {(y ⊕ k3)[j] : (x, y) ∈ QC , j ∈ [w]}.

Note that ExtDom(τ) (resp., ExtRange(τ)) contains all the first-round S-box
inputs (resp., third-round S-box outputs) corresponding to the construction
queries in QC . We let Good(S∗) be a predicate of S∗ that holds if and only

if all the following conditions are met (as usual, S̃∗ denotes blockwise evaluation
of S∗ on a wn-bit string):

1. S∗ ↓ (∅, QS, k).

2. T1(S̃
∗(x ⊕ k0) ⊕ k1)[j] /∈ Dom(τ) ∪ ExtDom(τ) for all (x, y) ∈ QC and all

j ∈ [w].

3. (T−12 S̃∗−1(y⊕k3)⊕k2)[j] /∈ Range(τ)∪ExtRange(τ) for all (x, y) ∈ QC and
all j ∈ [w].



4. T1(S̃
∗(x ⊕ k0) ⊕ k1)[j] 6= T1(S̃

∗(x′ ⊕ k0) ⊕ k1)[j
′] for all distinct tuples

(x, y, j), (x′, y′, j′) ∈ QC × [w].

5. (T−12 S̃∗−1(y⊕k3)⊕k2)[j] 6= (T−12 S̃∗−1(y′⊕k3)⊕k2)[j
′] for all distinct tuples

(x, y, j), (x′, y′, j′) ∈ QC × [w].

The second condition requires that no second-round S-box inputs are in Dom(τ)∪
ExtDom(τ), and the fourth condition requires that all second-round S-box inputs
are distinct; the third and fifth conditions parallel these, but for second-round
S-box outputs.

We have

Pr
S∗

[S∗ ↓ (QC , QS, k) | S
∗ ↓ (∅, QS, k)]

≥ Pr
S∗

[S∗ ↓ (QC , QS, k) ∧ Good(S∗) | S∗ ↓ (∅, QS, k)]

= Pr
S∗

[Good(S∗) | S∗ ↓ (∅, QS, k)] · Pr
S∗

[S∗ ↓ (QC , QS , k) | Good(S
∗)], (11)

using the fact that Good(S∗) =⇒ S∗ ↓ (∅, QS, k) for the final equality. Thus,
all that remains is to lower bound the two terms in the product of (11).

Let Badi(S
∗) be the predicate that is true if and only if condition i in the

definition of Good(S∗) is violated. Note that

PrS∗

[
Good(S∗) | S∗ ↓ (∅, QS, k)

]
≤

5∑

i=2

PrS∗ [Badi(S
∗) | S∗ ↓ (∅, QS , k)],

since the first condition in the definition of Good(S∗) cannot be violated here.
We now upper bound PrS∗ [Badi(S

∗) | S∗ ↓ (∅, QS, k)] for i = 2, 3, 4, 5.

Lemma 1. PrS∗ [Bad2(S
∗) | S∗ ↓ (∅, QS, k)] ≤ wqC(qS + wqC)/(2

n − qS − w).

Proof. Fix some (x, y) ∈ QC and an index j ∈ [w]. Since τ is a good transcript,
(x ⊕ k0)[i] /∈ Dom(τ) for all i ∈ [w], and (x ⊕ k0)[i] 6= (x ⊕ k0)[i

′] for i′ 6= i. So
after conditioning on S∗ ↓ (∅, QS , k) and the values of S∗((x ⊕ k0)[i]) for i 6= 1,
the value S∗((x ⊕ k0)[1]) is uniform in a set of size 2n − qS − w + 1. Because
every entry in the first column of T1 is nonzero, we have

Pr
S∗

[T1(S̃
∗(x⊕ k0)⊕ k1)[j] ∈ Dom(τ) ∪ ExtDom(τ) | S∗ ↓ (∅, QS, k)]

≤
|Dom(τ)| + |ExtDom(τ)|

2n − qS − w + 1

≤
qS + wqC

2n − qS − w
.

The statement follows by a union bound over all (x, y) ∈ QC , j ∈ [w]. ut

Lemma 2. PrS∗ [Bad3(S
∗) | S∗ ↓ (∅, QS, k)] ≤ wqC(qS + wqC)/(2

n − qS − w).

