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Abstract. Round complexity is a central measure of efficiency, and
characterizing the round complexity of various cryptographic tasks is of
both theoretical and practical importance. We show here a universally-
composable (UC) protocol (in the common reference string model) for
two-party computation of any functionality, where both parties receive
output, using only two rounds. (This assumes honest parties are allowed
to transmit messages simultaneously in any given round; we obtain a
three-round protocol when parties are required to alternate messages.)
Our results match the obvious lower bounds for the round complexity of
secure two-party computation under any reasonable definition of security,
regardless of what setup is used. Thus, our results establish that secure
two-party computation can be obtained under a commonly-used setup
assumption with maximal security (i.e., security under general composi-
tion) in a minimal number of rounds.
To give but one example of the power of our general result, we observe
that as an almost immediate corollary we obtain a two-round UC blind
signature scheme, matching a result by Fischlin at Crypto 2006 (though,
in contrast to Fischlin, we use specific number-theoretic assumptions).

1 Introduction

Round complexity is an important measure of efficiency for cryptographic pro-
tocols, and much research has focused on trying to characterize the round com-
plexity of various tasks such as zero knowledge [GK96a, GK96b], Byzantine
agreement [PSL80, FL82, FM97, GM98], Verifiable Secret-Sharing [GIKR01,
FGG+06], and secure two-party/multi-party computation [Yao86, BMR90, IK00,
Lin01, GIKR02, KOS03, KO04]. (Needless to say, this list is not exhaustive.)
Here, we focus on the goal of secure two-party computation. Feasibility results
in this case are clearly of theoretical importance, both in their own right and
because two-party computation may be viewed as the “base case” for secure
computation without honest majority. Results in this case are also of poten-
tial practical importance since many interesting cryptographic problems (zero
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knowledge, commitment, and — as we will see — blind signatures) can be solved
by casting them as specific instances of secure two-party computation.

The round complexity of secure two-party computation in the stand-alone
setting has been studied extensively. Yao [Yao86] gave a constant-round pro-
tocol for the case when parties are honest-but-curious. Goldreich, Micali, and
Wigderson [GMW87, Gol04] showed how to obtain a protocol tolerating mali-
cious adversaries; however, their protocol does not run in a constant number
of rounds. Lindell [Lin01] gave the first constant-round protocol for secure two-
party computation in the presence of malicious adversaries. Katz and Ostrovsky
[KO04] showed a five-round protocol for malicious adversaries, and proved a
lower bound showing that five rounds are necessary (for black-box proofs of se-
curity) when no setup is assumed. (Both the upper and lower bound assume
parties talk in alternating rounds.) Two-round protocols for secure two-party
computation, where only a single player receives output, have been studied in,
e.g., [SYY99, CCKM00]; in particular, Cachin et al. [CCKM00] show a two-
round protocol for computing arbitrary functionalities in this case assuming a
common reference string (CRS) available to all participating parties.

It is by now well known that protocols secure when run in a stand-alone
setting may no longer be secure when many copies of the protocol are run con-
currently in an arbitrary manner (possibly among different parties), or when run
alongside other protocols in a larger network. To address this issue, researchers
have proposed models and definitions that would guarantee security in exactly
such settings [PW00, Can01]. In this work, we adopt the model of universal
composability (UC) introduced by Canetti [Can01].

The initial work of Canetti showed broad feasibility results for UC multi-
party computation in the presence of a strict majority of honest players. Unfor-
tunately, subsequent work of Canetti and Fischlin [CF01] showed that even for
the case of two parties, one of whom may be malicious, there exist functionalities
that cannot be securely computed within the UC framework. Further character-
ization of all such “impossible-to-realize” two-party functionalities is given by
[CKL06]. These impossibility results hold for the “plain” model; in contrast, it
is known that these negative results can be bypassed if one is willing to assume
some sort of “trusted setup”. Various forms of trusted setup have been explored
[CF01, BCNP04, HMU05, CDPW07, Katz07], the most common of which is the
availability of a CRS to all parties in the network. Under this assumption, uni-
versally composable multi-party computation of any (well-formed) functionality
is possible for any number of corrupted parties [CLOS02].

The round complexity of UC two-party computation has not been explored
in detail. The two-party protocol given in [CLOS02] does not run in a constant
number of rounds, though this may be due at least in part to the fact that the goal
of their work was security under adaptive corruptions (where corruptions may
happen at any point during the execution of the protocol, and not necessarily at
its outset, as is the case with passive corruptions). Indeed, it is a long-standing
open question to construct a constant-round protocol for adaptively-secure two-
party computation even in the stand-alone setting. Jarecki and Shmatikov [JS07]



recently showed a four-round protocol, assuming a CRS, for functionalities that
generate output for only one of the parties; they also show a two-round protocol
in the random oracle model. Using a standard transformation [Gol04], their
protocols can be used to compute two-output functionalities at the cost of an
additional round.

Our Results. We show a protocol for securely realizing any (well-formed) two-
party functionality in the UC framework using only two rounds of communi-
cation; we stress that both parties may receive output. In our work, we allow
both parties to simultaneously send a message in any given round (i.e., when
both parties are honest), but prove security against a rushing adversary who
may observe the other party’s message in a given round before sending his own.
Although this communication model is non-standard in the two-party setting,
it matches the convention used in the study of multi-party protocols and allows
for a more accurate characterization of the round complexity. Our result holds
under any one of various standard number-theoretic assumptions, and does not
rely on random oracles. We assume a CRS but, as we have seen, some form of
setup is necessary for two-party computation to be possible. We consider static
corruptions only; again, recall that even in the stand-alone setting it is not known
how to achieve adaptive security in constant rounds.

