
On Achieving the “Best of Both Worlds” in Secure

Multiparty Computation∗

Yuval Ishai† Jonathan Katz‡ Eyal Kushilevitz† Yehuda Lindell§

Erez Petrank†

Abstract

Two settings are traditionally considered for secure multiparty computation, depending on
whether or not a majority of the parties are assumed to be honest. Existing protocols that
assume an honest majority provide “full security” (and, in particular, guarantee output delivery
and fairness) when this assumption holds, but are completely insecure if this assumption is
violated. On the other hand, known protocols tolerating an arbitrary number of corruptions do
not guarantee fairness or output delivery even if only a single party is dishonest.

It is natural to wonder whether it is possible to achieve the “best of both worlds”: namely, a
single protocol that simultaneously achieves the best possible security in both the above settings.
Here, we rule out this possibility (at least for general functionalities) and show some positive
results regarding what can be achieved.

Keywords: Theory of cryptography, secure computation.
∗This is the full version of [18, 19]. This research was supported by grant 36/03 from the Israel Science Foundation,

US-Israel Binational Science Foundation grant #2004240, and NSF CAREER award #0447075
†Department of Computer Science, Technion, Israel. Email: {yuvali,eyalk,erez}@cs.technion.ac.il
‡Department of Computer Science, University of Maryland, USA. Email: jkatz@cs.umd.edu. Portions of this

work were done while the author was visiting the Institute for Pure and Applied Mathematics (IPAM), UCLA.
§Department of Computer Science, Bar-Ilan University, Israel. Email: lindell@cs.biu.ac.il. Portions of this

work were done while the author was visiting the Technion.

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Future Directions . 3

2 Preliminaries and Definitions 4
2.1 Overview . 4
2.2 Defining Security . 5

3 Impossibility Results 7
3.1 Reactive Functionalities . 7
3.2 Non-Reactive Functionalities . 9

3.2.1 Ruling out Security with Abort . 10
3.2.2 Ruling out Privacy . 13

4 Positive Results 14
4.1 Achieving the “Best of Both Worlds” for Suitable Thresholds 15
4.2 Security Against a Malicious Minority or a Semi-Honest Majority 15

1 Introduction

Protocols for secure multiparty computation [22, 11, 4, 8] allow a set of mutually distrusting parties
to compute a function in a distributed fashion while guaranteeing (to the extent possible) the
privacy of the parties’ inputs and the correctness of their outputs. Security is typically formulated
by requiring that a real execution of a protocol be indistinguishable from an ideal execution in
which the parties hand their inputs to a trusted party who computes the function and returns the
outputs to the appropriate parties. Thus, whatever security is implied by the ideal model is also
guaranteed in a real-world execution of the protocol (see [5]).

The vast body of research in this area can be divided into two, almost disjoint, lines of work:
one dealing with the case when a majority of the parties are assumed to be honest, and the other
dealing with the case when an arbitrary number of parties may be corrupted. These settings differ
not only in the approaches that are used to construct secure protocols, but also in the results that
can be achieved (and hence in the ideal models thus defined). In further detail:1

• Secure computation with an honest majority. When a majority of the participants are
honest, it is possible to obtain the strongest level of security one could hope for (i.e., “full
security”) [11]. Fully secure protocols ensure not only privacy and correctness but also fairness
(namely, if one party receives its output then all parties do) and guaranteed output delivery
(i.e., honest parties are guaranteed to successfully complete the computation). In the presence
of an honest majority, full security can even be obtained unconditionally [4, 8, 2, 20, 10].

• Secure computation with no honest majority. Results of Cleve [9] imply that full
security (for general functionalities) is only possible when an honest majority is present.
Specifically, while privacy and correctness are still attainable without an honest majority, it
is impossible (in general) to guarantee fairness or output delivery.2 Thus, when no honest
majority is assumed a relaxed notion of security (“security with abort”) is used in which
privacy and correctness still hold but the adversary is allowed to abort the computation after
obtaining its own outputs. Unconditional security is no longer possible in this setting (for
general functionalities), but protocols realizing this notion of security for any number of cor-
rupted parties can be constructed based on the existence of enhanced trapdoor permutations
or oblivious transfer [22, 11, 3, 13, 14].

An unfortunate drawback of existing protocols for each of the above settings is that they do
not provide any security beyond what is implied by the definitions. Specifically, existing protocols
designed for the case of honest majority are completely insecure once half (or more) of the parties are
corrupted: e.g., honest parties’ inputs are entirely revealed, and even correctness may be violated.
On the other hand, known protocols that achieve security with abort against an arbitrary number
of corruptions do not guarantee fairness or output delivery even if only a single party is corrupted.

To get a sense for the magnitude and importance of this problem, consider trying to decide
which type of protocol is more appropriate to implement secure voting. Since we would like privacy
of individuals’ votes to hold (to the extent possible) regardless of the number of corruptions, we are
forced to use a protocol of the second type that provides only security with abort. But then a single
corrupted machine (in fact, even one which simply fails in the middle of the election) may be able

1Here and in the rest of the paper, we assume a synchronous network of secure point-to-point channels and a
broadcast channel. Formal definitions of security are given in Section 2.

2For certain exceptions, see [15, 16, 17] and the discussion in Section 1.2 below.

1

to perform a denial-of-service attack that prevents all honest parties from learning the outcome.
Neither option is very appealing. The above state of affairs raises the following natural question:

To what extent can we design a single protocol achieving the “best of both worlds” re-
gardless of the number of corruptions; i.e., a protocol that simultaneously guarantees full
security in case a majority of the parties are honest, and security with abort otherwise?

1.1 Our Results

In this paper, we initiate the study of the above question. Our main results settle the question in
the negative, showing that (in general) it is impossible to construct a single protocol that achieves
the best possible security regardless of the number of corruptions. We consider both standard
functionalities, which receive inputs and deliver outputs in “one shot”, and reactive functionalities,
which receive inputs and deliver outputs in multiple phases and maintain (distributed) state in-
formation between phases. (See Section 2, for definitions of these and other terms we use.) We
show:

Theorem 1.1 Let t+s ≥ n with 1 ≤ t ≤ s. There exists a standard (non-reactive) functionality f ,
for which there is no n-party protocol computing f that is simultaneously (1) fully secure when t
parties are corrupted, and (2) secure with abort when s parties are corrupted.

In fact, our negative results are even stronger than indicated above. Fix s, t, n as above. For non-
reactive functionalities, it is impossible (in general) to simultaneously achieve full security against
t fail-stop corruptions and privacy against s fail-stop corruptions (recall that fail-stop corruption
only allows the adversary to deviate from the protocol by aborting). This holds even if we allow
protocols with expected polynomial round complexity. For reactive functionalities we show an
even stronger result: one cannot (in general) simultaneously obtain full security against t fail-stop
corruptions and privacy against s semi-honest corruptions.

In light of the above, we are led to explore what security guarantees can be achieved with regard
to different corruption thresholds. Considering the natural relaxations, we show two incomparable
positive results in this regard. First, we show that when t + s < n (and t < n/2) then the “best of
both worlds” is, indeed, possible. That is:

Theorem 1.2 Assume the existence of enhanced trapdoor permutations, and let t + s < n and
t < n/2. For any (reactive or non-reactive) functionality f , there exists a protocol computing f
that is simultaneously (1) fully secure when t parties are corrupted, and (2) secure with abort when
s parties are corrupted.