Proof. (Symmetric to Lemma 1.) ut



Lemma 3. PrS∗ [Bad4(S
∗) | S∗ ↓ (∅, QS, k)] ≤ w2q2C/(2

n − qS − 2w).

Proof. Fix distinct (x, y, j), (x′, y′, j′) ∈ QC × [w]. Then either (x, y) 6= (x′, y′)
(which implies x 6= x′) or x = x′ but j 6= j′.

Assume first that x 6= x′. Then x[i0] 6= x′[i0] for some i0 ∈ [w]. By the
definition of a good transcript, (x ⊕ k0)[i0] 6= (x ⊕ k0)[i] for all i 6= i0 and
(x ⊕ k0)[i0] 6= (x′ ⊕ k0)[i] for all i. So after conditioning on S∗ ↓ (∅, QS, k) and
the values of S∗((x⊕ k0)[i]) for i 6= i0 and S∗((x′ ⊕ k0)[i]) for i ∈ [w], the value
of S∗((x⊕ k0)[i0]) is uniform in a set of size at least 2n − qS − 2w + 1. Because
every entry in the i0th column of T1 is nonzero, we have

Pr
S∗

[T1(S̃
∗(x⊕ k0)⊕ k1)[j] = T1(S̃

∗(x′ ⊕ k0)⊕ k1)[j
′] | S∗ ↓ (∅, QS , k)]

≤
1

2n − qS − 2w
.

Assume next that x = x′ and so j 6= j′. Since T1 is invertible, the jth and
j′th rows of T1 are linearly independent and, in particular, there exists an index
i0 ∈ [w] such that the (j, i0)th and (j′, i0)th entries of T1 are not equal. After
conditioning on S∗ ↓ (∅, QS, k) and the values of S∗((x ⊕ k0)[i]) for i 6= i0, the
value of S∗((x⊕k0)[i0]) is uniform in a set of size 2n− qS−w+1. It follows that

Pr
S∗

[T1(S̃
∗(x⊕ k0)⊕ k1)[j] = T1(S̃

∗(x⊕ k0)⊕ k1)[j
′] | S∗ ↓ (∅, QS, k)]

≤
1

2n − qS − w
.

The statement now follows by taking a union bound over all possible pairs
of distinct elements (x, y, j), (x′, y′, j′) ∈ QC × [w]. ut

Lemma 4. PrS∗ [Bad5(S
∗) | S∗ ↓ (∅, QS, k)] ≤ w2q2C/(2

n − qS − 2w).

Proof. (Symmetric to Lemma 3.) ut

Combining the bounds of Lemmas 1–4, we find

Pr
S∗

[Good(S∗) | S∗ ↓ (∅, QS , k)] ≥ 1−
2w2q2C

2n − qS − 2w
−

2wqC(qS + wqC)

2n − qS − w

≥ 1−
4w2q2C + 2wqCqS
2n − qS − 2w

. (12)

Our next step is to lower bound the term PrS∗ [S∗ ↓ (QC , QS, k) | Good(S∗)]
from (11). For any S⊥ ∈ Perm(n) such that Good(S⊥) is true, define

QExt(S⊥) = {(a, S⊥(a))}a∈ExtDom(τ) ∪ {(S
−1
⊥

(b), b)}b∈ExtRange(τ).

Let Perm⊥(n) ⊂ Perm(n) be maximal such that the predicate Good(S⊥) holds
for every S⊥ ∈ Perm⊥(n) and such that QExt(S⊥) 6= QExt(S′

⊥
) for distinct



S⊥, S
′
⊥
∈ Perm⊥(n). (I.e., Perm⊥(n) is a system of representatives, with one

representative per distinct value of QExt(S⊥).) Then the event

Good(S∗) ∧ (S∗ ↓ (QC , QS , k))

is the disjoint union of the events
{
Good(S∗) ∧

(
S∗ ↓ (QC , QS ∪QExt(S⊥), k)

)}
S⊥∈Perm⊥(n)

,

and so

Pr
S∗

[S∗ ↓ (QC , QS , k) | Good(S
∗)]

=
∑

S⊥∈Perm⊥(n)

Pr
S∗

[S∗ ↓ (QC , QS ∪QExt(S⊥), k) | Good(S
∗)]

=
∑

S⊥∈Perm⊥(n)