We achieve our result via the following steps:

– We first show a two-round protocol (where only one party speaks in each
round) for secure computation of any single-output functionality. This proto-
col is similar to that of Cachin et al. [CCKM00], though our protocol is secure
in the UC framework. The protocol relies on Yao’s “garbled circuit” tech-
nique [Yao86], the two-round oblivious transfer protocol of Tauman [Tau05],
and the non-interactive zero-knowledge proofs of De Santis et al. [DDO+01].
Using standard techniques [Gol04, Propositions 7.2.11 and 7.4.4], this imme-
diately implies a three-round protocol (where only one party speaks in each
round) for any two-output functionality.

– As our main result, we show how two instances of our initial protocol can
be run “in parallel” so as to obtain a two-round protocol (where now both
parties speak1 in each round) even if both parties are to receive output. The
challenging aspect here is to “bind” the two executions so that each party
uses the same input in each of the two protocol instances.

It is not hard to see that one-round secure computation, even if both parties
are allowed to speak simultaneously, is impossible under any reasonable defi-
nition of security and regardless of any global setup assumption; a similar ob-
servation holds for two-round protocols when parties speak in alternate rounds.
(It may be possible, however, to obtain such protocols given some preprocessing
phase run by the two parties.) Thus, interestingly, the round complexity of our
protocols is optimal for any setting of secure computation and not “just” for the
setting of universal composability with a CRS.

1 We stress again that our security analysis takes into account a rushing adversary.



The low round complexity of our protocol implies round-efficient solutions
for various cryptographic tasks. To give an example, we show that blind signa-
tures [Cha82] can be reduced to secure computation of a particular functionality
(here, we simplify the prior result of [JL97] to the same effect); thus, as almost an
immediate corollary of our result we obtain a two-round blind signature proto-
col, matching a recent result by Fischlin [Fis06]. Our result has certain technical
advantages as compared to Fischlin’s work: our scheme can be applied to any
underlying signature scheme and achieves strong unforgeability “for free” (as
long as the underlying signature scheme does); in contrast, Fischlin’s result ap-
plies to a specific signature scheme and achieves strong unforgeability only with
significant additional complications. On the other hand, Fishlin’s result holds
under more general assumptions.

As a second example, we observe that the evaluation of a trust policy, held
by a server, on a set of credentials, held by a client, can be cast as an instance
of two-party computation. Applying our protocol yields a solution that provides
input privacy to both the client and the server in a minimal number of rounds
while preserving security under general composition, a combination of traits not
present in current solutions (see [BHS04, LDB03, NT05, LL06, BMC06, FAL06]
and references therein). The full version of this work contains a more detailed
discussion [Hor07].

2 Framework, Tools, and Assumptions

Preliminaries. Let X = {X(k, z)}k∈ � ,z∈{0,1}∗ denote an ensemble of binary

distributions, where X(k, z) represents the output of a probabilistic, polynomial
time (PPT) algorithm on a security parameter k and advice z (the ensemble may
be parameterized by additional variables, and the algorithm may take additional
inputs). We say that ensembles X, Y are computationally indistinguishable, and

write X
c
≈ Y , if for any a ∈

�
there exists ka ∈

�
such that for all k > ka, for all

z (and for all values any additional variables parameterizing the ensemble may
take), we have |Pr[X(k, z) = 1]− Pr[Y (k, z) = 1]| < k−a.

Universally Composable Security. We work in the Universal Composability
(UC) framework of [Can01]. Our focus is on the two-party, static corruption
setting. We highlight a few features of the definition we use that are standard
but not universal: (1) The real model offers authenticated communication and
universal access to a common reference string. Formally, this corresponds to the
(FAUTH,FCRS)-hybrid model of [Can01]. (2) Message delivery in both the real
and ideal models is carried out by the adversary (contrast with [Can01], where
messages between the dummy parties and the ideal functionality in the ideal
model are delivered immediately). (3) The ideal functionality is not informed of
party corruption by the ideal adversary. We make this choice purely to simplify
the exposition; our results extend to the more general setting by the same means
employed in [CLOS02] (see section 3.3 there).



Universally Composable Zero Knowledge. We use a standard definition of
the ideal zero-knowledge functionality FZK, following the treatment of [CLOS02].
The functionality, parameterized by a relation R, accepts a statement x to be
proven, along with a witness w, from a prover ; it then forwards x to a verifier
if and only if R(x, w) = 1 (i.e., if and only if it is a correct statement). Looking
ahead, our constructions will be presented in the FZK-hybrid model.

For the case of static adversaries, De Santis et. al. [DDO+01] give a non-
interactive protocol (i.e., consists of a single message from the prover to the ver-
ifier) that UC realizes FZK for any NP relation (see also a discussion in [CLOS02,
Section 6]); the protocol is given in the CRS model and assumes the existence
of enhanced trapdoor-permutations (see [Gol04, Appendix C.1] for a discussion
of this assumption).

The Decisional Diffie-Hellman (DDH) Assumption. We use a two-round
oblivious transfer (OT) protocol as a building block in our constructions; any
OT protocol based on smooth projective hashing for hard subset-membership
problems per Tauman’s framework [Tau05] will do. To simplify the exposition,
we describe our constructions in terms of a protocol based on the Decisional
Diffie-Hellman (DDH) assumption [DH76] which we recall here.