We also show that in the case of non-reactive functionalities, the optimal security thresholds (i.e.,
t < n/2 and s < n) are obtainable if we restrict to semi-honest adversaries when there is no honest
majority:

Theorem 1.3 Assume the existence of enhanced trapdoor permutations, and let t < n/2 and
s < n. For any non-reactive functionality f , there exists a protocol computing f that is simulta-
neously (1) fully secure against t malicious corruptions, and (2) fully secure against s semi-honest
corruptions.

Table 1 summarizes our results along with pointers to the corresponding theorems from the
technical sections.

2

Standard Reactive
functionalities functionalities

Full security against t < n/2 Yes No
malicious parties and privacy against
s < n semi-honest parties Theorem 4.2 Theorem 3.1

Full security against t < n/2 No No
malicious parties and privacy against
s < n malicious parties Theorem 3.5 Theorem 3.1

Table 1: Corollaries of our results: existence and non-existence of protocols that simultaneously
guarantee security against t < n/2 malicious parties and privacy against s < n malicious or semi-
honest parties.

1.2 Future Directions

The stark negative results in this paper, coupled with the fact that it can be difficult to determine
what security bounds are appropriate to assume in practice, suggest looking for other ways to obtain
“best of both worlds”-type results besides those already discussed above. We briefly mention two
possibilities that have been explored previously, and then highlight some promising directions for
future work.

In previous versions of this work [18, 19], two feasibility results have been investigated (which
are not included in the current version). Specifically, Ishai et al. [18] show a protocol for any
non-reactive functionality f that provides full security against t < n/2 malicious parties, and
also ensures the following guarantee against s < n malicious parties (informally): the malicious
parties achieve (and learn) no more than they could achieve in s invocations of an ideal party
evaluating f , where the malicious parties may use different inputs in different invocations of f .
For certain functionalities (with voting serving as a prime example), this provides a meaningful
notion of security. In another direction, Katz [19] (following [18]) explored what is possible in the
case of a non-rushing adversary or, equivalently, under the assumption of simultaneous message
transmission. He shows, for any non-reactive functionality f and any polynomial p, a protocol that
is fully secure against t < n/2 malicious parties, as well as “1

p -secure with abort” for any number of
malicious corruptions. Roughly speaking, this latter notion means that the actions of any real-world
adversary can be simulated by an ideal-world adversary (who has the ability to abort the protocol)
such that the resulting outcomes cannot be distinguished with advantage better than O(1/p). (The
protocol provides additional security guarantees as well; see [19] for details.)

With regard to future work in this area, several directions seem promising:

• Non-rushing adversaries. We currently have only a partial answer to what can be achieved
if a non-rushing adversary is assumed. The results of Katz [19] leave open the possibility of
protocols in this model that achieve the true “best of both worlds”: simultaneous full security
against t < n/2 corruptions, and security with abort against s < n corruptions. (However,
it is known that there are no constant-round [18] or even logarithmic-round [19] protocols
of this sort.) Alternatively, it might be possible in this model to obtain full security against
t < n/2 corruptions and 1

p -security without abort against s < n corruptions. (In fact, this
may be possible even for rushing adversaries by building on the ideas of [17].)

3

• Specific functionalities. The impossibility results presented here rule out protocols for
general functionalities, but leave open the question of what might be obtained for specific
functionalities of interest. Recent work [15, 16] has shown that protocols with full security
against an arbitrary number of corruptions can be constructed for certain (non-trivial) func-
tionalities. (This is even better than what a “best of both worlds”-type result would imply.)
For what other functionalities can positive results be obtained?

• Definitional relaxations. In the current work we have focused on the standard notions of
full security and security with abort. Given the impossibility results we have obtained, it may
be worthwhile to explore relaxations of these definitions such as those considered in [1, 17].

2 Preliminaries and Definitions

In this work, k denotes the security parameter and ppt stands for “probabilistic polynomial time”.

2.1 Overview

Our default network model consists of n parties, P1, . . . , Pn, who interact in synchronous rounds via
private and authenticated point-to-point channels. We also assume that the parties have access to
a broadcast channel. We consider both rushing and non-rushing adversaries. A rushing adversary
may delay sending the messages of the corrupted parties in any given round until after the honest
parties send their messages in that round; thus, the round-i messages of the corrupted parties may
depend on the round-i messages of the honest parties. In contrast, a non-rushing adversary must
decide on what messages the corrupted parties should send in any given round before seeing the
honest parties’ messages in that round. Assuming a non-rushing adversary is essentially equivalent
to assuming that there exists a mechanism for simultaneous message exchange. The standard
definition of secure computation assumes a rushing adversary. Nevertheless, in one of our lower
bounds we consider non-rushing adversaries since this only strengthens the result.

We consider both malicious adversaries, who have total control over the behavior of corrupted
parties and may instruct them to deviate arbitrarily from the protocol specification, and semi-
honest adversaries who record all information viewed by corrupted parties as they run the protocol
but do not otherwise modify their behavior. We also consider fail-stop adversaries who follow the
protocol honestly (as semi-honest adversaries do) except that they may abort the protocol early.

Throughout the paper, we consider security against computationally bounded adversaries and
assume for simplicity that the adversary is static, i.e., that the set of corrupted parties is chosen at
the onset of the protocol in a non-adaptive manner. This strengthens our negative results, and is
not essential for our positive results; see Remark 4.5.

The security of a multiparty protocol is defined with respect to a functionality f . A non-reactive
n-party functionality is a (possibly randomized) mapping of n inputs to n outputs. A multiparty
protocol for computing a non-reactive functionality f is a protocol running in polynomial time
and satisfying the following correctness requirement: if parties P1, . . . , Pn holding inputs (1k, xi),
respectively, all run an honest execution of the protocol, then the joint distribution of the outputs
y1, . . . , yn of the parties is statistically close to f(x1, . . . , xn).

A reactive functionality f is a sequence of non-reactive functionalities f = (f1, . . . , f`) computed
in a stateful fashion in a series of phases. Let xj

i denote the input of Pi in phase j, and let sj denote
the state of the computation after phase j. Computation of f proceeds by setting s0 equal to

4

the empty string and then computing (yj
1, . . . , y

j
n, sj) ← fj(sj−1, xj

1, . . . , x
j
n) for j = 1 to `, where

yj
i denotes the output of Pi at the end of phase j. A multiparty protocol computing f also runs

in ` phases, at the beginning of which each party holds an input and at the end of which each
party obtains an output. (Note that parties may wait to decide on their phase-j input until the
beginning of that phase.) Parties maintain state throughout the entire execution. The correctness
requirement is that, in an honest execution of the protocol, the joint distribution of all the outputs
{yj

1, . . . , y
j
n}`

j=1 of all the phases is statistically close to the joint distribution of all the outputs of
all the phases in a computation of f on the same inputs used by the parties.

2.2 Defining Security

In this section, we present the (standard) security definitions used in this paper. We assume the
reader is familiar with the simulation-based approach for defining secure computation, as described
in detail in [5, 12, 7]. This definitional approach compares the real-world execution of a protocol
for computing some function with an ideal-world evaluation of the function by a trusted party.
Security is then defined by requiring that whatever can be achieved in the real world could have
also been achieved (or simulated) in the ideal world. More formally, it is required that for every
adversary A attacking the real execution of the protocol there exists an adversary A′, sometimes
referred to as a simulator, which “achieves the same effect” in the ideal world. This is made more
precise in what follows.