(
Pr
S∗

[S∗ ↓ (∅, QS ∪QExt(S⊥), k) | Good(S
∗)] ×

Pr
S∗

[S∗ ↓ (QC , QS ∪QExt(S⊥), k) | S
∗ ↓ (∅, QS ∪QExt(S⊥), k)]

)
. (13)

Fixing an arbitrary S⊥ ∈ Perm⊥(n), parts 4 and 5 of the definition of Good(S⊥)
imply that the sets

A =
{
T1(S̃⊥(x⊕ k0)⊕ k1)[j] : (x, y) ∈ QC , j ∈ [w]

}

B =
{
(T−12 S̃−1

⊥
(y ⊕ k3)⊕ k2)[j] : (x, y) ∈ QC , j ∈ [w]

}

each consist of wqC distinct elements, whereas parts 2 and 3 of the same defini-
tion imply that

A ∩ (Dom(τ) ∪ ExtDom(τ)) = ∅,

B ∩ (Range(τ) ∪ ExtRange(τ)) = ∅.

It follows that S∗ ↓ (QC , QS ∪ QExt(S⊥), k) iff S∗ ↓ (∅, QS ∪ QExt(S⊥), k) and
S∗(a) = b for all wqC “matching” pairs (a, b) in A × B (that is, we match the
element a ∈ A associated with (x, y) ∈ QC and j ∈ [w] with the element b ∈ B
associated to the same (x, y) and j). Thus,

Pr
S∗

[S∗ ↓ (QC , QS ∪QExt(S⊥), k) | S
∗ ↓ (∅, QS ∪QExt(S⊥), k)]

=
(2n − qS − |QExt(S⊥)| − wqC)!

(2n − qS − |QExt(S⊥)|)!

≥
(2n − qS − wqC)!

(2n − qS)!
.

Then since
∑

S⊥∈Perm⊥(n)

Pr
S∗

[S∗ ↓ (∅, QS ∪QExt(S⊥), k) | Good(S
∗)] = 1,



(13) implies that

Pr
S∗

[S∗ ↓ (QC , QS , k) | Good(S
∗)] ≥

(2n − qS − wqC)!

(2n − qS)!
. (14)

Combining (11), (12), and (14), we thus obtain

Pr
S∗

[S∗ ↓ (QC , QS , k) | S
∗ ↓ (∅, QS, k)]

≥

(
1−

4w2q2C + 2wqCqS
2n − qS − 2w

)
(2n − qS − wqC)!

(2n − qS)!
.

By (10) we therefore have

Pr
S∗

[S∗ ↓ τ ] ≥
(2n − qS)!

2n!

(
1−

4w2q2C + 2wqCqS
2n − qS − 2w

)
(2n − qS − wqC)!

(2n − qS)!
,

and so (using (8) and (9))

Pr[X = τ ]

Pr[Y = τ ]
=

PrS∗ [S∗ ↓ τ ]

PrP∗,S∗ [(P ∗, S∗) ↓ τ ]

≥

(
1−

4w2q2C + 2wqCqS
2n − qS − 2w

)
(2n − qS − wqC)!

(2n − qS)!

/
(2wn − qC)!

2wn!

≥

(
1−

4w2q2C + 2wqCqS
2n − qS − 2w

)(
1

2n − qS

)wqC /(
1

2wn − qC

)qC

≥

(
1−

4w2q2C + 2wqCqS
2n − qS − 2w

)(
1

2n

)wqC /(
1

2wn − qC

)qC

=

(
1−

4w2q2C + 2wqCqS
2n − qS − 2w

)(
1−

qC
2wn

)qC

= 1−
4w2q2C + 2wqCqS
2n − qS − 2w

−
q2C
2wn

.

Combining with (5), which gave an upper bound on the probability of ob-
taining a bad transcript in the ideal world, yields a final upper bound of

2wqCqS
2n

+
w(w − 1)q2C

2n
+

4w2q2C + 2wqCqS
2n − qS − 2w

+
q2C
2wn

≤
5w2q2C + 4wqCqS
2n − qS − 2w

+
q2C
2wn

on the distinguisher’s advantage, as per (3). This completes the proof. ut

A minimal secure (linear) SPN. We proved that a 3-round, linear SPN is
secure if the keys k0 and k3 are individually uniform and T1, T

−1
2 contain no

0-entries. No assumptions were made about independence of k0, k3, nor were
any assumptions made about the distributions of k1, k2. So the theorem implies



security for the following “minimal” 3-round, linear SPN: Let k0 = k3 = k,
where k is uniform, set k1 = k2 = 0wn, and let T1 = T2

−1 = T be invertible with
no 0-entries. Define keyed permutations

πi(k, x) =





x⊕ k i ∈ {0, 3}

Tx i = 1

T−1x i = 2.

