
Composability and On-Line Deniability of

Authentication

Yevgeniy Dodis1⋆, Jonathan Katz2⋆⋆, Adam Smith3⋆ ⋆ ⋆, and Shabsi Walfish4†

1 Dept. of Computer Science, New York University.
2 Dept. of Computer Science, University of Maryland.

3 Dept. of Computer Science and Engineering, Pennsylvania State University.
4 Google, Inc.

Abstract. Protocols for deniable authentication achieve seemingly para-
doxical guarantees: upon completion of the protocol the receiver is con-
vinced that the sender authenticated the message, but neither party can
convince anyone else that the other party took part in the protocol. We
introduce and study on-line deniability, where deniability should hold
even when one of the parties colludes with a third party during execu-
tion of the protocol. This turns out to generalize several realistic scenarios
that are outside the scope of previous models.

We show that a protocol achieves our definition of on-line deniability if
and only if it realizes the message authentication functionality in the gen-

eralized universal composability framework; any protocol satisfying our
definition thus automatically inherits strong composability guarantees.
Unfortunately, we show that our definition is impossible to realize in the
PKI model if adaptive corruptions are allowed (even if secure erasure is
assumed). On the other hand, we show feasibility with respect to static
corruptions (giving the first separation in terms of feasibility between
the static and adaptive setting), and show how to realize a relaxation
termed deniability with incriminating abort under adaptive corruptions.

1 Introduction

Message authentication allows a sender S to authenticate a message m to a
receiver R. If S has a public key, message authentication is usually handled
using digital signatures. A well-known drawback of digital signatures, however,
is that they leave a trace of the communication and, in particular, allow R (or,
in fact, any eavesdropper) to prove to a third party that S authenticated the
message in question. In some scenarios such non-repudiation is essential, but in
many other cases deniability is desired.

⋆ Supported by NSF grants CNS-0831299, CNS-0716690, CCF-0515121, and CCF-
0133806. A portion of this work was done while visiting CRCS at Harvard University.

⋆⋆ Supported by NSF CNS-0447075 and NSF CNS-0627306.
⋆ ⋆ ⋆ Supported by NSF TF-0747294 and NSF CAREER award 0729171.

† A portion of this work was done while at New York University.



2 Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish

Deniable authentication, introduced in [17, 19] and studied extensively since
then, achieves the seemingly paradoxical guarantees that (1) the receiver is con-
vinced that the message originated from the sender, yet (2) the receiver, even if
malicious, cannot prove to anyone else that the sender authenticated the given
message. Furthermore, (3) the receiver cannot be incriminated as having been
involved, even by a malicious sender (this is meaningful when the receiver has a
public key, as will be the case in our work; see further below).

Deniability is a fundamental concept in cryptography. Non-repudiation is
sometimes crucial for the free exchange of ideas: without the assurance of remain-
ing “off the record”, individuals may be discouraged from discussing subversive
(or embarrassing) topics. Deniability is also intimately tied to the simulation
paradigm that is central to our understanding of cryptographic protocols.

Indeed, deniability is typically formalized via the simulation paradigm intro-
duced in the context of zero-knowledge (ZK) proofs [21]. Zero-knowledge proofs,
however, do not automatically provide deniability. Pass [28] points out that
non-interactive ZK proofs are not deniable, nor are many existing ZK proofs in
the random oracle model. Furthermore, ZK proofs for which simulation requires
rewinding may not suffice to achieve on-line deniability which protects each
party even when the other party colludes with an on-line entity that cannot be
“rewound” (see below for an example).1 Looking ahead, we note that on-line
deniability is only potentially feasible if receivers hold public keys, and we as-
sume this to be the case in our work. Once receivers have public keys, however,
protocols can realize the stronger semantics by which a sender can authenticate
a message for a specific receiver R but not for anyone else.

One might question whether on-line deniability is too strong. To see why it
might be essential, consider a setting where Bob talks to Alice while relaying all
messages to/from an external party (such as a law-enforcement agent). Ideally,
a deniable authentication protocol would not permit the agent to distinguish
the case when Bob is having a real conversation with Alice from the case when
Bob is fabricating the entire interaction. Previous, off-line models of deniability
provide no guarantees in this setting. Alternatively, imagine a publicly read-
able/writeable bulletin board (e.g., a wiki) where all entries are time-stamped
and assigned unpredictable identifiers. A corrupt receiver running a protocol
with an honest sender can post all the messages it receives to the bulletin board,
and then generate its responses based on the identifiers assigned to the resulting
posts. Again, off-line deniability would not suffice since the bulletin board cannot
be rewound; in this case, the contents of the bulletin board would prove that the
interaction occurred. More generally, one can imagine a “chosen-protocol attack”
by which someone designs and deploys a public service specifically targeted to
destroying the deniability of a particular authentication protocol.

With the above motivation in mind, we introduce a strong notion of deniabil-
ity that, in particular, implies on-line deniability. We then show that a protocol

1 In contrast, previous notions of deniable authentication only guarantee off-line de-

niability which protects against a malicious party who records the transcript and
shows it to a third party after the fact.



Composability and On-Line Deniability of Authentication 3

satisfies our definition if and only if it securely realizes the message authen-
tication functionality Fauth in the recently introduced generalized UC (GUC)
framework [7]. (This is an extension of Canetti’s UC framework [5] that mod-
els globally-available, “external” functionalities like a common reference string,
PKI, etc.) Protocols proven secure with respect to our definition thus inherit
all the strong composability properties of the (G)UC framework. We stress that
protocols realizing Fauth in the UC framework do not necessarily provide de-
niability; in particular, digital signatures — which are clearly not deniable —
realize Fauth in the UC framework [6]. Similarly, protocols realizing Fauth in the
UC framework may be problematic when composed with other protocols that
are allowed to depend on parties’ public keys (see Section 2.3). In both cases,
the reason is that the UC framework treats public keys as local to a particular
session. When this condition is enforced, the expected security properties hold;
when public keys are truly public, the expected security properties may not hold.