A group generator GroupGen is a PPT which on input k ∈
�

outputs a de-
scription of a cyclic group G of prime order q, the order q with |q| ≥ k, and a
generator g ∈ G. Looking ahead, we will want to associate messages of length k
with group elements; for simplicity we thus assume that |q| ≥ k (alternatively,
we could use hashing). We say that the DDH problem is hard for GroupGen if
for any PPT algorithm A, the following ensembles are computationally indistin-
guishable:

(1)
{

(G, q, g)
R

← GroupGen(k); a, b
R

← � q : A(k, z,G, q, g, ga, gb, gab)
}

k∈
�

,z∈{0,1}∗

(2)
{

(G, q, g)
R

← GroupGen(k); a, b, c
R

← � q : A(k, z,G, q, g, ga, gb, gc)
}

k∈
�

,z∈{0,1}∗
.

Yao’s “Garbled Circuit” Technique. Our protocols use the “garbled-circuit”
technique of Yao [Yao86, LP04]; we follow [KO04] in abstracting the technique,
and refer the reader to [LP04] for a full account. Let Fk be a description of a
two-input/single-output circuit whose inputs and output are of length k (the
technique easily extends to lengths polynomial in k). Yao’s results provide two
PPT algorithms:

1. Yao1 is a randomized algorithm which takes as input a security parameter
k ∈

�
, a circuit Fk, and a string y ∈ {0, 1}

k
. It outputs a garbled circuit

Circuit and input-wire labels {Zi,σ}i∈{1,...,k},σ∈{0,1}.

2. Yao2 is a deterministic algorithm which takes as input a security parame-
ter k ∈

�
, a “garbled-circuit” Circuit and values {Zi}i∈{1,...,k} where Zi ∈

{0, 1}k. It outputs either an invalid symbol ⊥, or a value v ∈ {0, 1}k.



We informally describe how the above algorithms may be used for secure
computation when the participating parties are honest-but-curious. Let P1 hold
input x = x1 . . . xk ∈ {0, 1}

k
, P2 hold input y ∈ {0, 1}

k
, and assume P1 is to ob-

tain the output Fk(x, y). First, P2 computes (Circuit, {Zi,σ}i,σ)
R

← Yao1(k, Fk, y)
and sends Circuit to P1. Then the players engage in k instances of Oblivious
Transfer : in the ith instance, P1 enters with input xi, P2 enters with input

(Zi,0, Zi,1), and P1 obtains Zi
def
= Zi,xi

(P2 learns “nothing” about xi, and P1

learns “nothing” about Zi,1−xi
). P1 then computes v ← Yao2(Circuit, {Zi}i), and

outputs v.

With the above in mind, we describe the properties required of Yao1, Yao2.
We first require correctness : for any Fk, y, any output (Circuit, {Zi,σ}i,σ) of

Yao1(k, Fk, y) and any x, we have Fk(x, y) = Yao2(k, Circuit, {Zi,xi
}

i
). The algo-

rithms also satisfy the following notion of security : there exists a PPT simulator
Yao-Sim which takes k, Fk, x, v as inputs, and outputs Circuit and a set of k input-
wire labels {Zi}i; furthermore, for any PPT A, the following two ensembles are
computationally indistinguishable:

(1)
{

(Circuit, {Zi,σ}i,σ)
R

← Yao1(k, Fk, y) : A(k, z, x, y, Circuit, {Zi,xi
}

i
)
}

k∈
�

,z∈{0,1}∗

x,y∈{0,1}k

(2)
{

v = Fk(x, y) : A(k, z, x, y, Yao-Sim(k, Fk , x, v))
}

k∈
�

,z∈{0,1}∗

x,y∈{0,1}k

.

3 Round-Efficient UC Two-Party Computation

We begin by describing a two-round (where parties take turns in speaking), UC
protocol for computing functionalities that provide output for only one of the
parties. The protocol may be compiled into one that UC computes functional-
ities providing output to both parties at the cost of an additional round, using
standard tools. We then show how to bind two instances of the initial protocol
so as to obtain a two-round (where both parties may speak at any given round),
UC protocol for computing functionalities that provide output to both parties.
We conclude by showing that two rounds are necessary.

Our constructions use UC zero-knowledge, Yao’s garbled circuit technique,
and two-message oblivious transfer (OT) as building blocks. As mentioned ear-
lier, any OT protocol based on smooth projective hashing for a hard subset-
membership problem per Tauman’s framework [Tau05] will do. We stress that
such OT protocols satisfy a weaker notion of security than the one needed here;
we use zero-knowledge to lift the security guarantees to the level we need. To
simplify the exposition, we use a protocol from the framework based on the
DDH assumption, simplifying a construction due to Naor and Pinkas [NP01].
We remark that other protocols conforming to Tauman’s framework are known
to exist under the DDH assumption [AIR01], under the Nth-residuosity assump-
tion and under both the Quadratic-Residuosity assumption and the Extended
Riemann hypothesis [Tau05].



3.1 A Two-Round Protocol for Single-Output Functionalities

Let F = {Fk}k∈ � be a non-reactive, polynomial-sized, two-party functionality
that provides output to a single party, say P1. To simplify matters, we assume
that F is deterministic; randomized functionalities can be handled using stan-
dard tools [Gol04, Prop. 7.4.4]. Without loss of generality, assume that Fk takes
two k-bit inputs and produces a k-bit output (the protocol easily extends to
input/output lengths polynomial in k). Let GroupGen be a group generator as
in Sect. 2.