The real model. Let π be a multiparty protocol computing a non-reactive functionality f . It is
convenient [7] to view an execution of π in the presence of an adversary A as being coordinated by
a non-uniform environment Z = {Zk}. At the outset, Z gives input (1k, xi) to each party Pi, and
gives I, {xi}i∈I , and z to A, where I ⊂ [n] represents the set of corrupted parties and z denotes an
auxiliary input. The parties then interact, with each honest (i.e., uncorrupted) party Pi behaving
as instructed by the protocol (using input xi) and corrupted parties behaving as directed by A.
In the case of a semi-honest adversary, A directs the parties to follow the protocol on their given
inputs. At the conclusion of the protocol, A gives to Z an output which is an arbitrary function
of A’s view throughout the protocol, and Z is additionally given the outputs of the honest parties.
Finally, Z outputs a bit. We let realπ,A,Z(k) be a random variable denoting the value of this bit.

For reactive functionalities, the environment Z operates in a series of phases. At the outset of
the execution, Z gives I and z to A. Then, at the beginning of each phase j, the environment gives
input xj

i to each party Pi and gives {xj
i}i∈I to A. The parties then run the jth phase of protocol π.

At the end of each phase, A gives to Z an output which is an arbitrary function of A’s view thus
far, and Z is additionally given the outputs of the honest parties in this phase. If the adversary
aborts the protocol in some phase (formally, if the output of some honest party at the end of the
phase is ⊥), execution is halted; otherwise, execution continues until all phases are completed (i.e.,
the protocol is finished). Once the execution terminates, Z outputs a bit; we let realπ,A,Z(k) be
a random variable denoting the value of this bit.

The ideal model – full security. In the ideal model, there is a trusted party who computes f on
behalf of the parties. The first variant of the ideal model, discussed now, corresponds to a notion
of security where fairness and output delivery are guaranteed.

Once again, we have an environment Z that gives inputs x1, . . . , xn to the parties, and provides
I, {xi}i∈I , and z to A′. Execution then proceeds as follows:

5

• Each honest party Pi sends its input xi to the trusted party. Corrupted parties may send
the trusted party arbitrary inputs as instructed by A′. (Any missing or “invalid” value is
substituted by a default value.) Denote by x′i the value sent by party Pi. In the case of a
semi-honest adversary, we require that x′i = xi for all i ∈ I.

• The trusted party computes f(x′1, . . . , x
′
n) = (y1, . . . , yn) and sends yi to party Pi. (If f is

randomized, this computation involves random coins that are generated by the trusted party.)

After the above, A′ gives to Z an output which is an arbitrary function of the view of A′, and Z
is also given the outputs of the honest parties. Finally, Z outputs a bit. We let idealf,A′,Z(k) be
the random variable denoting the value of this bit.

For the case of reactive functionalities, execution once again proceeds in a series of phases. At
the outset, Z gives I and z to A′. At the beginning of each phase j, the environment provides
input xj

i to party Pi and gives {xj
i}i∈I to A′. Inputs/outputs are then sent to/from the trusted

party as above. At the end of each phase, A′ gives to Z an output which is an arbitrary function of
its view thus far, and Z is additionally given the outputs of the honest parties in this phase. After
all phases have been completed, Z outputs a bit. Once again, we let idealπ,A′,Z(k) be a random
variable denoting the value of this bit.

The ideal model – security with abort. In this second variant of the ideal model, fairness
and output delivery are no longer guaranteed. This is the standard relaxation used when a strict
majority of honest parties is not assumed. (Other variants are also possible [12, 14].)

As in the first ideal model, we have an environment Z who provides inputs x1, . . . , xn to the
parties, and provides I, {xi}i∈I , and z to the adversary A′. Execution then proceeds as follows:

• As before, the parties send their inputs to the trusted party and we let x′i denote the value
sent by Pi. Once again, for a semi-honest adversary we require x′i = xi for all i ∈ I.

• The trusted party computes f(x′1, . . . , x
′
n) = (y1, . . . , yn) and sends {yi}i∈I to the adversary.

• The adversary chooses whether to continue or abort; this is formalized by having the adversary
send either a continue or abort message to the trusted party. (A semi-honest adversary never
aborts.) In the former case, the trusted party sends to each uncorrupted party Pi its output
value yi. In the latter case, the trusted party sends the special symbol ⊥ to each uncorrupted
party.

After the above, A′ gives to Z an output which is an arbitrary function of the view of A′, and Z
is also given the outputs of the honest parties. Finally, Z outputs a bit. We let idealf⊥,A′,Z(k) be
the random variable denoting the value of this bit; the subscript “⊥” indicates that the adversary
now has the ability to abort the trusted party in the ideal model.

The extension to the case of reactive functionalities is the same as before. As in the real-world
model, execution is halted immediately after any phase in which an honest party outputs ⊥.

Defining security. With the above in place, we can now define our notions of security.

Definition 2.1 (Security, security with abort) Let π be a multiparty protocol for computing a
functionality f , and fix s ∈ {1, . . . , n}.

6

1. We say that π securely computes f in the presence of malicious (resp., semi-honest) adversaries
corrupting s parties if for any ppt adversary (resp., semi-honest adversary) A there exists a
ppt adversary (resp., semi-honest adversary) A′ such that for every polynomial-size circuit
family Z = {Zk} corrupting at most s parties the following is negligible:

∣∣Pr[realπ,A,Z(k) = 1]− Pr[idealf,A′,Z(k) = 1]
∣∣ .

2. We say that π securely computes f with abort in the presence of malicious adversaries corrupting
s parties if for any ppt adversary A there exists a ppt adversary A′ such that for every
polynomial-size circuit family Z = {Zk} corrupting at most s parties the following is negligible:

∣∣Pr[realπ,A,Z(k) = 1]− Pr[idealf⊥,A′,Z(k) = 1]
∣∣ .

We also consider the weaker notion of privacy which, roughly speaking, ensures only that the
adversary cannot learn anything about honest parties’ inputs other than what is implied by its own
inputs and outputs. Accordingly, the definition of privacy only requires that the adversary’s view
in the real model can be simulated in the ideal model.

Formally, define real′π,A,Z(k) analogously to realπ,A,Z(k) except that Z is not given the
outputs of the honest parties (that is, Z is only given the output of A, which is an arbitrary
function of A’s view). We define ideal′f,A′,Z(k) similarly.

Definition 2.2 (Privacy) Let π be a multiparty protocol for computing a functionality f , and fix
s ∈ {1, . . . , n}. We say that π privately computes f in the presence of malicious (resp., semi-honest)
adversaries corrupting s parties if for any ppt adversary (resp., semi-honest adversary) A there
exists a ppt adversary (resp., semi-honest adversary) A′ such that for every polynomial-size circuit
family Z = {Zk} corrupting at most s parties the following is negligible:

∣∣Pr[real′π,A,Z(k) = 1]− Pr[ideal′f,A′,Z(k) = 1]
∣∣ .

Note that privacy is weaker than security with abort.

3 Impossibility Results

3.1 Reactive Functionalities

In this section we present a strong impossibility result for the case of reactive functionalities. The
threshold in the theorem that follows is tight; see Section 4.1. The restriction of the theorem to
reactive functionalities is also essential, as we show in Section 4.2 a positive result for the case of
non-reactive functionalities.

Theorem 3.1 Let n, t, s be such that t + s = n and t ≥ 1. There exists a reactive n-party func-
tionality f for which there is no protocol that simultaneously:

• securely computes f in the presence of malicious adversaries corrupting t parties;

• privately computes f in the presence of semi-honest adversaries corrupting s parties.

This holds even if the adversary in the first case is restricted to be a non-rushing, fail-stop adversary.

7

Functionality f

Phase 1:

• Input: Party P1 provides an input bit b (no other party has input).

• Output: The functionality records this value but gives no output to any party.

Phase 2:

• Input: Party P1 provides an input bit b′ (no other party has input).a

• Output: Pn outputs b.

aNote that b′ is not used in the definition of f . We use b′ only for the purposes of showing that the
protocol is insecure.