1.1 Our Results

We propose a definition of deniable authentication which, in comparison to
prior work, guarantees stronger security properties such as on-line deniability
and security under concurrent executions with arbitrary other protocols. Unfor-
tunately, we show that our notion of deniable authentication is impossible to
achieve in the PKI model if adaptive corruptions are allowed. This holds even if
secure erasure is assumed; if we are unwilling to allow erasure then we can rule
out even the weaker notion of forward security (where, informally, honest parties’
secret keys and state might be compromised after completion of the protocol).
In the full version, we show reductions from deniable authentication to deniable
key exchange and vice versa; thus, our impossibility results imply that deniable
key exchange is impossible (with regard to adaptive corruptions) as well.

Our impossibility result is very different from prior impossibility results in
the UC setting [5, 9, 11, 7]. Previous impossibility results assume secure channels
as a primitive, and show that additional setup assumptions (such as a PKI) are
necessary to realize other, more advanced functionalities. Here, we show that the
basic functionality of authenticated channels cannot be realized even given the
setup assumption of a PKI.

Faced with this strong negative result, we ask whether relaxed definitions of
deniable authentication can be achieved. In this direction, we show several pos-
itive results based on standard assumptions and without random oracles. First,
we observe that our definition can be satisfied with respect to static adversaries.
This appears to give the first separation between the static and adaptive set-
tings with regard to feasibility.2 Second, we observe that our definition can be
achieved, with respect to adaptive corruptions, in the symmetric-key setting
where all pairs of parties share a key.

2 Nielsen [27] shows a separation between the static and adaptive settings with regard
to round complexity, but not feasibility.



4 Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish

The symmetric-key setting is less appealing than the public-key setting. To
partially bridge the two we suggest that symmetric keys for deniable authenti-
cation can be established using a weak form of deniable key exchange termed
key exchange with incriminating abort (KEIA). Intuitively, KEIA guarantees
deniability as long as the protocol terminates successfully; once a shared key is
established, deniability is guaranteed even if corruptions occur at any later time.
If a malicious party aborts the protocol, however, this party may obtain some
incriminating evidence against the other party; all this proves, however, is that
the two parties attempted to establish a key. In light of our impossibility result,
realizing KEIA (and hence a weak form of deniable authentication) seems to be
a reasonable compromise.

As our third and most technically interesting feasibility result, we show how
to realize KEIA in the PKI model (without erasure) with respect to semi-
adaptive adversaries who corrupt parties either before or after (but not during)
an execution of the protocol.

Due to space constraints, this extended abstract discusses the proposed mod-
eling of online deniability and states our main results. Proofs, additional results,
and further discussions are deferred to the full version.

1.2 Previous Work in Relation to Our Own

Deniable authentication was formally introduced by Dwork, Naor, and Sahai [19]
(though it was also mentioned in [17]) and it, along with several extensions and
generalizations, has received significant attention since then [4, 31, 3, 19, 20, 18,
25, 28, 13, 15, 7, 26]. This prior work all assumes that only the sender has a public
key; thus, this work implicitly assumes that “guaranteed delivery” of messages
to a specific, intended recipient is possible, and/or that the sender is willing
to authenticate a given message for anyone. In such cases on-line deniability
does not make sense. Since we are specifically interested in on-line deniability,
we consider the setting where the receiver also has a public key. (This setting
was also considered in concurrent work done independently of our own [24, 32].)
Once the receiver holds a public key, the sender can meaningfully authenticate
a message for a particular receiver without being willing to authenticate the
message for all other parties.

As previously mentioned, our definition implies very strong notions of denia-
bility. In particular, our protocols remain secure under concurrent composition,
something that was an explicit goal of prior work [19, 20, 25, 13]. To the best of
our knowledge all prior constructions achieving concurrent security use timing
assumptions [19] which, though reasonable, seem preferable to avoid.3 Our pro-
tocols also remain secure when run concurrently with arbitrary other protocols,
something not addressed by previous work.

Designated-verifier proofs [23] and two-party ring signatures [30, 2] also pro-
vide authentication without non-repudiation. These primitives do not provide

3 It is not clear whether plugging a generic concurrent ZK proof [29] into any existing
deniable authentication protocol would yield a concurrently secure protocol. In any
case, this approach would yield protocols with very high round complexity [10].



Composability and On-Line Deniability of Authentication 5

deniable authentication, however, since they incriminate the sender S and re-
ceiver R jointly; that is, they do leave evidence that either S or R was involved in
authenticating some message. Deniable authentication, in contrast, does not im-
plicate either party. Similarly, although there has been extensive work construct-
ing and analyzing various deniable key-exchange protocols such as as SIGMA,
SKEME, and HMQV (see [14, 15]), none of these protocols meets our definition
of deniability. For example, SIGMA leaves a trace that the sender and receiver
communicated, even if it does not reveal exactly what message was authenti-
cated. (HMQV might satisfy our definition with respect to static adversaries,
though we have not verified the details. The HMQV protocol is not, however,
forward-secure unless erasure by honest parties is allowed).

2 Defining Deniable Authentication

In this section we define our notion of deniable authentication. We begin by giv-
ing a self-contained definition whose primary aim is to model on-line deniability.
Our definition is based on an interactive distinguisher, much like the “environ-
ment” in the UC framework. Indeed, we observe that a protocol satisfies our
definition if and only if it securely realizes the message authentication function-
ality Fauth in the GUC framework. This means that any protocol satisfying our
definition automatically inherits the strong composability guarantees of the UC
framework, and also provides some justification of the claim of Canetti et al. [7]
that the GUC-framework models deniability.