Informally, the first round of our protocol is used to set up k instances of
oblivious transfer. The second round is used to communicate a “garbled circuit”
per Yao’s construction, and for completing the oblivious-transfer of circuit input-
wire labels that correspond to P1’s input (cf. Sect. 2). To gain more intuition,
we sketch a single oblivious transfer instance, assuming both parties are honest
(the actual construction accounts for possibly malicious behavior by the parties
with the aid of zero-knowledge). Let G be a group and g a generator, provided by
GroupGen. To obtain the label corresponding to an input xi for wire i, P1 picks
elements a, b uniformly at random from G and sends P2 a tuple (u = ga, v =
gb, w = gc), where c is set to ab if xi = 0, to (ab− 1) otherwise. Note that if the
DDH problem is hard for GroupGen, P2 will not be able to tell a tuple generated
for xi = 0 from one generated for xi = 1, preserving P1’s privacy. Let Zi,σ be the
label corresponding to input bit σ for wire i. P2 selects r0, s0, r1, s1 uniformly at
random from G, and sends P1 two pairs as follows:

(K0 = ur0 · gs0 , C0 = wr0 · vs0 · Zi,0) ; and

(K1 = ur1 · gs1 , C1 = (g · w)r1 · vs1 · Zi,1).

It is easy to verify that P1 can obtain Zi,xi
by computing K−b

xi
· Cxi

. More-
over, it can be shown that the tuple (K1−xi

, C1−xi
) is uniformly distributed

(over the choice of r1−xi
, s1−xi

), and therefore P1 “learns nothing” (information-
theoretically) about the label corresponding to input (1−xi) for wire i, preserving
P2’s privacy.

In the following, we describe our two-round protocol πF for UC realizing F
in the FZK-hybrid model. In our description, we always let i range from 1 to k
and σ range from 0 to 1.

Common Reference String: On security parameter k ∈
�
, the CRS is (G, q, g)

R

←
GroupGen(k).

First Round: P1 on inputs k ∈
�
, x = x1 . . . xk ∈ {0, 1}

k
and sid, proceeds as

follows:

1. For every i, chooses ai, bi uniformly at random from � q, sets:

ci =

{

aibi xi = 0
aibi − 1 otherwise,

and lets ui = gai , vi = gbi , wi = gci .



2. P1 sends

(ZK-prover, sid ◦ 1, ({ui, vi, wi}i , (G, q, g), k), (x, {ai, bi}i))

to F1
ZK, where F1

ZK is parameterized by the relation:

R1 =

�� �
(({ui, vi, wi}i

, (G, q, g), k), (x, {ai, bi}i
)) ������

∀i, ui = gai , vi = gbi , wi = gci ,

where ci = � aibi xi = 0
aibi − 1 otherwise

� 	

and is set up such that P1 is the prover and P2 is the verifier.

Second Round: P2, on inputs k ∈
�
, y = y1 . . . yk ∈ {0, 1}k and sid, and upon

receiving
(ZK-proof, sid ◦ 1, ({ui, vi, wi}i , (G′, q′, g′), k′))

from F1
ZK, first verifies that G′ = G, q′ = q, g′ = g and k′ = k. If any of these

conditions fail, P2 ignores the message. Otherwise, it proceeds as follows:

1. Generates a “garbled circuit” (cf. Sect. 2) for Fk , based on its own input y.
This involves choosing random coins Ω and computing (Circuit, {Zi,σ}i,σ)←

Yao1(k, Fk , y; Ω).
2. For every i and σ, chooses ri,σ , si,σ uniformly at random from � q, and sets:

Ki,0 = u
ri,0

i · gsi,0 , Ci,0 = w
ri,0

i · v
si,0

i · Zi,0;
Ki,1 = u

ri,1

i · gsi,1 , Ci,1 = (g · wi)
ri,1 · v

si,1

i · Zi,1.

3. Sends
(

ZK-prover, sid ◦ 2,

(

Circuit, {Ki,σ, Ci,σ}i,σ
(G, q, g), k, {ui, vi, wi}i

)

,

(

y, Ω, {Zi,σ}i,σ
{ri,σ , si,σ}i,σ

))

to F2
ZK, where F2

ZK is parameterized by the relation:

R2 =

���� ������� Circuit

{Ki,σ, Ci,σ}i,σ

(G, q, g), k
{ui, vi, wi}i

,

y,Ω

{Zi,σ}i,σ

{ri,σ, si,σ}i,σ

����� ��������
(Circuit, {Zi,σ}i,σ

) = Yao1(k, Fk, y; Ω)

∧∀i,

Ki,0 = u
ri,0

i · gsi,0 , Ci,0 = w
ri,0

i · v
si,0

i · Zi,0;
Ki,1 = u

ri,1

i · gsi,1 , Ci,1 = (g · wi)
ri,1 · v

si,1

i · Zi,1

� ��	��

and is set up such that P2 is the prover and P1 is the verifier.

Output Computation: P1, upon receipt of message

(ZK-proof, sid ◦ 2, (Circuit, {Ki,σ, Ci,σ}i,σ , (G′, q′, g′), k′, {u′
i, v

′
i, w

′
i}i))

from F2
ZK, first verifies that G′ = G, q′ = q, g′ = g, k′ = k and {u′

i, v
′
i, w

′
i}i =

{ui, vi, wi}i. If any of these conditions fail, P1 ignores the message. Otherwise,

it completes the protocol by computing Zi
def
= K−bi

i,xi
· Ci,xi

, computing v ←
Yao2(k, Circuit, {Zi}i) and reporting v as output if v 6= ⊥.



Concrete round complexity. When composed with the non-interactive pro-
tocol of De Santis et al. [DDO+01] UC-realizing FZK, our protocol takes two
communication rounds. Its security now additionally rests on the existence of
enhanced trapdoor permutations.

Security. The protocol may be viewed as a degenerate version of the construc-
tion we present next, and its security follows in a straightforward manner from
security of the latter.

3.2 A Two-Round Protocol for Two-Output Functionalities

Let F =
{

Fk
def
= (F 1

k , F 2
k )

}

k∈
� be a non-reactive, polynomial-sized, two-party

functionality such that P1 wishes to obtain F 1
k (x, y) and P2 wishes to obtain

F 2
k (x, y) when P1 holds x and P2 holds y. Without loss of generality, assume

once more that F is deterministic; that x, y and the outputs of F 1
k , F 2

k are k-bit
strings; and that GroupGen is as in Sect. 2.