(15)

We have:

Corollary 1. Assume w > 1. Let C be a 3-round, linear SPN with round per-
mutations as in (15) and K choosing uniform k0 = k3 and k1 = k2 = 0wn. Then

AdvC(qC , qS) ≤
5w2q2C + 4wqCqS
2n − qS − 2w

+
q2C
2wn

.

4 Non-Linear SPNs

In the previous section we considered linear SPNs and showed that 3 rounds are
necessary for security to hold. In this section, we show that by allowing non-
linear permutations, the number of rounds (i.e., the number of applications of
the S-boxes) needed for constructing a secure SPN can be reduced.

This section is organized as follows. We first define what it means for a keyed
permutation over {0, 1}wn to be blockwise universal.7 We then show how to
use blockwise-universal permutations to construct a 1-round SPN. Finally, we
explore various constructions of blockwise-universal permutations.

Interestingly, for w = 1 we show that simple key mixing gives a blockwise-
universal permutation; as a corollary of our work, we thus obtain a proof of
security for the classical Even-Mansour construction [12], even in the case where
the pre- and post-whitening keys are the same [11]. For w ≥ 2 our results from
Section 3.1 imply that no linear function can be blockwise universal, but we
show that several non-linear constructions are possible.

4.1 Secure 1-Round SPNs via Blockwise-Universal Permutations

We begin by defining the notion of a blockwise-universal (keyed) permutation
over F

w. Let the blocks of y ∈ F
w be y[1], . . . , y[w] ∈ F. Informally, a keyed

permutation π : K×Fw → F
w is blockwise universal if, for any distinct x, x′ ∈ F

w

and any c ∈ F, the probability (taken over uniform k ∈ K) of each of the following
events is low: (1) a block of π(k, x) is equal to a block of π(k, x′), (2) two different
blocks of π(k, x) are equal, (3) a block of π(k, x) is equal to c. Formally:

Definition 3. A keyed permutation {π : K × F
w → F

w} is (ε, ε′)-blockwise
universal if the following hold:

7 A similar notion was defined in [24, 15, 14] and even called blockwise universal in [15,
14]. The definition we give here is related, but different.



1. For all distinct (x, i), (x′, i′) ∈ F
w × [w], we have

Prk←K

[
π(k, x)[i] = π(k, x′)[i′]

]
≤ ε.

2. For all (x, i, c) ∈ F
w × [w]× F, we have Prk←K

[
π(k, x)[i] = c

]
≤ ε′.

If ε = ε′, we simply call the keyed permutation ε-blockwise universal.

We now show that if π is blockwise universal, then a 1-round SPN construc-
tion C using round permutations π0 = π and π1 = π−1 is secure. In fact, C is
secure even when π0, π1 share the same (uniform) key. I.e., we may define C as

CSk (x)
def
= π−1(k, S̃(π(k, x))).

Theorem 2. Let π : K × F
w → F

w be (ε, ε′)-blockwise universal. Then

AdvC(qC , qS) ≤ w2q2Cε + 2w qC qS ε′ ,

where C is the 1-round SPN construction in which π0 = π, π1 = π−1, and in
which K samples a uniform k ∈ K and sets k0 = k1 = k.

Proof. The proof is conceptually similar to the proof of Theorem 1, though the
technical details are simpler here. Fix a deterministic distinguisher D. Without
loss of generality, assume D makes exactly qC (non-redundant) forward/inverse
queries to its left oracle that is either Ck or P , and exactly qS (non-redundant)
forward/inverse queries to its right oracle that is the S-box. We call a query
from D to its left oracle a construction query (even though in the ideal world
the oracle is P ), and a query from D to its right oracle an S-box query.