2.1 The Basic Definition

We start by introducing the relevant parties. We have a sender S who is presum-
ably sending a message m to a receiver R, a judge J who will eventually rule
whether or not the transmission was attempted, an informant I who witnesses
the message transmission and is trying to convince the judge, and a misinformant
M who did not witness any message transmission but still wants to convince
the judge that one occurred. Jumping ahead, a protocol is secure if the judge
is unable to distinguish whether it is talking to a true informant I (interacting
with S and R while they are running the protocol), or a misinformant M.

We assume the sender and receiver are part of a network environment that
includes some trusted parties (e.g., trusted setup like the PKI), some means of
communication between the sender and receiver (e.g., a direct unauthenticated
channel), and a direct, private channel between the judge and the informant
(or misinformant, depending on the setting). Intuitively, this on-line channel,
coupled with the fact that J cannot be “rewound”, is what guarantees on-line
deniability. Additionally, we assume that the judge does not have direct access
to the players (in particular, the judge does not know whether S really intends
to send a message, or whether R really received one); instead, the judge must
obtain information about the parties through the (mis)informant. However, the
judge J does have direct access to any global setup (for example, in the case of a



6 Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish

PKI it can reliably obtain the public keys of S and R), and so the misinformant
cannot necessarily lie arbitrarily without being caught. Both the informant I
and the misinformant M can adaptively corrupt either the sender S or the
receiver R at any time, and thereby learn the entire state of the corrupted
party (if this party has a public key, this state includes the corresponding secret
key). Additionally, once either S or R is corrupt the judge learns about the
corruption, and the (mis)informant can totally control the actions of this party
going forward. We assume the (mis)informant cannot corrupt the global setup;
for example, in the case of a PKI, the (mis)informant does not know the secret
keys of any uncorrupted party (but does know all the public keys). Finally, the
(mis)informant has partial control over the network: it can totally control all
unauthenticated links, and can block messages from authenticated links.

Roughly, a protocol π achieves on-line deniable authentication if for any ef-
ficient informant I, there exists an efficient misinformant M such that that
no efficient judge J can distinguish the following two experiments with non-
negligible probability.

1. Informant experiment. S and R run π in the presence of the informant
I (who in turn interacts with the judge J in an on-line manner). R informs
J upon accepting any message m′ as having been authenticated by S (the
message m′ need not be the same as the input to S if, say, S is corrupt and
ignores its input).

2. Misinformant experiment. S and R do nothing, and J only interacts
with the misinformant M. (Here, M is allowed to falsely inform J that R
accepted some arbitrary message m′ as having been authenticated by S.)

(See the full version for a precise definition.) As in the UC model, we can take
the informant I to be a “dummy” attacker who follows the instructions of the
judge and truthfully reports everything it sees.

2.2 Deniable Authentication in the GUC Framework

The ideal message authentication functionality Fauth (essentially from [5]) is
given in Figure 1. (In all our ideal functionalities, delivery of messages to parties
is scheduled by the adversary.) Fauth is “deniable” because, although the adver-
sary learns that a message transmission took place, the adversary is not provided
with any “evidence” of this fact that would convince a third party. Since Fauth

is deniable, we expect that a protocol π realizing Fauth (with respect to a suffi-
ciently strong notion of “realizing”) would be deniable as well. Such a claim is
not, however, immediate; in particular, recall that protocols realizing Fauth in
the UC framework are not necessarily deniable.

Thus, we turn instead to a recently-proposed extension to the UC framework
called generalized universal composability (GUC) [7] which enables direct mod-
eling of global setup. Canetti et al. claim [7], informally, that modeling global
setup in this way provides a means of capturing additional security concerns,
including deniability, within a UC-style security framework. We validate their
claim (at least in our context) via the following result:



Composability and On-Line Deniability of Authentication 7

Functionality Fauth

1. Upon receiving input (send, sid, m) from S, do: If sid = (S, R, sid′) for
some R, then give the message (sent, sid, m) to the adversary who then
schedules delivery to R. Else ignore the input.

2. Upon receiving (corruptsend, sid, m′) from the adversary, if S is cor-
rupt and no message (sent, sid, m) was yet output, then give the message
(sent, sid, m′) to the adversary who then schedules delivery to R.

Fig. 1. The message authentication functionality of [5].

Proposition 1. A protocol π achieves on-line deniable authentication if and
only if it realizes Fauth in the GUC framework.

In the full version of this paper we define notions of on-line deniability for
identification and key exchange, and show that protocols achieve these definitions
if and only if they realize appropriate functionalities in the GUC framework.

2.3 PKI Setup and Comparison with Prior Models

We model a PKI as a shared functionality Fkrk that enforces the following:
Honest parties register with a central authority who generates the public and
secret keys for them. Corrupt parties register an arbitrary, but consistent, pair of
public/secret keys with the authority. Note that the central registration authority
knows the secret keys of all parties (including the corrupt parties), and therefore
the model is referred to as “Key Registration with Knowledge” [1]. Clearly this
model is more involved than a “bare” PKI. The fact that we work in this model
only strengthens our impossibility results. Moreover, the bare PKI model does
not suffice for our feasibility results (cf. Proposition 2).