The protocol of the preceding section provides means to securely compute
a functionality that provides output to one of the parties, in two rounds. To
securely-compute our two-output functionality Fk = (F 1

k , F 2
k ), we run one in-

stance of that protocol such that P1 receives F 1
k (with a first-round message

originating from P1 and a second-round message from P2), and a second in-
stance such that P2 receives F 2

k (with a first-round message originating from
P2 and a second-round message from P1); if we allow the parties to transmit
messages simultaneously in any given round, this yields a two-round protocol.
All that’s left to ensure is that each party enters both instances of the protocol
with the same input. Here, we have the relation parameterizing the second round
zero-knowledge functionality enforce this condition2.

Below, we describe our two-round protocol πF for UC realizing F in the FZK-
hybrid model when parties are allowed to send messages simultaneously in any
given round. We describe our protocol from the perspective of P1; P2 behaves
analogously (i.e., the protocol is symmetric). In the description, we always let i
range from 1 to k and σ range from 0 to 1.

Common Reference String: On security parameter k ∈
�
, the CRS is (G, q, g)

R

←
GroupGen(k).

First Round: P1 on inputs k ∈
�
, x = x1 . . . xk ∈ {0, 1}

k
and sid, proceeds as

follows:

2 Alternatively, we can make the following modifications to the initial protocol: each
party will add a commitment to its input to its original protocol message, and modify
its zero-knowledge assertion to reflect that it has constructed its initial message with
an input that is consistent with the commitment. Two instances of this protocol can
now be run in parallel as above without further modifications (note that the second-
round commitments become redundant). We omit the details here.



1. For every i, chooses ai, bi uniformly at random from � q, sets:

ci =

{

aibi xi = 0
aibi − 1 otherwise,

and lets ui = gai , vi = gbi , wi = gci .
2. Sends

(ZK-prover, sid ◦ 1 ◦ P1, ({ui, vi, wi}i , (G, q, g), k), (x, {ai, bi}i))

to F1,P1→P2

ZK , where F1,P1→P2

ZK is parameterized by the relation:

R1 =











(({ui, vi, wi}i , (G, q, g), k), (x, {ai, bi}i))

∣

∣

∣

∣

∣

∣

∣

∀i, ui = gai , vi = gbi , wi = gci ,

where ci =

{

aibi xi = 0

aibi − 1 otherwise











and is set up such that P1 is the prover and P2 is the verifier.

Second Round: Upon receiving the symmetric first-round message

(ZK-proof, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G′, q′, g′), k′))

from F1,P2→P1

ZK (defined analogously to F1,P1→P2

ZK using the relation R1, but set
up such that P2 is the prover and P1 is the verifier), P1 verifies that G′ = G, q′ =
q, g′ = g and k′ = k. If any of these conditions fail, P1 ignores the message.
Otherwise, it proceeds as follows:

1. Generates a “garbled circuit” (cf. Sect. 2) for F 2
k , based on its own input x.

This involves choosing random coins Ω and computing (Circuit, {Zi,σ}i,σ)←

Yao1(k, F 2
k , x; Ω).

2. For every i and σ, chooses ri,σ , si,σ uniformly at random from � q, and sets:

Ki,0 = ū
ri,0

i · gsi,0 , Ci,0 = w̄
ri,0

i · v̄
si,0

i · Zi,0;
Ki,1 = ū

ri,1

i · gsi,1 , Ci,1 = (g · w̄i)
ri,1 · v̄

si,1

i · Zi,1.

3. Sends

�� ZK-prover, sid ◦ 2 ◦ P1, �� Circuit, {Ki,σ, Ci,σ}i,σ

(G, q, g), k, {ūi, v̄i, w̄i}i

{ui, vi, wi}i

�� , �� x,Ω, {Zi,σ}i,σ

{ri,σ, si,σ}i,σ

{ai, bi}i

�� ��
to F2,P1→P2

ZK , where F2,P1→P2

ZK is parameterized by the relation:

R2 =

���������� ���������
������

Circuit

{Ki,σ, Ci,σ}i,σ

(G, q, g), k
{ūi, v̄i, w̄i}i

{ui, vi, wi}i

,

x, Ω

{Zi,σ}i,σ

{ri,σ, si,σ}i,σ

{ai, bi}i

� �����
��������������

(Circuit, {Zi,σ}i,σ
) = Yao1(k, F 2

k , x; Ω)

∧ ∀i,

Ki,0 = ū
ri,0

i · gsi,0 , Ci,0 = w̄
ri,0

i · v̄
si,0

i · Zi,0

Ki,1 = ū
ri,1

i · gsi,1 , Ci,1 = (g · w̄i)
ri,1 · v̄

si,1

i · Zi,1

∧ ∀i, ui = gai , vi = gbi , wi = gci ,

where ci = � aibi xi = 0
aibi − 1 otherwise

� ��������	��������

and is set up such that P1 is the prover and P2 is the verifier.



Output Computation: Upon receiving the symmetric second-round message

(ZK-proof, sid◦2◦P2, (Circuit,
{

K̄i,σ , C̄i,σ

}

i,σ
, (G′, q′, g′), k′, {u′

i, v
′
i, w

′
i}i , {ū′

i, v̄
′
i, w̄

′
i}i))

from F2,P2→P1

ZK (defined analogously to F2,P1→P2

ZK using the relation R2, but set
up such that P2 is the prover and P1 is the verifier), P1 verifies that G′ =
G, q′ = q, g′ = g, k′ = k, that {u′

i, v
′
i, w

′
i}i = {ui, vi, wi}i and that {ū′

i, v̄
′
i, w̄

′
i}i =

{ūi, v̄i, w̄i}i. If any of these conditions fail, P1 ignores the message. Otherwise,

it completes the protocol by computing Z̄i
def
= K̄−bi

i,xi
· C̄i,xi

, computing v ←

Yao2(k, Circuit,
{

Z̄i

}

i
) and reporting v as output if v 6= ⊥.