Figure 1: The reactive functionality for the proof of Theorem 3.1.

Proof: If t ≥ n/2 then the theorem follows from the fact that there exist non-reactive functional-
ities that cannot be computed securely without an honest majority [9]. Thus, we assume t < n/2
(implying n ≥ 3 and s > 0) in what follows.

We prove Theorem 3.1 using a two-phase functionality f that corresponds (roughly) to com-
mitment; see Figure 1. Take any protocol π computing f , and let S1 = {P1, . . . , Pt} and S2 =
{Pt+1, . . . , Pn}; note that |S2| = s. The intuition for the theorem is as follows:

1. Say π privately computes f in the presence of semi-honest adversaries corrupting s parties.
Then the parties in S2 should (jointly) know nothing about b after phase 1.

2. Say π securely computes f in the presence of malicious adversaries corrupting t parties. Then
the parties in S1 should not be able to prevent Pn from learning b in the second phase. In
particular, this should hold even if all parties in S1 abort before the second phase.

Intuitively this gives a contradiction since, following the first phase of the protocol, the parties in
S2 can jointly simulate an execution of the second phase of the protocol when all parties in S1

abort. The formal proof of the theorem is slightly more involved since item (2), above, is not quite
true in the presence of a malicious P1 who might change his input before running the protocol.

We now prove this formally. Let π be a protocol computing f that is secure in the presence
of t non-rushing, fail-stop adversaries; we will show that π cannot also be private in the presence
of s semi-honest adversaries. Since π is secure in the presence of t fail-stop adversaries, we may
assume without loss of generality that the output of Pn in π is always a bit (and never ⊥) as long
as parties in S1 behave honestly but may abort the protocol early. We also assume for simplicity
that, in an honest execution of π, the output of Pn is exactly P1’s input value b with probability 1.

We consider two real-world executions of π. In both cases, Z chooses b and b′ uniformly and
independently.3

First execution. Here we consider a non-rushing, fail-stop adversary A1 who corrupts the parties
in S1 and instructs them to behave as follows: Run the first phase of π honestly. In the second
phase, if b′ = b then run the second phase honestly; otherwise, abort immediately. We let Pr1[·]
denote the probability of events in this execution.

3Allowing Z to be randomized does not affect our definitions of security.

8

Second execution. Here we consider a semi-honest adversary A2 who corrupts the parties in S2.
At the conclusion of phase 1 of π, this adversary simulates an execution of the second phase of π
assuming all parties in S1 abort, and outputs the resulting output of Pn. We let Pr2[·] denote the
probability of events in this execution.

Claim 3.2 Pr1[Pn outputs b′] = 1
2 + 1

2 · (1− Pr2[A2 outputs b]).

Proof: In the first execution, we can consider a mental experiment in which the parties in S2

simulate the second phase of π assuming all parties in S1 abort. By definition of A2, the probability
that the output of Pn in this mental experiment is not equal to b is exactly 1− Pr2[A2 outputs b].
Furthermore, this probability is independent of the value b′ used in the second phase.

In the first execution, the parties in S1 abort with probability exactly 1/2; moreover, when they
do not abort the output of Pn is b = b′. When the parties in S1 do abort then b′ 6= b and so Pn

outputs b′ iff the output of Pn is not equal to b. Thus,

Pr1[Pn outputs b′] = 1
2 + 1

2 · Pr1[Pn outputs b̄ | parties in S1 abort]
= 1

2 + 1
2 · (1− Pr2[A2 outputs b]),

as desired.

Claim 3.3
∣∣Pr1[Pn outputs b′]− 1

2

∣∣ is negligible.

Proof: Here we rely on the assumption that π securely computes f in the presence of a non-
rushing, fail-stop adversary corrupting t parties. Consider an ideal-world execution of f in the
presence of an adversary corrupting the parties in S1. In the ideal world, the final output of Pn is
equal to whatever value P1 sends to the trusted party in the first phase. Since the adversary has
no information about b′ in the first phase, the probability that P1 sends b′ to the trusted party in
the first phase (and hence the probability that Pn outputs b′ in the second phase) is exactly 1/2.
The claim follows.

Claim 3.4 If π privately computes f in the presence of a semi-honest adversary corrupting s
parties, then

∣∣Pr2[A2 outputs b]− 1
2

∣∣ is negligible.

Proof: This follows from the fact that, in an ideal-world execution of f , an adversary corrupting
the parties in S2 cannot guess the value of b after phase 1 with probability different from 1/2.

The preceding three claims imply that π cannot privately compute f in the presence of a
semi-honest adversary corrupting s parties. This concludes the proof of Theorem 3.1.

3.2 Non-Reactive Functionalities

We now show an impossibility result for the case of standard (i.e., non-reactive) functionalities.
This result is incomparable to the result proved in the previous section, since here we rule out
privacy only against malicious adversaries and explicitly make use of the fact that the adversary
can be rushing.4 The thresholds in the theorem are tight; see Section 4.2.

4For non-rushing adversaries, similar negative results for protocols with O(log k) rounds appear in [18, 19].

9

Theorem 3.5 Let n, t, s be such that t+s = n and t ≥ 1. There exists a non-reactive functionality
f̃ for which there is no protocol that simultaneously:

• securely computes f̃ in the presence of malicious adversaries corrupting t parties;

• privately computes f̃ in the presence of malicious adversaries corrupting s parties.

This holds even if we consider only fail-stop adversaries in each case, and even if we allow protocols
with expected polynomial round complexity.

When t ≥ n/2 the theorem follows from the existence of functionalities that cannot be computed
securely without an honest majority [9]. Thus, we assume t < n/2 (and hence n ≥ 3 and s > 0)
in what follows. We prove the theorem in two stages: In Section 3.2.1 we present a functionality f
for which there is no protocol that simultaneously

• securely computes f in the presence of malicious adversaries corrupting t parties;

• securely computes f with abort in the presence of malicious adversaries corrupting s parties.

Extending this, we then show in Section 3.2.2 a (slightly different) functionality f̃ that suffices to
prove the theorem.

3.2.1 Ruling out Security with Abort

Fix n, s, and 1 ≤ t < n/2 with t + s = n. Define f as follows: parties P1 and Pn have as input
b1, bn ∈ {0, 1}, respectively, and each receive as output b1 ⊕ bn (no other parties receive output).
Let π be a protocol that securely computes f in the presence of a fail-stop adversary corrupting t
parties. We assume π operates in segments, each exactly n rounds long, where only party Pi sends
a message in the ith round of a segment. (I.e., in any given segment first P1 speaks, then P2, etc.
until Pn speaks and then the next segment begins.) If π is secure against a rushing adversary then
it can always be transformed into a protocol of this form without affecting its security.

Let r = r(k) be a polynomial with the following property:

If P1 (resp., Pn) is honest and at most t parties are corrupted, then with probability
at least 15/16 party P1 (resp., Pn) has generated its output by the end of segment r.
Moreover, if P1 and Pn are both honest and at most t parties are corrupted, then with
probability at least 15/16 parties P1 and Pn have both generated their outputs by the
end of segment r.

(Note that if P1 and Pn are both honest and at most t parties are corrupted, then security of
π implies that — for large enough k — with probability at least 7/8 parties P1 and Pn both
generate identical outputs by the end of segment r.) For protocols with bounded (polynomial)
round complexity, r can just be taken as the upper bound on the number of rounds; for protocols
with expected polynomial round complexity r′(k), we may take r(k) = 16r′(k). We assume for
simplicity that honest parties always run π for at least r segments (e.g., by sending dummy messages
until segment r if the protocol otherwise would have terminated before then).