An additional requirement we impose is that honest parties protect their
secret keys by using them only in some specified authentication protocol Φ.
(Corrupt parties are allowed to use their keys in an arbitrary manner.) There are
several ways to model this requirement. For concreteness, we parameterize the
key-registration functionality with a description of Φ, and allow honest parties
to run Φ via calls to the key-registration functionality. (See Figure 2.) In a real
execution of the protocol, of course, honest parties will actually hold their secret
key and it is up to them to restrict its use.

Comparison to prior models of a PKI. Our PKI functionality is defined
similarly to that of [1]. However, unlike in [1], we restrict honest parties to only
use their secret keys with the protocol Φ, and a single instance of Fkrk persists
across multiple sessions. In the terminology of [7], Fkrk is a shared functionality
as opposed to a local one. The shared nature of the functionality implies, in
particular, that the environment has direct access to the public keys of all the
parties (as well as the secret keys of corrupted parties). Local setup, in contrast,
is not adequate for capturing deniability. As argued in [7], local setup is also
not satisfactory with regard to composition. Indeed, local modeling of the PKI



8 Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish

Shared Functionality FΦkrk

Parameterized by a security parameter λ, a protocol (or, more generally, a
list of protocols) Φ, and a (deterministic) key generation function Gen, shared
functionality Fkrk proceeds as follows when running with parties P1, . . . , Pn:

Registration: When receiving a message (register) from an honest party
Pi that has not previously registered, sample r ← {0, 1}λ then compute
(PK i,SK i)← Genλ(r) and record the tuple (Pi,PK i,SK i).

Corrupt Registration: When receiving a message (register, r) from
a corrupt party Pi that has not previously registered, compute
(PK i,SK i)← Genλ(r) and record the tuple (Pi,PK i,SK i).

Public Key Retrieval: When receiving a message (retrieve, Pi) from any
party Pj (where i = j is allowed), if there is a previously recorded tuple
of the form (Pi, PK i,SK i), then return (Pi,PK i) to Pj . Otherwise return
(Pi,⊥) to Pj .

Secret Key Retrieval: When receiving a message (retrievesecret, Pi)
from a party Pi that is either corrupt or honestly running the protocol code
for Φ, if there is a previously recorded tuple of the form (Pi,PK i,SK i)
then return (Pi,PK i,SK i) to Pi. In all other cases, return (Pi,⊥).

Fig. 2. The Φ-Key Registration with Knowledge shared functionality.

seemingly leaves two options: either a fresh instance of the PKI is required for
every execution of the protocol (which is impractical), or one must use the joint
UC (JUC) theorem [12]. Unfortunately, the latter option only guarantees security
under composition with a restricted class of protocols. Specifically, security is
not guaranteed under composition with protocols that may depend on honest
parties’ public keys. (We provide an example in the full version.)

2.4 Flavors of Protocols/Attackers

An adaptive attacker can corrupt parties before, during, and after execution of
a protocol. A static attacker can only corrupt parties before the beginning of
the protocol. A semi-adaptive attacker can corrupt parties before and after (but
not during) a protocol execution. Finally, a forward-secure attacker can only
corrupt the parties after the protocol. We will distinguish between the setting
where (honest) parties are assumed to be able to securely erase information, and
where they cannot. Erasures do not affect the model for static attackers, but are
meaningful for semi-adaptive, forward-secure, and fully adaptive attackers.

3 Impossibility Result

In this section we prove our main result: adaptively secure deniable authentica-
tion is impossible in the PKI model, even if erasures are allowed, and even if
each secret key is used only once. If secure erasure is not assumed, we can even
rule out forward security for deniable authentication.



Composability and On-Line Deniability of Authentication 9

Before stating the precise impossibility results, it is instructive to consider
some näıve strategies for ruling out adaptively secure on-line deniable authenti-
cation. At first, it appears that since the behavior of the sender S can be simu-
lated in a straight-line manner without its secret key SKS , there is an attacker
who can impersonate the sender to the recipient R (by running the simulator).
One of the reasons this does not work is that R might use its own secret key
SKR for verification. In particular, a simulated transcript might be easily distin-
guishable from a real transcript to R (since R can employ knowledge of SKR to
distinguish the transcript) but be indistinguishable from a real transcript to the
adversary. One “fix” to this problem is for the adversary to (adaptively) corrupt
R and then check the simulated transcript from R’s viewpoint. Unfortunately,
if R is corrupted too early (say, at the very beginning), it could be the case
that knowledge of R’s secret key is subsequently employed by the simulator in
order to simulate the proper transcript (without talking to S or obtaining SKS).
Notice that such a simulation does not contradict soundness since, in the real
world, R would know that he is not simulating the conversation with S. On the
other hand, if R is corrupted too late (say, at the very end), the initial flows
from the “then-honest” party R were also chosen by the simulator, so there is
no guarantee that they correspond to the behavior of a real R interacting with
the sender’s simulator.

In fact, a proof of the following theorem is more complicated and requires a
sequence of “hybrid arguments” where corruption of one of the parties is delayed
by one round each time. See the following section.

Theorem 1. There does not exist a protocol Π realizing the deniable authen-
tication functionality Fauthin the FΠ

krk-hybrid model with respect to adaptive
corruptions. Moreover, impossibility holds even under the following additional
assumptions/constraints:

• Secure data erasures are allowed.

• Each honest party P uses its secret key skP for only a single execution of
the protocol.

• The attacker A either impersonates a sender to a single honest receiver, or
impersonates a receiver to a single honest sender. (In particular, A does not
run a concurrent attack or a “man-in-the-middle attack” against an honest
sender and receiver.)

We also show how to extend the above impossibility result to rule out forward
security if erasures are not allowed.

Theorem 2. If data erasures are not allowed, it is impossible to realize Fauth in
the Fkrk-hybrid model with respect to forward security. Moreover, impossibility
holds even under the constraints of Theorem 1.