As previously, the interaction between D and its oracles is recorded in two
sets of pairs QC ⊆ {0, 1}wn × {0, 1}wn and QS ⊆ {0, 1}n × {0, 1}n, where QC

contains every pair (x, y) for which D made a construction query x that was
answered by y or an inverse query y that was answered by x, and QS is defined
similarly with respect to S-box queries. As in the proof of Theorem 1, we also
append the key value k to the transcript in the real world and append a (uniform)
dummy key value k ∈ K to the transcript in the ideal world; a transcript τ thus
has the form of a triple τ = (QC , QS, k).

Let T be the set of all possible transcripts that can be generated by D in the
ideal world. We say that a transcript τ = (QC , QS , k) is bad if either:

1. There exist a pair (x, y) ∈ QC , a pair (a, b) ∈ QS , and an index j ∈ [w] such
that π(k, x)[j] = a or π(k, y)[j] = b.

2. There exist distinct tuples (x, y, j), (x′, y′, j′) ∈ QC×[w] such that π(k, x)[j] =
π(k, x′)[j′] or π(k, y)[j] = π(k, y′)[j′].

We let T2 ⊆ T denote the set of bad transcripts. Transcripts in T1 = T \T2 are
called good transcripts.

Let X , Y be the distributions over transcripts in the real and ideal worlds,
respectively. Because the key value k is independent of QC , QS in the ideal



world, the definition of (ε, ε′)-blockwise universality and two applications of a
union bound give

Pr[Y ∈ T2] ≤ 2wqCqSε
′ + w2q2Cε.

We next lower bound the ratio

Pr[X = τ ]

Pr[Y = τ ]

for transcripts τ ∈ T1. Let ΩX , ΩY be the probability spaces underlying the real
and ideal worlds respectively. That is,

ΩX = {(S, k) : S ∈ Perm(n), k ∈ K}

ΩY = {(P, S, k) : P ∈ Perm(wn), S ∈ Perm(n), k ∈ K},

each with uniform measure.
For the rest of the proof, fix a transcript τ = (QC , QS, k) ∈ T1. We say an

element ω = (S∗, k∗) ∈ ΩX is compatible with τ if k∗ = k, if S∗(a) = b for
all (a, b) ∈ QS , and if CS

∗

k (x) = y for all (x, y) ∈ QC . Analogously, an element
ω = (P ∗, S∗, k∗) ∈ ΩY is compatible with τ if k∗ = k, if S∗(a) = b for all
(a, b) ∈ QS , and if P ∗(x) = y for all (x, y) ∈ QC . We write ω ↓ τ to denote
compatibility between ω ∈ ΩX ∪ΩY and τ .

Since

Pr[X = τ ] = |{ω ∈ ΩX : ω ↓ τ}|/|ΩX |

Pr[Y = τ ] = |{ω ∈ ΩY : ω ↓ τ}|/|ΩY |

(compare with (6), (7)), we have

Pr[X = τ ]

Pr[Y = τ ]
=
|{ω ∈ ΩX : ω ↓ τ}|

|ΩX |
·

|ΩY |

|{ω ∈ ΩY : ω ↓ τ}|

=
(2n − qS − wqC)!

2n! |K|
·

2wn! 2n! |K|

(2wn − qC)! (2n − qS)!

=
(2n − qS − wqC)! 2

wn!

(2n − qS)! (2wn − qC)!
≥ 1,

where the fact that τ ∈ T1 is used in the second equality. Hence we may apply
the H-coefficient technique with ε1 = 0 (cf. Section 2.2), and D’s distinguishing
advantage is upper bounded by

ε1 + Pr[Y ∈ T2] ≤ 2wqCqSε
′ + w2q2Cε

as claimed. ut

4.2 Constructing Blockwise-Universal Permutations

We now show several constructions of blockwise-universal permutations.



Key mixing (w = 1). Let w = 1 and k ∈ {0, 1}n. Define π(k, x) = x ⊕ k. It
is trivial to see that this construction is (0, 2−n)-blockwise universal: if x 6= x′,
then x ⊕ k 6= x′ ⊕ k (meaning ε = 0); also, for any c we have x ⊕ k = c with
probability ε′ = 2−n when k is uniform.

Instantiating the construction analyzed in Theorem 2 with this permutation
yields the Even-Mansour construction [12] with the same key used for both pre-
and post-whitening. Our results thus imply that the Even-Mansour construction
in this case has a concrete security bound of 2qCqS/2

n, matching the security
bound given by Dunkelman, Keller, and Shamir [11].