Define A
def= {P1, . . . , Pt}, B

def= {Pt+1, . . . , Pn−t}, and C
def= {Pn−t+1, . . . , Pn}. Consider the

real-world execution in which Z chooses inputs for P1 and Pn uniformly and independently (see
footnote 3), and then all parties run the protocol honestly except that parties in A or C may

10

(possibly) abort at some round. (Parties in B run the protocol honestly and never abort.) Let vi
1,

with 0 ≤ i ≤ r, denote the final output of P1 when parties in C all abort in segment i + 1 or, in
other words, when segment i is the last segment in which parties in C send any messages. (For
i = 0 this means that parties in C abort the protocol immediately without sending any messages.)
Define vi

n similarly to be the output of Pn when all parties in A abort in segment i + 1 (i.e., send
messages for the final time in segment i). Note that vi

1 can be computed from the joint view of the
parties in A ∪ B as soon as all parties in C have sent their segment-i messages, and similarly vi

n

can be computed from the joint view of the parties in B ∪ C once all parties in A have sent their
segment-i messages.

Security of π implies that, for all i, we have vi
1, v

i
n ∈ {0, 1} (and, in particular, vi

1 6=⊥) with all
but negligible probability. This is true since π provides full security against t fail-stop adversaries,
and at most t parties abort in the experiment defining vi

1, v
i
n. In what follows, we will assume for

simplicity that vi
1, v

i
n ∈ {0, 1} with probability 1.

Consider the following summation, where all probabilities are with respect to the real-world
execution described earlier:

(
Pr

[
v0
1 = 1 ∧ v0

n = 1
]
+ Pr

[
v0
1 = 0 ∧ vr

n = 1
]− 1

2

)
(1)

+
(

Pr
[
v0
1 = 0 ∧ v0

n = 0
]
+ Pr

[
v0
1 = 1 ∧ vr

n = 0
]− 1

2

)
(2)

+
r−1∑

i=0

[(
Pr

[
vi
1 = 0 ∧ vi+1

n = 0
]
+ Pr

[
vi
1 = 1 ∧ vi

n = 0
]− 1

2

)
(3)

+
(

Pr
[
vi
1 = 1 ∧ vi+1

n = 1
]
+ Pr

[
vi
1 = 0 ∧ vi

n = 1
]− 1

2

)
(4)

+
(

Pr
[
vi+1
1 = 0 ∧ vi+1

n = 0
]
+ Pr

[
vi
1 = 0 ∧ vi+1

n = 1
]− 1

2

)
(5)

+
(

Pr
[
vi+1
1 = 1 ∧ vi+1

n = 1
]
+ Pr

[
vi
1 = 1 ∧ vi+1

n = 0
]− 1

2

)]
, (6)

which evaluates to:

Pr
[
v0
1 = 1 ∧ v0

n = 1
]
+ Pr

[
v0
1 = 0 ∧ vr

n = 1
]

+ Pr
[
v0
1 = 0 ∧ v0

n = 0
]
+ Pr

[
v0
1 = 1 ∧ vr

n = 0
]− 1

+
r−1∑

i=0

[
Pr

[
vi
1 = 1 ∧ vi

n = 0
]
+ Pr

[
vi
1 = 0 ∧ vi

n = 1
]

+ Pr
[
vi+1
1 = 0 ∧ vi+1

n = 0
]
+ Pr

[
vi+1
1 = 1 ∧ vi+1

n = 1
]− 1

]

= Pr
[
v0
1 = 1 ∧ v0

n = 1
]
+ Pr

[
v0
1 = 0 ∧ vr

n = 1
]
+ Pr

[
v0
1 = 0 ∧ v0

n = 0
]

+ Pr
[
v0
1 = 1 ∧ vr

n = 0
]
+ Pr

[
v0
1 = 1 ∧ v0

n = 0
]
+ Pr

[
v0
1 = 0 ∧ v0

n = 1
]

+ Pr [vr
1 = 0 ∧ vr

n = 0] + Pr [vr
1 = 1 ∧ vr

n = 1]− 2
= Pr

[
v0
1 = 0 ∧ vr

n = 1
]
+ Pr

[
v0
1 = 1 ∧ vr

n = 0
]
+ Pr [vr

1 = vr
n]− 1

≥ Pr
[
v0
1 = 0 ∧ b1 6= bn

]− Pr [vr
n 6= 1 ∧ b1 6= bn]

+ Pr
[
v0
1 = 1 ∧ b1 = bn

]− Pr [vr
n 6= 0 ∧ b1 = bn] + Pr [vr

1 = vr
n]− 1

11

≥ Pr
[
b1 6= bn | v0

1 = 0
]
· Pr[v0

1 = 0] + Pr
[
b1 = bn | v0

1 = 1
]
· Pr[v0

1 = 1] +
3
4
− 1,

using for the final inequality the fact that the outputs of P1 and Pn agree with probability at
least 7/8 by the end of segment r. Since v0

1 is independent of bn, we have Pr
[
b1 6= bn | v0

1 = 0
]

=
Pr

[
b1 = bn | v0

1 = 1
]

= 1
2 . It follows that the above sum is at least 1

4 , and so at least one of the

summands (1)–(6) is at least p(k) def= 1
4·(4r(k)+2) , which is noticeable. We show that this implies

π does not securely compute f with abort in the presence of a fail-stop adversary corrupting s
parties. In all the cases described below, Z continues to choose b1, bn uniformly and independently,
but the set of corrupted parties I and/or the auxiliary input z given to the adversary may change.

Case 1(a). Say Pr
[
v0
1 = 1 ∧ v0

n = 1
]
+Pr

[
v0
1 = 0 ∧ vr

n = 1
]− 1

2 ≥ p(k), and consider the adversary
who corrupts parties in A∪B and does the following: it first computes v0

1 (using the input b1 given
to it by Z and random tapes for all parties in A ∪ B). If v0

1 = 1, the adversary aborts all parties
in A immediately and has parties in B run π honestly with (the honest parties) C. If v0

1 = 0, the
adversary runs parties in A ∪ B honestly through segment r and then aborts execution of players
in A (continuing to run parties in B honestly until the end of the protocol).

Note that |A ∪ B| = s. Furthermore, the probability that Pn outputs 1 in a real execution of
the protocol with this adversary is exactly

Pr
[
v0
1 = 1 ∧ v0

n = 1
]
+ Pr

[
v0
1 = 0 ∧ vr

n = 1
] ≥ 1

2
+ p(k).

However, in an ideal execution with any adversary corrupting parties in A ∪ B, the honest party
Pn will not output 1 with probability greater than 1

2 (given that Pn’s input is chosen uniformly at
random). It follows in this case that π does not securely compute f with abort in the presence of
a fail-stop adversary corrupting s parties.

Case 1(b). Say Pr
[
v0
1 = 0 ∧ v0

n = 0
]
+ Pr

[
v0
1 = 1 ∧ vr

n = 0
] − 1

2 ≥ p(k). An argument analogous
to the above gives a real-world adversary who corrupts parties in A ∪B and forces Pn to output 0
with probability noticeably greater than 1/2. This again implies that π does not securely compute
f with abort in the presence of a fail-stop adversary corrupting s parties.

Case 2(a). Say there exists an index i ∈ {0, . . . , r(k)− 1} for which

Pr
[
vi
1 = 0 ∧ vi+1

n = 0
]
+ Pr

[
vi
1 = 1 ∧ vi

n = 0
]− 1

2
≥ p(k).