Concrete round complexity. As in our first protocol, this takes two rounds
when composed with the protocol of De Santis et al. [DDO+01] realizing FZK;
the security of our protocols now additionally relies on the existence of enhanced
trapdoor permutations.

Theorem 1. Assuming that the DDH problem is hard for GroupGen, the above
protocol UC-realizes F in the FZK-hybrid model (in the presence of static adver-
saries).

Let A be a (static) adversary operating against πF in the FZK-hybrid model.
To prove the theorem, we construct a simulator S such that no environment
Z can tell with a non-negligible probability whether it is interacting with A
and P1, P2 running πF in the FZK-hybrid model or with S and P̃1, P̃2 in the
ideal process for F . S will internally run a copy of A, “simulating” for it an
execution of πF in the FZK-hybrid model (by simulating an environment, a
CRS, ideal FZK functionalities and parties P1, P2) that matches S’s view of the
ideal process; S will use A’s actions to guide its own in the ideal process. We
refer to an event as occurring in the internal simulation if it happens within the
execution environment that S simulates for A. We refer to an event as occurring
in the external process if it happens within the ideal process, in which S is
participating. S proceeds as follows:

Initial activation. S sets the (simulated) CRS to be (G, q, g)
R

← GroupGen(k).
It copies the input value written by Z on its own input tape onto A’s input
tape and activates A. If A corrupts party Pi (in the internal simulation), S
corrupts P̃i (in the external process). When A completes its activation, S copies
the output value written by A on its output tape to S’s own output tape, and
ends its activation.

P2 only is corrupted. Upon activation, S copies the input value written by
Z on its own input tape onto A’s input tape. In addition, if P̃1 has added
a message (F-input1, sid, ·) for F to its outgoing communication tape (in the
external process; recall that S can only read the public headers of messages on
the outgoing communication tapes of uncorrupted dummy parties), S, for every
i, chooses ai, bi uniformly at random from � q, sets ui = gai , vi = gbi , wi = gaibi

for future use, and adds a message (ZK-prover, sid ◦ 1 ◦ P1,⊥,⊥) for F1,P1→P2

ZK



to P1’s outgoing communication tape (in the internal simulation; recall that A
will only be able to read the public header of a message intended for FZK on
the outgoing communication tape of an uncorrupted party in the FZK-hybrid
model). S then activates A.

Upon completion of A’s activation, S acts as follows:

1. If A delivered the message (ZK-prover, sid◦1◦P1,⊥,⊥) from P1 to F1,P1→P2

ZK

(in the internal simulation), S adds the message

(ZK-proof, sid ◦ 1 ◦ P1, ({ui, vi, wi}i , (G, q, g), k))

for P2 and A to F1,P1→P2

ZK ’s outgoing communication tape (in the internal

simulation). Informally, S constructs the message from F1,P1→P2

ZK to P2 and
A (in the internal simulation) in accordance with πF , except that it always
lets wi be gaibi .

2. If A delivered a message

(ZK-prover, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G′, q′, g′), k′), (y,
{

āi, b̄i

}

i
))

from P2 to F1,P2→P1

ZK (in the internal simulation), S verifies that

(({ūi, v̄i, w̄i}i , (G′, q′, g′), k′), (y,
{

āi, b̄i

}

i
)) ∈ R1.

If the verification fails, S does nothing. Otherwise, S adds the message

(ZK-proof, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G′, q′, g′), k′))

for P1 and A to F1,P2→P1

ZK ’s outgoing communication tape (in the internal
simulation), and delivers the message (F-input2, sid, y) from (the corrupted)
P̃2 to F (in the external simulation). S records the values y and {ūi, v̄i, w̄i}i.

3. If A delivered the message

(ZK-proof, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G′, q′, g′), k′))

from F1,P2→P1

ZK to P1 (in the internal simulation), S first verifies that P̃1 has
a message (F-input1, sid, ·) for F on its outgoing communication tape (in
the external process) and that G ′ = G, q′ = q, g′ = g and k′ = k. If any of
these fail, S does nothing. Otherwise, it adds the message (ZK-prover, sid◦2◦

P1,⊥,⊥) for F2,P1→P2

ZK to P1’s outgoing communication tape (in the internal

simulation), delivers (F-input1, sid, ·) from P̃1 to F (in the external process),

and notes to itself that the Round-1 message from F1,P2→P1

ZK to P1 (in the
internal simulation) has been delivered. Note that once the activation of
S will be complete, F will be in possession of both its inputs and will be
activated next (in the external process).