The results above can also be extended to rule out the possibility of realizing
deniable key exchange or identification.

Finally, we note that the “bare PKI” model (in which parties are allowed to
post public keys without necessarily knowing a corresponding secret key) is not



10 Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish

sufficient to realize deniable authentication at all, even with respect to security.
This seems to imply that key registration with knowledge is an unavoidable
requirement for deniability.

Proposition 2. It is impossible to realize the identification, authentication, or
key exchange functionalities in the bare public key model, even with respect to
static corruption.

3.1 Proof Sketch for Impossibility (Theorem 1)

At a high level, the proof is an inductive argument showing that each round of
the protocol either incriminates one of the parties, or can be simulated entirely
(from either side) without knowledge of any secret keys. Of course, if either party
can simulate the entire protocol without knowledge of any secret keys, it cannot
be sound (i.e., an attacker without S’s key can identify himself as S to R). Thus,
we show that either the protocol is not deniable, or it is not sound, contradicting
our security requirements. The difficult part of the proof is the inductive step,
which requires a delicate series of hybrid arguments. In particular, one must be
careful about the issues mentioned above involving the order of corruptions in
the various hybrids.

More formally, letΠ be any protocol for deniable identification using r = r(n)
rounds, and assume toward a contradiction that Π is adaptively secure. Without
loss of generality, we assume that the receiver goes first, and that the final
message of the protocol is sent by the sender. In particular, we let α1, α2, . . . , αr

denote the messages sent by the receiver R and β1, . . . , βr denote the response
messages sent by the sender S. For convenience, we let αr+1 denote the binary
decision bit of the receiver indicating whether or not R accepted. Throughout the
protocol, we denote the current state of the sender and the receiver by ωS and
ωR, respectively. This evolving state will include all the information currently
stored by the given party, except for its secret key. Because we allow erasures, the
current state does not include any information previously erased by this party.

We already stated that we only consider two kinds of attackers: sender im-
personator AS and receiver impersonator AR. The sender impersonator AS will
talk with an honest receiver R, while the receiver impersonator AR will talk to
an honest sender S. By assumption, there exists efficient simulators SimR and
SimS for AS and AR, respectively: the job of SimR is to simulate the behavior
of R when talking to AS , while the job of SimS is to simulate the behavior of
S when talking to AR. Moreover, the GUC security of Π implies that SimS

and SimR have to work given only oracle access to R and S, respectively.4 In
particular, this means that in each round 1 ≤ i ≤ r,

• As long as neither S nor R is corrupted, SimS (resp., SimR) will receive
some arbitrary message αi (resp., βi) and must generate a “good-looking”

4 This is because, without loss of generality, AS and AR are simply the dummy parties
forwarding the messages of the environment, and the simulator has to work for any
environment. In fact, this property follows whenever there is an external “judge” with
whom the adversary may interact when gathering evidence of protocol interactions.



Composability and On-Line Deniability of Authentication 11

response βi (resp., αi+1). Moreover, it must do so without knowledge of the
secret keys SKS and SKR, or any future messages αi+1, . . . (resp., βi+1, . . .).

• If S (resp. R) is corrupted, SimS (resp., SimR) will be given the secret SKS

(resp., SKR), and must then generate a “consistent-looking” internal state
ωS (resp., ωR) for the corresponding party at round i. The pair (SKS , ωS)
(resp., (SKR, ωR)) will then be given to the attacker and the environment.

From this description, we make our first key observation: as long as S and R

are not corrupted, it is within the power of our attackers AS and AR to in-
ternally run the simulators SimS and SimR, respectively. In particular, we can
make meaningful experiments where AS runs SimS against an honest receiver
R, or AR runs SimR against an honest sender S. Of course, a priori it is un-
clear what happens during these experiments, since SimS was only designed to
work against attackers AR who do not know SKR (as opposed to R itself, who
certainly knows it), and similarly for SimR. The bulk of the proof consists of
showing that such “unintended” usages of SimS and SimR nevertheless result in
the “expected” behavior. We give a sequence of hybrid experiments which show
that, without knowing the secret key of the sender, the simulator SimS can still
successfully imitate the sender to an honest receiver, contradicting the soundness
of identification. The details are given in the full version.

4 Circumventing the Impossibility Result

In this section, we discuss several positive results that circumvent the impossi-
bility result of the previous section. We exhibit:

• A 1-message deniable authentication protocol tolerating adaptive corrup-
tions, assuming a symmetric key infrastructure (i.e., a symmetric key shared
between the sender and receiver);

• A 1-message deniable authentication protocol tolerating static corruptions
in the PKI model;

• A 4-message protocol achieving a relaxed notion of deniable authentication,
dubbed incriminating abort, and tolerating semi-adaptive corruptions in the
PKI model. The protocol we give also satisfies the non-relaxed definition
with respect to a static adversary.

Key exchange and deniable authentication can be reduced to each other, and so
the results above also imply the feasibility of corresponding notions of deniable
key exchange.

The first two results above are quite simple, and mainly serve to illustrate
the gap between the simpler settings (symmetric keys and static corruptions)
and the more realistic setting of public keys and adaptive corruptions. The third
feasibility result is significantly more involved. We feel it represents an interesting
and reasonable compromise between realistic modeling and feasibility.

Deniability with symmetric keys. Suppose for a moment that players have
access to a symmetric key infrastructure; i.e., every pair of participants shares a
uniformly random long-term key that is unknown to other participants. Then S



12 Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish

can authenticate a message m to R by appending a MAC (message authentica-
tion code) tag computed on the input (sid, S,R,m), where sid is a fresh random
nonce. This is deniable roughly because the simulator for the protocol can make
up a key for every pair of communicating players, and generate tags using the
made-up key. In case of an adaptive corruption, the simulator can include the
made-up key in the corrupted player’s simulated memory contents.