Consider the adversary given auxiliary input z = i who corrupts the parties in A ∪ B and acts
as follows: it runs the protocol honestly up to the end of segment i (if i = 0, this is just the
beginning of the protocol). At this point, as noted earlier, the parties in A∪B jointly have enough
information to compute vi

1. If vi
1 = 1, then the adversary immediately aborts all parties in A. If

vi
1 = 0, then the parties in A send their (honestly computed) messages for segment i + 1 but send

no more messages after that (i.e., they abort in segment i+2). In either case, parties in B continue
to run the entire rest of the protocol honestly.

The probability that Pn outputs 0 in a real execution of the protocol is exactly

Pr
[
vi
1 = 0 ∧ vi+1

n = 0
]
+ Pr

[
vi
1 = 1 ∧ vi

n = 0
] ≥ 1

2
+ p(k).

However, as before, in an ideal execution with any adversary corrupting parties in A∪B, the honest
party Pn will not output 0 with probability greater than 1

2 . Thus, in this case π does not securely
compute f with abort in the presence of a fail-stop adversary corrupting s parties.

12

Case 2(b). If there exists an i such that Pr
[
vi
1 = 1 ∧ vi+1

n = 1
]
+ Pr

[
vi
1 = 0 ∧ vi

n = 1
]− 1

2 ≥ p(k),
an argument as above gives an adversary corrupting parties in A ∪ B who forces Pn to output 1
more often than can be achieved by any adversary in the ideal world.

Case 3(a). Say there exists an index i ∈ {1, . . . , r(k)} such that

Pr
[
vi
1 = 0 ∧ vi

n = 0
]
+ Pr

[
vi−1
1 = 0 ∧ vi

n = 1
]− 1

2
≥ p(k).

(Note that all indices have been shifted by 1 for convenience.) Consider the adversary given auxiliary
input z = i who corrupts parties in B ∪ C and acts as follows: it runs the protocol honestly up
to the point when it is Pn−t+1’s turn to send a message in segment i. (Recall that Pn−t+1 is the
party with lowest index who is in C.) At this point, the parties in B ∪ C can jointly compute vi

n.
If vi

n = 1, then all parties in C abort in this segment and do not send any more messages (so the
last messages sent by any parties in C were sent in segment i− 1). If vi

n = 0, then all parties in C
send their (honestly generated) messages in segment i but abort in segment i + 1. In either case,
parties in B continue to run the entire rest of the protocol honestly.

The probability that P1 outputs 0 in a real execution of the protocol is exactly

Pr
[
vi
1 = 0 ∧ vi

n = 0
]
+ Pr

[
vi−1
1 = 0 ∧ vi

n = 1
] ≥ 1

2
+ p(k).

However, in an ideal execution with any adversary corrupting parties in B ∪ C, the honest party
P1 will not output 0 with probability greater than 1

2 (given that its input is chosen uniformly at
random). We conclude that in this case π does not securely compute f with abort in the presence
of a fail-stop adversary corrupting s parties.

Case 3(b). If there exists an i such that Pr
[
vi
1 = 1 ∧ vi

n = 1
]
+Pr

[
vi−1
1 = 1 ∧ vi

n = 0
]− 1

2 ≥ p(k),
an argument as above gives an adversary corrupting parties in B ∪ C who forces P1 to output 1
more often than can be achieved by any adversary in the ideal world.

3.2.2 Ruling out Privacy

The argument in the previous section shows that we cannot hope to achieve the “best of both
worlds”. However, we might hope that for every functionality there is a protocol π that is secure
with an honest majority and is at least private when there is no honest majority. Building on the
result of the previous section, we rule out this possibility as well.

Given n, t, s as before, we define a function f̃ that takes inputs from P1 and Pn, and returns
output to P1, Pn, and also Pt+1. On input (b1, α0, α1) from P1 and (bn, β0, β1) from Pn, where
b1, bn, α0, α1, β0, β1 ∈ {0, 1}, functionality f̃ computes v = b1 ⊕ bn, gives v to P1 and Pn, and gives
(v, αv, βv) to Pt+1. That is:

f̃((b1, α0, α1), λ, . . . , λ, (bn, β0, β1))
def=

(b1 ⊕ bn, λ, . . . , λ, (b1 ⊕ bn, αb1⊕bn , βb1⊕bn)︸ ︷︷ ︸
output of Pt+1

, λ, . . . , λ, b1 ⊕ bn),

where we let λ denote an empty input/output.
Let π be a protocol that securely computes f̃ in the presence of a malicious adversary corrupting

t parties. Let A, B,C be a partition of the parties as in the previous section, and recall that

13

Pt+1 ∈ B. Consider an experiment in which Z chooses inputs for P1 and Pn uniformly and
independently, and all parties run protocol π honestly except that parties in A or C (but never B)
may possibly abort. An argument exactly as in the previous section shows that there exists a
real-world adversary A who either:

• corrupts the parties in A∪B and causes Pn to output some bit v with probability noticeably
greater than 1/2; or

• corrupts the parties in B ∪C and causes P1 to output some bit v with probability noticeably
greater than 1/2.

Assume without loss of generality that the first case holds with v = 0, and so there is a fail-stop
adversary A who corrupts the s parties in A∪B and causes Pn to output 0 with probability at least
1/2 + p(k) for some noticeable function p. The key observation is that A only causes the t parties
in A to abort (in one of two possible segments), and the remaining corrupted parties in B execute
the entire protocol honestly. Since π is secure in the presence of a malicious adversary corrupting t
parties, all parties in B ∪ C will receive their outputs (except possibly with negligible probability)
even if all parties in A abort. Moreover, security of π implies that the output of the honest-
looking Pt+1 will be consistent with the input and output of the honest Pn (except with negligible
probability). Taken together, this means that the view of A — which includes the output generated
by Pt+1 — includes β0 with probability at least 1/2 + p′(k) for some noticeable function p′, and
furthermore A knows when this occurs (since the output of Pt+1 includes v

def= b1 ⊕ bn in addition
to βv). Thus, A can output a guess for β0 that is correct with probability

1
2

+ p′(k) +
1
2
·
(

1
2
− p′(k)

)
=

3
4

+
p′(k)

2
.

In contrast, no ideal-world adversary A′ corrupting A∪B can output a guess for β0 which is correct
with probability better than 3/4 when Z chooses Pn’s inputs uniformly at random. This shows
that π does not privately compute f̃ in the presence of malicious adversaries corrupting s parties.

4 Positive Results

In this section we show two positive results regarding when a “best of both worlds”-type guaran-
tee is possible. First, we briefly describe a “folklore” protocol for any (reactive or non-reactive)
functionality f that is simultaneously secure against malicious adversaries corrupting any t < n/2
parties and secure-with-abort against malicious adversaries corrupting n − t − 1 parties. In light
of Cleve’s result [9] and Theorems 3.1 and 3.5, these thresholds are the best possible (for general
functionalities).

We next show a protocol whose security is incomparable to the above. Our second protocol
is simultaneously secure against malicious adversaries corrupting t < n/2 parties as well as semi-
honest adversaries corrupting any s < n parties. (We stress that, in contrast, typical protocols
offering full security against t malicious parties are completely insecure against even t + 1 semi-
honest parties.) This result applies only to non-reactive functionalities; as shown by Theorem 3.1,
this is inherent.

14

4.1 Achieving the “Best of Both Worlds” for Suitable Thresholds

Theorem 4.1 Let n, s, t be such that t+ s < n and t < n/2, and assume the existence of enhanced
trapdoor permutations. For any probabilistic polynomial-time (reactive or non-reactive) functional-
ity f , there exists a protocol that simultaneously:

• securely computes f in the presence of malicious adversaries corrupting t parties;

• securely computes f with abort in the presence of malicious adversaries corrupting s parties.