A construction of degree 3. A consequence of our attack in Section 3.1 is
that blockwise-universal permutations with w > 1 must be non-linear. We now
show a construction of degree 3. This construction is inspired by (though distinct
from and considerably simpler than) a construction of a non-keyed permutation
given by Dodis et al. [10] that achieves (in their terminology) good “entry-wise
random collision resistance.”

Let w ≥ 2 and let T ∈ F
w×w be an invertible matrix of the form

T =




1
1
... *

1


 ,

i.e., the first column of T is all 1s. We define a polynomial p : Fw → F by

p(x) =
w⊕

j=2

x[j]3

and then define a transformation η : Fw → F
w by

η(x)[i] =

{
x[i]⊕ p(x) if i = 1,

x[i] otherwise.

It is easy to see that η is a permutation of Fw. (In fact, since F has character-
istic 2, the permutation η is an involution, i.e., it is its own inverse.) Finally,
define the keyed permutation π : Fw × F

w → F
w as

π(k, x) = T · η(x⊕ k). (16)

Note that π is the composition of three invertible transformations, where the first
transformation consists of the map x→ x⊕ k; hence, π is a keyed permutation.

Theorem 3. The keyed permutation π : F
w × F

w → F
w defined in (16) is

(2/2n, 1/2n)-blockwise universal.

Proof. We start by noting that

∀i : π(k, x)[i] = (Tx)[i]⊕ (Tk)[i]⊕ p(x⊕ k), (17)



by the structure of T . The term (Tk)[i] is a linear combination of the variables
k[1], . . . , k[w] in which k[1] has coefficient 1, whereas

p(x⊕ k) = (x[2]⊕ k[2])3 ⊕ · · · ⊕ (x[w] ⊕ k[w])3

can be viewed as the sum of w − 1 degree-3 polynomials in the variables k[2],
. . . , k[w] whose coefficients depend on x. Since (Tk)[i] is the only term in (17)
that depends on k[1], it is easy to see that the second condition in the definition
of blockwise universality is satisfied with ε′ = 1/2n.

To verify the first condition of Definition 3, let (x, i), (x′, i′) ∈ F
w × [w] be

distinct. Then

π(k, x)[i]⊕ π(k, x′)[i′]

= (Tx)[i]⊕ (Tx′)[i]⊕ (Tk)[i]⊕ (Tk)[i′]⊕ p(x⊕ k)⊕ p(x′ ⊕ k).

If the last w−1 entries of x, x′ are equal, then p(x⊕k) = p(x′⊕k) and moreover
(Tx)[i]⊕ (Tx′)[i] = x[1]⊕ x′[1]; thus,

π(k, x)[i]⊕ π(k, x′)[i′] = x[1]⊕ x′[1]⊕ (Tk)[i]⊕ (Tk)[i′].

If i = i′ then x[1] ⊕ x′[1] 6= 0 (otherwise (x, i) would be equal to (x′, i′)), so
π(k, x)[i] 6= π(k, x′)[i′]. If i 6= i′ then (Tk)[i] ⊕ (Tk)[i′] is uniform (by linear
independence of the rows of T ), so π(k, x)[i] = π(k, x′)[i′] with probability 1/2n.
In any case,

Prk[π(k, x)[i] = π(k, x′)[i′]] ≤ 1/2n.

On the other hand, if the last w − 1 entries of x, x′ are not all equal then
there exists a j ∈ {2, . . . , w} such that x[j] 6= x′[j]. Then

(x[j]⊕ k[j])3 ⊕ (x′[j]⊕ k[j])3

is a (nonzero) polynomial of degree 2 in k[j]. By extension, p(x, k)⊕p(x′, k) and
hence π(k, x)[i]⊕ π(k, x′)[i′] are nonzero polynomials of degree 2 in k[j] as well.
Fixing arbitrary values of k[j′] for j′ 6= j, the probability that this polynomial
evaluates to zero over uniform choice of k[j] is thus at most 2/2n; hence