4. If A delivered the message (ZK-prover, sid◦2◦P1,⊥,⊥) from P1 to F2,P1→P2

ZK ,
S proceeds as follows. First note that at this point, we are guaranteed
that two inputs were delivered to F and that F has been activated sub-
sequently (in the external process); therefore, F has written a message



(F-output2, sid, v) for P̃2 on its outgoing communication tape (in the ex-
ternal process; note that S may read the contents of a message from F
to a corrupted party). Also note that at this point, S has recorded val-
ues y and {ūi, v̄i, w̄i}i sent by (the corrupted) P2 in its first-round mes-

sage to F1,P2→P1

ZK . S produces a simulated “garbled circuit” and input-

wire labels using F 2
k , y and v (cf. Sect. 2) by computing (Circuit, {Zi}i)

R

←
Yao-Sim(k, F 2

k , y, v). For every i, it chooses ri,yi
, si,yi

uniformly at random
from � q, sets:

Ki,yi
= ū

ri,yi

i · gsi,yi

Ci,yi
=

{

w̄
ri,yi

i · v̄
si,yi

i · Zi if yi = 0

(g · w̄i)
ri,yi · v̄

si,yi

i · Zi otherwise,

and sets Ki,1−yi
, Ci,1−yi

to be elements selected uniformly at random from
G. It then adds the message



ZK-proof, sid ◦ 2 ◦ P1,

Circuit, {Ki,σ, Ci,σ}i,σ
(G, q, g), k, {ūi, v̄i, w̄i}i

{ui, vi, wi}i





for P2 and A to the outgoing communication tape of F2,P1→P2

ZK . Informally,
S constructs the message in accordance with πF , except that it uses simu-
lated circuit and input wire labels, and sets {Ki,1−yi

, Ci,1−yi
}

i
to be uniform

elements in G.
5. If A delivered a message



ZK-prover, sid ◦ 2 ◦ P2 ,

Circuit,
{

K̄i,σ , C̄i,σ

}

i,σ

(G′, q′, g′), k′, {u′
i, v

′
i, w

′
i}i

{ū′
i, v̄

′
i, w̄

′
i}i

,

y′, Ω̄,
{

Z̄i,σ

}

i,σ

{r̄i,σ , s̄i,σ}i,σ
{

ā′
i, b̄

′
i

}

i





from A to F2,P2→P1

ZK (in the internal simulation), S verifies that





Circuit,
{

K̄i,σ , C̄i,σ

}

i,σ

(G′, q′, g′), k′, {u′
i, v

′
i, w

′
i}i

{ū′
i, v̄

′
i, w̄

′
i}i

,

y′, Ω̄,
{

Z̄i,σ

}

i,σ

{r̄i,σ , s̄i,σ}i,σ
{

ā′
i, b̄

′
i

}

i



 ∈ R2.

If the verification fails, S does nothing. Otherwise, S adds the message


ZK-proof, sid ◦ 2 ◦ P2,

Circuit,
{

K̄i,σ, C̄i,σ

}

i,σ

(G′, q′, g′), k′, {u′
i, v

′
i, w

′
i}i

{ū′
i, v̄

′
i, w̄

′
i}i





for P1 and A to F2,P2→P1

ZK ’s outgoing communication tape (in the internal
simulation).

6. If A delivered the message


ZK-proof, sid ◦ 2 ◦ P2,

Circuit,
{

K̄i,σ, C̄i,σ

}

i,σ

(G′, q′, g′), k′, {u′
i, v

′
i, w

′
i}i

{ū′
i, v̄

′
i, w̄

′
i}i







from F2,P2→P1

ZK to P1 (in the internal simulation), S first checks whether

a Round-1 message from F1,P2→P1

ZK to P1 (in the internal simulation) has
been delivered, per Item 3 above; if not, S does nothing. Otherwise, we
are guaranteed that two inputs were delivered to F , and that F has subse-
quently been activated and written a message (F-output1, sid, ·) for P̃1 on
its outgoing communication tape (in the external process). S verifies that
G′ = G, q′ = q, g′ = g, k′ = k, that {u′

i, v
′
i, w

′
i}i = {ui, vi, wi}i and that

{ū′
i, v̄

′
i, w̄

′
i}i = {ūi, v̄i, w̄i}i (intuitively, the checks, along those performed by

S on behalf of F2,P2→P1

ZK per Item 5 above, guarantee that (the corrupted)
P2 has used the same input consistently in both rounds, i.e., that y′ = y); if
so, S delivers the message (F-output1, sid, ·) from F to P̃1 (in the external
process).

After performing one of the above (if any), S copies the output value written by
A on its output tape to S’s own output tape, and ends its activation.

Other corruption scenarios. S’s actions for the case where P1 is corrupted are
symmetric to the above; its actions for the case where both parties are corrupted
and for the case where neither is, are straightforward.

This concludes the description of S. We claim that for any Z :

EXECFZK

πF ,A,Z

c
≈ IDEALF ,S,Z , (1)

We prove the above in cases corresponding to the parties A corrupts. We give
here an informal description of the case where P2 only is corrupted (the case
where P1 only is corrupted is symmetric, and the cases where either or neither
parties are corrupted are straightforward); refer to [Hor07] for the complete
proof.

Loosely speaking, when P2 only is corrupted, the following differences be-
tween a real-life execution of πF among P1, P2 in the FZK-hybrid model and the
ideal process for F among P̃1, P̃2 may be noted: (1) in the former, P1 computes
its output based on a “garbled circuit” and obliviously-transferred input-wire
labels corresponding to its input, received in the second round of the protocol,
while in the latter, P̃1 receives its output from F based on the value y that S
obtained while simulating F1,P2→P1

ZK for the first round of the protocol; (2) in the

former, the first round message from F 1,P1→P2

ZK to P2 contains values wi = gci

where ci = aibi when xi = 0, ci = aibi − 1 when xi = 1, while in the lat-
ter, the message (in the internal simulation) contains wi = gaibi for all i; (3)

in the former, the second-round message from F2,P1→P2

ZK to P2 contains values
Ki,(1−yi), Ci,(1−yi) computed as in the specification of the protocol, while in the
latter, those values (in the internal simulation) are chosen uniformly at random
from G; and (4) in the former, Yao1 is used to compute the “garbled circuit” and

input-wire labels for the second-round message from F2,P1→P2

ZK to P2, while in
the latter, Yao-Sim is used for that purpose, based on P2’s output from F(x, y),

where y was obtained by S while simulating F 1,P2→P1

ZK for the first round of the
protocol.