Proof: If s ≤ t the theorem follows from known results [12], so assume s > t. We begin with
the case of non-reactive functionalities. In this case, a protocol π with the claimed properties can
be derived easily by suitably modifying known protocols that achieve security for honest major-
ity. In particular, such a protocol π can be obtained by following the general approach of [12,
Construction 7.5.39] with the following changes:

• The verifiable secret sharing scheme used should have threshold s+1, so that any s+1 shares
suffice to recover the secret but any s shares give no information (in at least a computational
sense) about the secret.

• The “handling abort” procedure is modified as follows. If a party Pi aborts (or is detected
cheating) at some point during the protocol, all remaining parties broadcast their shares of
Pi’s input and random tape. If at least s+1 valid shares are revealed, the protocol continues
with parties carrying out the execution on Pi’s behalf. If fewer than s + 1 valid shares are
revealed, then all parties abort the protocol with output ⊥.

Note that when t parties are corrupted, at least n − t ≥ s + 1 valid shares are always revealed
during the “handling abort” procedure. Thus, security of π in the presence of a malicious adversary
corrupting t parties follows using the same analysis as in [12]. When s parties are corrupted, they
may cause the protocol to abort but cannot otherwise affect the computation since the sharing
threshold is set to s + 1. A standard argument can be used to show that π securely computes f
with abort in this case.

For reactive functionalities, we proceed as sketched in [12, Section 7.7.1.3] with natural modifi-
cations. As there, the system state sj at the end of the jth phase of the protocol is shared among
the parties; here, however, this sharing is done using threshold s + 1 as above.

4.2 Security Against a Malicious Minority or a Semi-Honest Majority

Theorem 4.2 Let n, s, t be such that t < n/2 and s < n, and assume the existence of enhanced
trapdoor permutations. For any probabilistic polynomial-time non-reactive functionality f , there
exists a protocol that simultaneously:

• securely computes f in the presence of malicious adversaries corrupting t parties;

• securely computes f in the presence of semi-honest adversaries corrupting s parties.

Proof: Assume t = b(n−1)/2c and s = n−1. We also assume that f is a single-output function,
i.e., a function where all parties receive the same output. This is without loss of generality since
secure computation of a general functionality (y1, . . . , yn) = f̂(x1, . . . , xn) can be reduced to secure

15

computation of the single-output functionality (y1 ⊕ r1)| · · · |(yn ⊕ rn) ← f((r1, x1), . . . , (rn, xn)),
where ri is a random pad chosen by Pi at the outset of the protocol. This reduction is secure for
any number of corruptions.

Before describing our protocol π computing f , we first define a related functionality SSf that
corresponds to computing an authenticated secret sharing of f (with threshold t+1). That is, SSf

denotes the (randomized) functionality that

1. evaluates y = f(x1, . . . , xn);

2. computes a (t+1)-out-of-n Shamir secret sharing [21] of y, sending to each party its share yi;

3. authenticates each share yi for every other party Pj using an information-theoretic MAC
(denoted Mac). The resulting tag is given to Pi and the key is given to Pj .

See Figure 2 for details.

Functionality SSf

Parameters: F is a finite field that includes both [n] and the range of f .

Inputs: Each party Pi provides input xi.

Computation:

1. Compute y = f(x1, . . . , xn) (using random coins in case f is randomized).

2. Choose random p1, . . . , pt ∈ F and set p(x) = y +
∑t

i=1 pix
i.

3. Set yi = p(i) for i ∈ [n].

4. Choose random ki,j ∈ {0, 1}k for all i, j ∈ [n].

5. Compute tagi,j = Macki,j (yi) for all i, j ∈ [n].

6. Each party Pi is given as output yi, {kj,i}j∈[n], and {tagi,j}j∈[n].

Figure 2: Functionality SSf for authenticated secret sharing of the output of f .

Our protocol π computing f relies on two sub-protocols: a sub-protocol πn that computes SSf ,
and a sub-protocol πn/2 that computes f . We require the following security guarantees from these
protocols:

• πn securely computes SSf with abort in the presence of malicious adversaries corrupting t
parties, and also securely computes SSf in the presence of semi-honest adversaries corrupting
s parties.

• πn/2 securely computes f in the presence of malicious adversaries corrupting t parties.

Protocols with the above properties can be constructed assuming the existence of enhanced trapdoor
permutations [12]. We describe protocol π in Figure 3.

Intuition for the claimed security properties of π is as follows. Consider first the case of a
semi-honest adversary corrupting s parties in some set I. In this case, Phase I always completes
successfully (and so Phase II is never executed) and all honest parties learn the correct output y.
Moreover, since πn is secure in the presence of semi-honest adversaries corrupting s parties, the

16

Protocol π

Inputs: Each party Pi has input (1k, xi).

Output: Each party Pi gets output y = f(x1, . . . , xn).

Phase I:
Each party Pi does as follows:

1. Run a protocol πn computing the functionality SSf , using input xi. Let yi, {kj,i}j∈[n], and
{tagi,j}j∈[n] denote the output of Pi following execution of this protocol.

2. If yi =⊥, then go to Phase II. Otherwise, do:

(a) For every other party Pj , send (yi, tagi,j) to Pj . Receive in return (yj , tagj,i) from each
other party Pj .

(b) Set y′i = yi. For j 6= i, if Mackj,i
(yj) = tagj,i set y′j = yj ; otherwise, set y′j =⊥.

(c) Reconstruct the output y using the shares y′1, . . . , y
′
n.

Phase II:
Each party Pi runs protocol πn/2 computing the functionality f , using their original input xi. Each
Pi outputs the output value it obtained in πn/2.

Figure 3: Protocol π, based on protocols πn and πn/2.

adversary learns nothing from the execution of π other than the secret shares {yi}i∈I , which is
equivalent to learning y.

Next, consider the case of a malicious adversary corrupting t parties in some set I. Here, there
are two possibilities:

• πn completes successfully. Protocol πn is secure with abort in the presence of malicious
adversaries corrupting t parties. Thus, if πn completes successfully every honest party Pi

learns a (correct) share yi of the correct output value y (in addition to correct authentication
information for this share). In step 2(a) of Phase I every honest party then obtains at least
n − t ≥ t + 1 correct (and valid) shares of y; furthermore, an incorrect share sent by a
corrupted party is detected as invalid except with negligible probability. We conclude that
honest parties output the correct value y except with negligible probability. Finally, security
of πn implies that the adversary learns nothing from this execution that is not implied by its
inputs and the output value y.

• πn does not complete successfully. In this case, we may assume the adversary learns its
output in πn and then aborts this sub-protocol before the honest parties learn their outputs.
By security of πn, the only thing the adversary learns from Phase I are the shares {yi}i∈I .
Since these shares were generated using a secret-sharing scheme with threshold t + 1, they
reveal nothing about the output y.

Execution of π then continues with execution of πn/2 in Phase II. Since πn/2 is secure in the
presence of malicious adversaries corrupting t parties, this sub-protocol completes successfully
and all honest parties learn the correct output y; moreover, the adversary learns nothing from
this execution that is not implied by its inputs and the output value y.

We now formalize the above.

17

Claim 4.3 If πn securely computes SSf in the presence of semi-honest adversaries corrupting s
parties, then π securely computes f in the presence of semi-honest adversaries corrupting s parties.

Proof: We analyze π in a hybrid model where the parties have access to a trusted party
computing SSf (this trusted party computes SSf according to the first ideal model, where the
adversary cannot abort the computation), and show that in this hybrid model π securely computes
f in the presence of semi-honest adversaries corrupting s parties. Standard composition theorems [5,
12] imply the claim.