Prk[π(k, x)[i] = π(k, x′)[i′]] ≤ 2/2n

in this case. This concludes the proof. ut

A construction with short keys. Let T ∈ F
w×w be an invertible matrix,

with entries Ti,j , such that (i) Ti,j 6= 0 for all i, j ∈ [w], (ii) ⊕w
j=1Ti,j 6= 0 for all

i ∈ [w], and (iii) ⊕w
j=1Ti,j 6= ⊕w

j=1Ti′,j if i 6= i′. (A random matrix has all the
required properties with high probability.) Then we define the keyed permutation
π : F \ {0} × F

w → F
w by π(k, x) = Tz(k, x), where

z(k, x)[i] = x[i] · ki+1 ⊕ k

for i = 1, . . . , w. It is easy to verify that π is invertible when k is nonzero.



This construction can be viewed as applying a “local” keyed, non-linear trans-
formation to each block x[i], and then applying a linear transformation to the
result. Here we use a much shorter key k as compared to the previous construc-
tion, but at the expense of the non-linear transformation having degree w + 1.

Theorem 4. The keyed permutation π : F \ {0} × F
w → F

w defined above is
((w + 1)/(2n − 1))-blockwise universal.

Proof. We first verify property 1 of Definition 3. Let (x, i), (x′, i′) ∈ F
w × [w] be

distinct. By definition of π, we have π(k, x)[i] = π(k, x′)[i′] if and only if

w⊕

j=1

Ti,j(x[j] · k
j+1 ⊕ k) =

w⊕

j=1

Ti′,j(x
′[j] · kj+1 ⊕ k).

Rewriting the equation, this is the same as



w⊕

j=1

(Ti,j ⊕ Ti′,j)



 k ⊕
w⊕

j=1

(Ti,j x[j]⊕ Ti′,j x
′[j]) kj+1 = 0. (18)

If i 6= i′ then, since
∑w

j=1 Ti,j 6=
∑w

j=1 Ti′,j , (18) is a polynomial equation in k
of degree at least 1 and at most w + 1. If i = i′ then x 6= x′ and so there exists
i0 ∈ [w] such that x[i0] 6= x′[i0]. Again, this means (18) is a polynomial equation
in k of degree at least i0 + 1 and at most w + 1. In either case, the probability
over uniform choice of k that the equation holds is at most (w + 1)/(2n − 1).

To see property 2, observe that π(k, x)[i] = c for some c ∈ F if and only if⊕w

j=1 Ti,j(x[j] · kj+1 ⊕ k) = c. This is a polynomial equation in k of degree at

least 1 (since
⊕w

j=1 ai,j 6= 0) and at most w+1. So the probability this equation
holds for uniform k is at most (w + 1)/(2n − 1). This concludes the proof. ut

A second construction with short keys. We give another instantiation with
n-bit keys that achieves the same parameters as above, but is (arguably) more
direct and intuitive. Let k ∈ F \ {0}. Let C1, . . . , Cw ∈ F be any w distinct
nonzero elements. Then, we define

π(k, x)[i] :=

w⊕

j=1

(k · Ci)
j+1x[j]⊕ k · Ci, (19)

for i = 1, . . . , w. It is easy to verify that π is invertible when k is nonzero.

Theorem 5. The keyed permutation π : F \ {0} × F
w → F

w as in (19) is
((w + 1)/(2n − 1))-blockwise universal.

Proof. The proof is quite similar to that of Theorem 4. We first show that π
satisfies property 1 of Definition 3. By definition of π, we have π(k, x)[i] =
π(k, x′)[i′] if and only if

w⊕

j=1

(k · Ci)
j+1x[j]⊕ k · Ci =

w⊕

j=1

(k · Ci′ )
j+1x′[j]⊕ k · Ci′ .



This is equivalent to

(Ci − Ci′)k ⊕
w⊕

j=1

(Ci
j+1x[j]⊕ Ci′

j+1x′[j])kj+1 = 0. (20)

Fix distinct (x, i) 6= (x′, i′) ∈ F
w × [w]. If i 6= i′ then Ci 6= Ci′ and so (20) is a

polynomial equation in k of degree at least 1 and at most w + 1. If i = i′ then
x 6= x′, and so there exists i0 ∈ [w] such that x[i0] 6= x′[i0]. Again, this implies
that (20) is a polynomial equation in k of degree at least t+1 and at most w+1.
In either case, the probability over uniform choice of k that the equation holds
is at most (w + 1)/(2n − 1).