Nevertheless, we claim that Eq. 1 holds, based on (1) the correctness of Yao’s
“garbled circuit” technique, the correctness of the oblivious transfer protocol
and the enforcement of parties entering the two rounds of the protocol with a
consistent input; (2) the hardness of the DDH assumption for GroupGen; (3)
the uniformity of Ki,(1−yi), Ci,(1−yi) per πF in G; and (4) the security Yao’s
construction.

3.3 Two Rounds are Necessary

It is almost immediate that two rounds are necessary for two-party computation
under any reasonable definition of security. Loosely speaking, consider a candi-
date single-round protocol for a functionality that provides output to one of the
parties, say P2. Since (an honest) P1 sends its message independently of P2’s
input, P2 can (honestly) run its output-computation side of the protocol on the
incoming message multiple times using inputs of its choice, and learn the output
of the functionality on each. This clearly violates security except for functions
that do not depend on P2’s input.

More formally and in the context of UC security, consider the functionality
F=, which on input a pair of two-bit strings x, y ∈ {0, 1}

2
, provides P2 with

output 1 if x = y, 0 otherwise. Assume π UC realizes F= in a single round. Let
πP1 be the procedure in π that takes P1’s input x and a security parameter k and
outputs P1’s outgoing message m; let πP2 be the procedure in π that takes P2’s
input y, an incoming message m and a security parameter k, and computes P2’s
output value v. As π UC realizes F=, it must be the case that for any x, y and

with all but negligible probability in k, if m
R

← πP1(x, k) and v
R

← πP2(y, m, k),
then v = F=(x, y) (by considering a benign adversary that does not corrupt any
party and delivers all messages as prescribed by π).

Consider an environment Z which picks x uniformly at random from {0, 1}
2

and provides x as input to P1. Consider an adversary A, participating in a
real-life execution of π, that acts as follows. A corrupts P2 on the onset of the
execution. On an incoming message m from P1, A computes πP2(y, m, k) on all

four strings y ∈ {0, 1}
2
, and outputs (the lexicographically first) y on which

the computation produces 1. Note that by the above, with all but negligible
probability,A outputs x. We claim that for any ideal-process adversary S, Z may
distinguish a real-life execution of π in the presence of A from the ideal process
involving S and F=. To see this, observe that S’s probability of outputting x is
at most 1/4, as its view in the ideal process is independent of x.

4 Two-Round Universally-Composable Blind Signatures

In this section, we briefly discuss how our work can be used to construct a round-
optimal (i.e., two-round) UC-secure blind signature scheme in the CRS model.
We begin with a quick recap of the definitions. Roughly speaking, a blind sig-
nature scheme should guarantee unforgeability and blindness. The first requires
that if a malicious user interacts with the honest signer for a total of ` executions



of the protocol (in an arbitrarily-interleaved fashion), then the user should be
unable to output valid signatures on `+1 distinct messages. (A stronger require-
ment called strong unforgeability requires that the user cannot even output `+1
distinct signatures on `+1 possibly-repeating messages.) Blindness requires, very
informally, that a malicious signer cannot “link” a particular execution of the
protocol to a particular user even after observing the signature obtained by the
user. This is formalized (see, e.g., [Fis06]) by a game in which the signer interacts
with two users in an order determined by a randomly-chosen selector bit b, and
should be unable to guess the value of b (with probability significantly better
than 1/2) even after being given the signatures computed by these two users.
This definition also allows the malicious signer to generate its public key in any
manner (and not necessarily following the legitimate key-generation algorithm).

The above represent the “classical” definitions of security for blind signa-
tures. Fischlin [Fis06] formally defines a blind signature functionality in the UC
framework. He also gives a two-round protocol realizing this functionality. In-
terestingly, one of the motivations cited in [Fis06] for not relying on the generic
results of [CLOS02] is the desire to obtain a round-optimal protocol.

Assume we have a (standard) signature scheme (Gen, Sign, Vrfy), and con-
sider the (randomized) functionality fsign(SK, m) = SignSK(m). Contrary to
what might be a naive first impression, secure computation of this functionality
does not (in general) yield a secure blind signature scheme! (See also [JL97].)
Specifically, the problem is that the signer may use different secret keys SK, SK ′

in different executions of the protocol. Furthermore, the public key may be set up
in such a way that each secret key yields a valid signature. Then, upon observing
the signatures computed by the users, the signer may be able to tell which key
was used to generate each signature, thereby violating the users’ anonymity.

Juels, Luby, and Ostrovsky [JL97] suggest a relatively complex method for
handling this issue. We observe that a much simpler solution is possible by simply
forcing the signer to use a fixed signing key in every execution of the protocol.
This is done in the following way: To generate a public/secret key, the signer
first computes (PK, SK) ← Gen(1k). It then computes a (perfectly-binding)
commitment com = Com(SK; ω) to SK using randomness ω. The public key is
PK, com and the secret key contains SK and ω.

Define functionality f∗
sign ((SK, ω), (com, m)) as follows: if Com(SK; ω) =

com, then the second party receives output SignSK(m) (when Sign is randomized,
the functionality chooses a uniform random tape for computing this signature).
Otherwise, the second party receives output ⊥. The first party receives no output
in either case.

It is not hard to see that a protocol for secure computation of f ∗
sign yields a

secure blind signature scheme (a proof is omitted); using a UC two-party com-
putation protocol for f∗

sign gives a UC blind signature scheme. Using the simple
two-round protocol constructed in Sect. 3.1, and noticing that only one party
receives output here, we thus obtain a two-round UC blind signature scheme.
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