Let A be a semi-honest adversary in a hybrid-model execution of π (as described above).
We describe the natural semi-honest adversary A′, running an ideal-world evaluation of f , whose
behavior provides a perfect simulation of the behavior of A. Adversary A′ receives the set of
corrupted parties I ⊂ [n], their inputs {xi}i∈I , and auxiliary input z. It sends the inputs of the
corrupted parties to the trusted party evaluating f , and receives in return an output y. Next, A′
simply runs steps 2–6 of functionality SSf (cf. Figure 2) using the value of y it obtained. The
resulting values {(yi, {kj,i}j∈[n], {tagi,j}j∈[n])}i∈I are given to A as the outputs of the corrupted
parties from functionality SSf . The values {(yi, {tagi,j}j∈I)}i6∈I are then given to A as the messages
sent by the honest parties in the final round of Phase I. Finally, A′ outputs whatever A does. It
is straightforward to see that the joint distribution of the honest parties’ outputs and the view of
A (run as a sub-routine of A′) in the ideal world is identical to the joint distribution of the honest
parties’ outputs and the view of A in the hybrid world. The claim follows.

Claim 4.4 If πn securely computes SSf with abort in the presence of malicious adversaries cor-
rupting t parties, and πn/2 securely computes f in the presence of malicious adversaries corrupting
t parties, then π securely computes f in the presence of malicious adversaries corrupting t parties.

Proof: Once again, we analyze π in a hybrid model. Now, the parties have access to two trusted
parties:

• a trusted party computing SSf according to the second ideal model, where the adversary
may prematurely abort the computation; and

• a trusted party computing f according to the first ideal model, where the adversary cannot
abort the computation.

We show that in this hybrid model π securely computes f in the presence of a malicious adversary
corrupting t parties. Standard composition theorems [5, 12] imply the claim.

Let A be a malicious adversary in a hybrid-model execution of π (as described above). We
describe a malicious adversary A′, running an ideal-world evaluation of f , whose behavior provides
a perfect simulation of the behavior of A. Adversary A′ receives the set of corrupted parties I ⊂ [n],
their inputs {xi}i∈I , and auxiliary input z. It passes these values to A, and then receives inputs
{x′i}i∈I sent by A to the trusted party computing SSf (recall that A operates in the hybrid world
where there is a trusted party computing this functionality). A′ chooses random yi ∈ F for i ∈ I,
and then runs steps 4–6 of SSf (cf. Figure 2). The resulting values {(yi, {kj,i}j∈[n], {tagi,j}j∈[n])}i∈I

are given to A as the outputs of the corrupted parties from functionality SSf . We stress that A′
has not yet sent anything to its own trusted party computing f .

There are now two sub-cases, depending on whether or not A aborts the computation of SSf :

18

• If A aborts computation of SSf , adversary A′ continues with simulation of Phase II as
described below.

• If A allows computation of SSf to continue, then A′ sends the inputs {x′i}i∈I to the trusted
party computing f and receives in return a value y. It interpolates a degree-t polynomial p
satisfying p(0) = y and p(i) = yi for i ∈ I, and sets yi = p(i) for i 6∈ I. Finally, it gives
{(yi, {tagi,j}j∈I)}i6∈I to A as the messages sent by the honest parties in the final round of
Phase I, and outputs whatever A outputs.

If A had aborted computation of Af , then A′ now continues with simulation of Phase II. A
receives (possibly different) inputs {x′′i }i∈I from A, sends these to its trusted party computing f ,
and receives in return an output value y. It gives y to A, and outputs whatever A outputs.

It is not hard to verify that the joint distribution of the honest parties’ outputs and the view
of A (run as a sub-routine of A′) in the ideal world is statistically close to the joint distribution of
the honest parties’ outputs and the view of A in the hybrid world (where the only difference arises
from the possibility that A manages to forge a tag on an invalid share). The claim follows.

Since protocols πn and πn/2 with the desired security properties can be constructed from en-
hanced trapdoor permutations, the preceding claims complete the proof of the theorem.

Remark 4.5 (Realizing adaptive security and/or universal composability.) Theorem 4.2
refers to our default model of stand-alone security against static adversaries. It is not hard to
see, however, that protocol π described in the proof of that theorem can be proved secure against
adaptive adversaries and/or universally composable [6] if the underlying protocols πn, πn/2 satisfy
these stronger security properties.

References

[1] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic
adversaries. In 4th Theory of Cryptography Conference — TCC 2007, volume 4392 of LNCS,
pages 137–156. Springer, 2007.

[2] D. Beaver. Multiparty protocols tolerating half faulty processors. In Advances in Cryptology —
Crypto ’89, volume 435 of LNCS, pages 560–572. Springer, 1990.

[3] D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. In 30th Annual
Symposium on Foundations of Computer Science (FOCS), pages 468–473. IEEE, 1989.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In 20th Annual ACM Symposium on Theory of Com-
puting (STOC), pages 1–10. ACM Press, 1988.

[5] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology, 13(1):143–202, 2000.

[6] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd Annual Symposium on Foundations of Computer Science (FOCS), pages 136–145. IEEE,
2001.

19

[7] R. Canetti. Security and composition of cryptographic protocols: A tutorial (part I). SIGACT
News, 37(3):67–92, 2006.

[8] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure protocols. In 20th
Annual ACM Symposium on Theory of Computing (STOC), pages 11–19. ACM Press, 1988.

[9] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In 18th Annual
ACM Symposium on Theory of Computing (STOC), pages 364–369. ACM Press, 1986.

[10] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty com-
putations secure against an adaptive adversary. In Advances in Cryptology — Eurocrypt ’99,
volume 1592 of LNCS, pages 311–326. Springer, 1999.

[11] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game, or a completeness
theorem for protocols with honest majority. In 19th Annual ACM Symposium on Theory of
Computing (STOC), pages 218–229. ACM Press, 1987.

[12] O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cambridge University
Press, Cambridge, UK, 2004.

[13] S. Goldwasser and L.A. Levin. Fair computation of general functions in presence of immoral
majority. In Advances in Cryptology — Crypto ’90, volume 537 of LNCS, pages 77–93. Springer,
1991.

[14] S. Goldwasser and Y. Lindell. Secure multiparty computation without agreement. Journal of
Cryptology, 18(3):247–287, 2005.

[15] S.D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party com-
putation. In 40th Annual ACM Symposium on Theory of Computing (STOC), pages 413–422.
ACM Press, 2008.

[16] S.D. Gordon and J. Katz. Complete fairness in multiparty computation without an honest
majority. In 6th Theory of Cryptography Conference — TCC 2009, volume 5444 of LNCS,
pages 19–35. Springer, 2009.

[17] S.D. Gordon and J. Katz. Partial fairness in secure two-party computation. In Advances in
Cryptology — Eurocrypt 2010, volume 6110 of LNCS, pages 157–176. Springer, 2010.

[18] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. On combining privacy with guaranteed
output delivery in secure multiparty computation. In Advances in Cryptology — Crypto 2006,
volume 4117 of LNCS, pages 483–500. Springer, 2006.

[19] J. Katz. On achieving the “best of both worlds” in secure multiparty computation. In 39th
Annual ACM Symposium on Theory of Computing (STOC), pages 11–20. ACM Press, 2007.

[20] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In 21st Annual ACM Symposium on Theory of Computing (STOC), pages 73–85.
ACM Press, 1989.

[21] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

20

[22] A. C.-C. Yao. How to generate and exchange secrets. In 27th Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 162–167. IEEE, 1986.

21