This can be formalized in terms of the ideal functionalities Fauth and Fke.
The SKI corresponds to granting every player of players one-time use of Fke,
with key re-use modeled via the UC with joint state theorem [12]. The use
of a MAC shows that Fauth can be reduced to a one-time Fke. In fact, the
converse is also true: one can realize Fke by encrypting a key using a protocol
that is secure against adaptive but passive adversaries (known as non-committing
encryption [8]). The flows of this protocol can be authenticated using Fauth to
make it resistant to active attacks.

Lemma 1 (Fauth ⇐⇒ Fke). If one way functions exist, then there exists a
protocol that UC-realizes the natural multi-session extension of Fauth in the Fke

hybrid model, requiring only a single call to Fke. Conversely, if non-committing
encryption exists, then there exists a protocol that UC-realizes Fke in the Fauth-
hybrid model. These reduction hold even against adaptive adversaries.

Static security with a PKI. We now turn to the public-key model. For cer-
tain types of public keys, players can use a PKI to generate a symmetric key k
non-interactively. The idea of the protocol is then to use k to compute tags on
messages as above. The authenticity of the message is derived from the authenti-
cation inherent in the PKI. The non-interactive key generation is not adaptively
secure, and so the resulting protocols are only secure against static adversaries.

For example, suppose we operate in a cyclic groupG generated by a generator
g where the Decisional Diffie-Hellman (DDH) assumption holds. If each party
Pi has a secret key xi ∈ Zq and a public key yi = gxi , then Pi and Pj non-
interactively share a key k = gxixj = y

xj

i = yxi

j . Under the DDH asumption, k
looks like a random group element to an attacker who only knows the public keys
yi and yj . Either one of Pi or Pj can then use k as a MAC key to authenticate
messages to the other.

This type of key exchange is abstracted as non-interactive authenticated key
exchange. We model the PKI via the registered keys with knowledge functionality
FΦ

krk (Figure 2) described in Section 2. (Key knowledge is necessary even for
static security—see Proposition 2).

Theorem 3. Assuming the existence of non-interactive authenticated key ex-
change, there exists an efficient protocol Φ such that Fauth can be UC-realized
in the FΦ

krk-hybrid model with respect to static adversaries.

In contrast, the impossibility result of Section 3 rules out adaptively secure
GUC realizations. To the best of our knowledge, this is the first example of a
task that cannot be realized with respect to adaptive adversaries, but can be
achieved with respect to static adversaries.



Composability and On-Line Deniability of Authentication 13

4.1 Deniability with Incriminating Abort

Given the impossibility results of Section 3 and the possibility of PKI-based de-
niable authentication for static adversaries, it is natural to ask just how strong
a notion of deniability can be achieved in the public key setting. We show here
that one can guarantee deniability as long as (a) the protocol does not abort,
and (b) there is one round during which neither the sender S nor the receiver
R is adaptively corrupted. If the protocol aborts, the adversary can learn un-
simulatable information depending on the secret keys of S and R—potentially
enough to prove that one of them was trying to talk to the other. We call this
notion deniability with incriminating abort.

We refer to an adversary that makes no corruptions during some phase of
the protocol run as semi-adaptive. In particular, such an adversary will not
corrupt any players during the protocol’s single vulnerable round. However, the
restriction to semi-adaptive security is also necessary to make the notion of
abort meaningful: a fully adaptive adversary could always ensure that a protocol
does not abort by corrupting a party immediately before it complains. Semi-
adaptive security implies forward security; that is, a conversation that completes
successfully is later deniable even if parties are forced to reveal the contents of
their memories.

We phrase our results in terms of key exchange. This implies the correspond-
ing feasibility results for authentication. However, forward security is especially
meaningful for key exchange, because the protocol need only be run once, at
setup time, for every pair of participants. If the key exchange protocol succeeds
(with no adaptive corruption occurring during the protocol execution), then we
can still use adaptively secure protocols realized in the Fke-hybrid model, and
they will retain their adaptive security. In other words, the new protocol almost
represents a deniable realization of Fke: if we could somehow guarantee that the
protocol never aborts, then it would GUC-realize Fke.

Modeling incriminating abort. We model the PKI via a shared, “registered
keys with knowledge” functionality FΦ

krk (Figure 2), as in the protocols for static
adversaries. The key exchange with incriminating abort functionality Fkeia is
similar to Fke except that the ideal-model adversary may explicitly request the
protocol to abort, and in such a case the functionality will provide evidence that
one of S and R was trying to talk to the other. It would be intuitively appealing
to leak a single bit to the environment stating that a conversation occurred. We
do not know of a way to ensure such limited leakage, and besides this gives up
too much information: as we will see, our protocol only compromises deniability
if the protocol aborts and one of S or R is corrupted at a later time. Instead,
we parametrize Fkeia with an “incrimination procedure” IncProc. In the case of
an abort, F IncProc

keia
allows the adversary to interact with IncProc(SKS, ...), which

essentially represents the potentially non-simulatable flows of the protocol. If
the protocol doesn’t abort, then a fresh symmetric key is distributed to S and
R and nothing is leaked to the adversary. The functionality F IncProc

keia
is described

in Figure 3.



14 Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish

Functionality F IncProc

keia

Fkeia, which is parameterized by an “incrimination procedure” IncProc, and
a security parameter λ proceeds as follows, when running in the Fkrk-hybrid
model with parties S and R (who have already registered secret keys SKS and
SKR, respectively) and adversary S :

1. Upon receiving a message of the form (S, keyexchange, sid, S, R,SKS)
from party S, if there are no previous records, then record the value
(keyexchange, sid, S, R,SKS), mark S “active”, and a send public delayed
output (keyexchange, sid, S, R) to R. (Otherwise, ignore the message.)