To see property 2, observe that π(k, x)[i] = c for some c ∈ F if and only if⊕w

j=1(k ·Ci)
j+1x[j]⊕ k ·Ci = c. This is a polynomial equation in k of degree at

least 1 (since Ci is nonzero by assumption) and at most w + 1. The probability
with which this equation holds for uniform k is at most (w + 1)/(2n − 1). This
concludes the proof. ut

Relation to our 3-round, linear SPN construction. We conclude with the
following informal observation relating the result of Theorem 2 to our 3-round,
linear SPN construction from Section 3.2: The initial round of the “minimal”
linear SPN discussed there (i.e., key mixing, followed by evaluation of S̃, and
then finally a linear transformation) can be shown to be a blockwise-universal
permutation if the S-box is viewed as part of the key of the permutation. To see
this, consider any (x, i) 6= (x′, i′). If x = x′ but i 6= i′, then key mixing with a
uniform wn-bit key ensures that the output is uniform, so two different blocks
collide with probability 1/2n. On the other hand, if x 6= x′ then x[j] 6= x′[j] for
some j. After the key mixing, the S-boxes will be applied to two unequal values
x[j] ⊕ k[j] and x′[j] ⊕ k[j], which means the resulting values y[j] and y′[j] will
be uniform and (essentially) independent. Subsequent application of the linear
transformation T ensures that any blocks i and i′ of the outputs will also be
uniform and uncorrelated, hence unlikely to collide.

Thus, the 3-round, linear SPN construction can be viewed almost as a “spe-
cial case” of our 1-round, non-linear SPN, in which the blockwise-universal per-
mutations are implemented via a linear SPN round. We stress that this is only
intuition, and formally we cannot derive Theorem 1 as a corollary of Theorem 2
because (i) the same S-boxes are shared in the permutations and the middle
layer, and (ii)the S-boxes are public, which is not taken into account in the
definition of blockwise universality.

5 Conclusion and Open Problems

We study the security of SPNs as strong pseudorandom permutations when the
S-box is modeled as a public random permutation. This model captures the
design approach of most block ciphers following the SPN paradigm. Within this
model, we give an exact characterization of the properties required to achieve
security in both the linear and non-linear settings.



A number of interesting open questions remain. For instance, while generic
information-theoretic attacks show that constructions with at most 1 round can-
not surpass birthday security (presuming a key of O(wn) bits) we are not aware
of matching birthday attacks at 3 rounds. Hence the question of determining the
exact security of linear 3-round SPNs (and in particular, whether the security
goes beyond birthday or not) remains open. Moreover, proving beyond-birthday
security at any number of rounds remains open as well.

Another, more technical question concerns SPNs with a limited number of
nonlinear rounds. Specifically, if we limit consideration to SPNs using exactly
one nonlinear keyed permutation,then we do not know if 2 rounds suffice for
security. (Note that a 1-round network with this structure is easily attacked. On
the other hand, 3 rounds suffice by the results of this paper.)

Acknowledgments

Work of the second and fourth authors was performed under financial assis-
tance award 70NANB15H328 from the U.S. Department of Commerce, National
Institute of Standards and Technology.

References

1. Alex Biryukov, Charles Bouillaguet, and Dmitry Khovratovich. Cryptographic
schemes based on the ASASA structure: Black-box, white-box, and public-key
(extended abstract). In Advances in Cryptology—Asiacrypt 2014, Part I, volume
8873 of LNCS, pages 63–84. Springer, 2014.

2. Alex Biryukov and Dmitry Khovratovich. Decomposition attack on SASASASAS.
Available at http://eprint.iacr.org/2015/646.

3. Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. Journal of
Cryptology, 23(4):505–518, 2010.

4. D. Bleichenbacher and A. Desai. A construction of a super-pseudorandom cipher,
February 1999. Unpublished manuscript.

5. Debrup Chakraborty and Palash Sarkar. A new mode of encryption providing
a tweakable strong pseudo-random permutation. In Fast Software Encryption—
FSE 2006, volume 4047 of LNCS, pages 293–309. Springer, 2006.

6. Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In Advances in Cryptology—Eurocrypt 2014, volume 8441 of LNCS, pages
327–350. Springer, 2014.
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