2. Upon receiving a message of the form (R, keyexchange, sid, S, R,SKR)
from party R, if R is not yet “active”, mark R as “active” and send
a public delayed output (active, sid, S, R) to S. (Otherwise, ignore the
message.)

3. Upon receiving a message of the form (setkey, sid, S, R, k′) from S , if R

is corrupt and S is “active”, then output (setkey, sid, S, R, k′) to S and
R, and halt. If R is “active” but not corrupt, then sample a fresh key
k← {0, 1}λ and send the message (setkey, sid, S, R, k) to R. Furthermore,
if S is “active”, then send the delayed message (setkey, sid, S, R, k) to S as
well. In all cases, this completes the protocol, and the functionality halts.

4. Upon receiving a message of the form (abort, sid, S, R) from S , if S is
“active”, send (abort, sid, S, R) as a delayed message to S and mark S

“aborted”. If R is “active”, send (abort, sid, S, R) as a delayed message
to R (i.e., S need not notify either party that the protocol was aborted,
and may still cause R to output a key using a setkey message, but cannot
cause S to output a key once an abort has occurred).

5. Upon receiving a message of the form (incriminate, sid, S) from S , if this
is the first time receiving such a message and S is currently “aborted” and
honest, then run the procedure IncProc(sid, S, R,PKS, PKR,SKS).

Fig. 3. The ideal functionality for Key Exchange with Incriminating Abort, parame-
terized by an incrimination procedure IncProc which runs only if the key exchange is
aborted by the adversary.

The incrimination procedure may at first be hard to interpret, and so we
highlight some properties of protocols that realize F IncProc

keia
. First, if no abort oc-

curs then the ideal protocol is forward secure, since the symmetric key is random
and unconnected to other quantities in the protocol. Hence, if a protocol π GUC-
realizes F IncProc

keia
for any procedure IncProc then π is forward-secure. Second, if

an abort does occur and the adversary learns information, this information de-
pends only on the sender’s secret key and public information. Because secret
keys are useless in the ideal model, this has no impact on the security of other
protocols. In particular, the incrimination information cannot be used to fake
authenticated messages in other conversations, or to convince the environment
that S talked to anyone other than R. This last observation implies that not all
incrimination oracles can be realized by real protocols: for example, if IncProc

gives away the sender’s secret key, then a real adversary would subsequently be
able to fake arbitrary messages from the sender to other parties, contradicting



Composability and On-Line Deniability of Authentication 15

the indistinguishability from the ideal model. We prove below that there exists
a procedure IncProc for which F IncProc

keia
can, in fact, be realized.

Construction. At the core of our constructions for realizing Fkeia is a chosen-
ciphertext (CCA) secure variant of Dual Receiver Encryption (DRE) [16]. DRE
allows anyone to encrypt a message to two parties with a single ciphertext,
with the guarantee that attempts to decrypt a ciphertext by either of the two
recipients will produce the same result. In our protocol, this means that certain
actions can be simulated using either S or R’s secret key. We formally define
CCA-secure DRE in the full version, and describe a DRE scheme that is similar
to the plaintext-aware encryption of [22]. Our protocol also uses a 2-round non-
committing encryption (NCE) scheme [8].

Our 4-message protocol for realizing F IncProc

keia
is summarized in Figure 4. Intu-

itively, the incrimination procedure IncProc will expect the adversary to supply a
ciphertext that matches the form of the second flow (ψ1) in the protocol below,
and will then use S’s secret key to decrypt ψ1 and compute a corresponding
third flow (ψ2). The incrimination procedure hands ψ2 to the adversary, along
with the random coins used by a non-committing encryption scheme.

Notably, although we only realize F IncProc

keia
against a semi-adaptive adversary,

the same protocol is also a statically secure realization of Fke. Therefore, we
have achieved a strictly stronger notion of security than that achieved by the
one-message protocol using NI-AKE and MACs, or HMQV. Honest parties are
always guaranteed complete deniability when the protocol succeeds, and even if
the protocol aborts, deniability is maintained until some future corruption of a
party occurs. It is an open question whether this notion of deniability can be
further improved upon.

Theorem 4. Assuming the existence of dual-receiver and non-committing en-
cryption, the protocol Φdre in Figure 4

1. realizes F IncProcdre

keia
in the FΦdre

krk -hybrid model with semi-adaptive security, for
a suitable procedure IncProcdre (defined in the full version); and

2. realizes Fke in the FΦdre

krk -hybrid model with static security.

Moreover, the output of IncProcdre can be simulated using the secret key of R
instead of S.

As mentioned above, realizing F IncProc

keia
is meaningful for any procedure IncProc.

However, the particular incrimination procedure of IncProc has additional prop-
erties. First, it can be faked without knowing either secret key, and the fake
distribution is indistinguishable from the real one to a distinguisher who knows
neither key. Second, it can be simulated exactly using either of the secret keys.
These properties together mean that Φdre is statically secure (as stated in the
theorem) and that even in the case of an abort with a subsequent corruption, it
is only possible to incriminate one of the pair {S,R}, and not S specifically.



16 Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish

S R
keyexchange

0
,sid,S,R

//

ψ1=DREnc(PKS ,PKR,〈sid,ηR〉)
oo ηR ← {0, 1}λ

(pk, sk)← NCGen()

ηS ← {0, 1}λ
ψ2=DREnc(PKS,PKR,〈sid,ηR,ηS ,pk〉)

//

k← NCDec(sk, γ)
ψ3=DREnc(PKS,PKR,〈sid,ηS ,γ〉)

oo
k← {0, 1}λ

γ ← NCEnc(pk, k)

Fig. 4. A graphical illustration of Protocol Φdre for realizing Fkeia. S and R check
consistency of each flow immediately upon receiving it; if the flow is not consistent,
the protocol is aborted. Notation: (Gen, DREnc, DRDec) is a Dual Receiver Encryption
scheme and (NCGen, NCEnc, NCDec, NCSim, NCEqv) is a Non-Committing Encryption
scheme (see full version).

References

1. B. Barak, R. Canetti, J. Nielsen, and R. Pass. Universally composable proto-
cols with relaxed set-up assumptions. In FOCS, pages 186–195. IEEE Computer
Society, 2004.

2. A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. In 3rd Theory of Cryptography Conference,
volume 3876 of LNCS, pages 60–79. Springer, 2006.

3. N. Borisov, I. Goldberg, and E. Brewer. Off-the-record communication, or, why
not to use PGP. In WPES, pages 77–84. ACM, 2004.

4. C. Boyd, W. Mao, and K. Paterson. Deniable authenticated key establishment for
internet protocols. In Security Protocols Workshop, volume 3364 of LNCS, pages
255–271. Springer, 2003.

5. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145. IEEE Computer Society, 2001.

6. R. Canetti. Universally composable signatures, certification, and authentication.
In Computer Security Foundations Workshop, pages 219–235. IEEE Computer So-
ciety, 2004.

7. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security
with global setup. In TCC, volume 4392 of LNCS, pages 61–85. Springer, 2007.

8. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party
computation. In STOC, pages 639–648. ACM, 1996.

9. R. Canetti and M. Fischlin. Universally composable commitments. In Advances

in Cryptology — Crypto 2001, volume 2139 of LNCS, pages 19–40. Springer, 2001.
10. R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-box concurrent zero-

knowledge requires (almost) logarithmically many rounds. SIAM J. Computing,
32(1):1–47, 2002.

11. R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. J. Cryptology,
19(2):135–167, 2006.

12. R. Canetti and T. Rabin. Universal composition with joint state. In Advances in

Cryptology — Crypto 2003, volume 2729 of LNCS, pages 265–281. Springer, 2003.



Composability and On-Line Deniability of Authentication 17

13. M. Di Raimondo and R. Gennaro. New approaches for deniable authentication. In
ACM Conf. Computer and Communications Security, pages 112–121. ACM, 2005.

14. M. Di Raimondo, R. Gennaro, and H. Krawczyk. Secure off-the-record messaging.
In WPES, pages 81–89. ACM, 2005.

15. M. Di Raimondo, R. Gennaro, and H. Krawczyk. Deniable authentication and key
exchange. In ACM Conf. Computer and Communications Security, pages 400–409.
ACM, 2006.

16. T. Diament, H. K. Lee, A. D. Keromytis, and M. Yung. The dual receiver cryp-
tosystem and its applications. In ACM Conf. Computer and Communications

Security, pages 330–343. ACM, 2004.
17. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. Com-

puting, 30(2):391–437, 2000.
18. C. Dwork and M. Naor. Zaps and their applications. SIAM J. Computing,

36(6):1513–1543, 2007.
19. C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. J. ACM, 51(6):851–

898, 2004.
20. C. Dwork and A. Sahai. Concurrent zero-knowledge: Reducing the need for timing

constraints. In Advances in Cryptology — Crypto ’98, volume 1462 of LNCS, pages
442–457. Springer, 1998. Full version available from the second author’s webpage.

21. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Computing, 18(1):186–208, 1989.

22. J. Herzog, M. Liskov, and S. Micali. Plaintext awareness via key registration. In
Adv. in Cryptology — Crypto 2003, volume 2729 of LNCS, pages 548–564, 2003.

23. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their
applications. In Advances in Cryptology — Eurocrypt ’96, volume 1070 of LNCS,
pages 143–154. Springer, 1996.

24. S. Jiang. Deniable authentication on the internet. Cryptology ePrint Archive,
Report 2007/082, 2007. http://eprint.iacr.org/.

25. J. Katz. Efficient and non-malleable proofs of plaintext knowledge and applications.
In Advances in Cryptology — Eurocrypt 2003, volume 2656 of LNCS, pages 211–
228. Springer, 2003.

26. M.-H. Lim, S. Lee, Y. Park, and S. Moon. Secure deniable authenticated key
establishment for internet protocols. Cryptology ePrint Archive, Report 2007/163,
2007. http://eprint.iacr.org/.

27. J. Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In Advances in Cryptology — Crypto 2002,
volume 2442 of LNCS, pages 111–126. Springer, 2002.

28. R. Pass. On deniability in the common reference string and random oracle model.
In Advances in Cryptology — Crypto 2003, volume 2729 of LNCS, pages 316–337.
Springer, 2003.

29. R. Richardson and J. Kilian. On the concurrent composition of zero-knowledge
proofs. In Advances in Cryptology — Eurocrypt ’99, volume 1592 of LNCS, pages
415–431. Springer, 1999.

30. R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Advances in

Cryptology — Asiacrypt 2001, volume 2248 of LNCS, pages 552–565. Springer,
2001.

31. W. Susilo and Y. Mu. Non-interactive deniable ring authentication. In ICISC,
volume 2971 of LNCS, pages 386–401. Springer, 2003.

32. A. C.-C. Yao, F. Yao, Y. Zhao, and B. Zhu. Deniable internet key-exchange.
Cryptology ePrint Archive, Report 2007/191, 2007. http://eprint.iacr.org/.


