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Abstract

Broadcast amongn parties in the presence oft ≥ n/3
malicious parties is possible only with some additional
setup. The most common setup considered is the existence
of a PKI and secure digital signatures, where so-calledau-
thenticatedbroadcast is achievable for anyt < n.

It is known thatt + 1 rounds are necessary and suf-
ficient for deterministicprotocols achieving authenticated
broadcast. Recently, however,randomizedprotocols run-
ning in expectedconstantrounds have been shown for the
case oft < n/2. It has remained open whether random-
ization can improve the round complexity when an honest
majority is not present. We address this question and show
upper/ lower bounds on how much randomization can help:

• For t ≤ n/2 + k, we show a randomized broadcast
protocol that runs in expectedO(k2) rounds. In par-
ticular, we obtain expected constant-round protocols
for t = n/2 +O(1).

• On the negative side, we show that even randomized
protocols requireΩ(2n/(n−t)) rounds. This in partic-
ular rules out expected constant-round protocols when
the fraction of honest parties is sub-constant.

1. Introduction

Designing protocols for simulating a broadcast channel
over a point-to-point network in the presence of faults is
a fundamental problem in distributed computing and cryp-
tography. Much work has focused both on characterizing

∗A portion of this work was done while the authors were visiting the
Institute for Pure and Applied Mathematics (IPAM), UCLA.

†Bell Labs, Alcatel-Lucent. E-mail:garay@research.bell-
labs.com.

‡Dept. of Computer Science, University of Maryland. E-mail:
{jkatz,cykoo}@cs.umd.edu. Work of J.K. supported in part by
NSF CAREER award #0447075 and US-Israel Binational ScienceFoun-
dation grant #2004240.

§Depts. of Computer Science and Mathematics, UCLA. E-mail:
rafail@cs.ucla.edu. Work supported in part by an IBM Faculty
Award, a Xerox Innovation Group Award, NSF Cybertrust grant#0430254,
and a U.C. MICRO grant.

the feasibility of protocols for solving the problem in dif-
ferent settings, as well as on the inherentround complexity
of such protocols. In a synchronous network with pairwise
authenticated channels and no additional setup, the classi-
cal results of Pease, Shostak, and Lamport [24, 29] show
that broadcast amongn parties is achievable if and only if
the number of malicious partiest satisfiest < n/3. In this
setting, a lower bound oft + 1 rounds for any deterministic
protocol is known [16]. A protocol with this round com-
plexity — but with exponential message complexity — was
shown in the initial work by Pease et al. [24, 29]. Follow-
ing a long sequence of works [9, 1, 33, 12, 26, 5, 4], Garay
and Moses [19] showed a deterministic, polynomial-time
Byzantine agreement protocol having optimal resilience
t < n/3 and optimal round complexityt + 1.

To circumvent the above-mentioned lower bound on the
round complexity (as well as impossibility results for asyn-
chronous networks [15]), researchers beginning with Ra-
bin [31] and Ben-Or [2] explored the use ofrandomization.
(See [7] for an early survey on the subject.) This culmi-
nated in the work of Feldman and Micali [14], who showed
a broadcast protocol with optimal resilience that runs in ex-
pected constant rounds.1

To achieve resiliencet ≥ n/3, additional assumptions
are needed even if randomization is used. The most com-
mon assumptions are the existence of digital signatures and
the presence of a public-key infrastructure (PKI) established
among then parties in the network; this is referred to as
the authenticatedsetting. Pease et al. [29, 24] showed
an authenticated broadcast protocol for anyt < n, and
a polynomial-time protocol achieving this resilience was
given by Dolev and Strong [13].

The (t + 1)-round lower bound for deterministic proto-
cols holds in the authenticated setting as well [13], and the
known protocols [29, 24, 13] meet this bound. Randomized
protocols running in expected constant rounds fort < n/2
have been shown by Fitzi and Garay [17] (based on [6, 28])
under specific number-theoretic assumptions, and by Katz
and Koo [23] based on signatures and a PKI alone.

When an honest majority isnot available (i.e.,t ≥ n/2),

1The Feldman-Micali protocol requires private channels. Goldwasser
et al. [21] show a broadcast protocol fort ≤ n/(3+ǫ) that runs in expected
O(log n) rounds and does not require private channels.



there has been no progress since the initial work of [29,
24, 13] on improving the round complexity of authenticated
broadcast.2 Besides being an interesting and fundamental
problem in its own right, authenticated broadcast is often
used as a sub-routine within larger protocols that are de-
signed and analyzed using the abstraction that a broadcast
channel exists. For the specific case of secure multi-party
computation with a dishonest majority, we remark that al-
though meaningful security notions can be achieved even
without broadcast [20], and fairness cannot be achieved
even with broadcast [8], there are still advantages to hav-
ing broadcast available. Specifically, broadcast can be used
to achieveunanimous abort[20], or partial notions of fair-
ness [18, 22]. In contrast, the constant-round “broadcast-
with-abort” protocol of [20] does not appear to suffice for
such applications.

Our contributions. In this paper we make the first progress
toward characterizing when randomized protocols can beat
the(t + 1)-round barrier fort ≥ n/2.

• We show a randomized broadcast protocol tolerating
t ≤ n/2 + k malicious parties that terminates in an
expectedO(k2) rounds. This is an improvement over
existing state of the art fort = n/2 + o(

√
n), and

gives an expected constant-round protocol whent =
n/2 +O(1).

• We show that no randomized broadcast protocol toler-
atingt malicious parties terminates in2n/(n−t)−2 or
fewer rounds. This in particular means that when the
fraction of honest parties is sub-constant, it is impos-
sible to obtain protocols with expected constant round
complexity. It also implies that the Dolev-Strong pro-
tocol [13] has optimal round complexity (to within a
constant factor) whent = n−O(1).

Organization. In Section 2.1, we describe our model and
give the standard definitions of broadcast and Byzantine
agreement. We present the technical tools we use in Sec-
tion 2.2; these include a generalization of gradecast [14]
that may be of independent interest. We present our new
broadcast protocol in Section 3, and prove our impossibility
result in Section 4. Some proofs are deferred to the Ap-
pendix.

2. Preliminaries

2.1. Model and Definitions

We assume a standard point-to-point network in which
partiesP1, P2, . . . , Pn communicate in synchronous rounds

2The techniques used fort < n/2 do not immediately translate to the
case oft ≥ n/2: a key building block in the former setting isverifiable
secret sharing, which is not even feasible in the latter setting.

using pairwise private and authenticated channels. When
we say a protocol toleratest dishonest parties, we always
mean that it is secure against arushingadversary who may
adaptivelycorrupt up tot parties during execution of the
protocol and coordinate the actions of these parties as they
deviate from the protocol in an arbitrary manner.3 Parties
not corrupted by the adversary are calledhonest.

The existence of a PKI means that prior to execution of
the protocol all parties hold the same vector(pk1, . . . , pkn)
of public keys for a digital signature scheme, and each hon-
est partyPi holds the honestly generated secret keyski as-
sociated withpki. When we describe signature computation
in our protocols, we omit for simplicity certain additional
information that should be signed along with the message.
That is, when we say that partyPi signs messagem and
sends it toPj , we implicitly mean thatPi signs the con-
catenation ofm with additional information such as: (1) the
identity of the recipientPj , (2) the current round number,
(3) an identifier for the message (in case multiple messages
are sent toPj in the same round); and (4) an identifier for
the particular (sub-)protocol to whichm belongs (in case
multiple sub-protocols are being run; cf. [25]). This infor-
mation is also verified, as appropriate, when the signature is
verified.

We assume in our proofs that the adversary cannot forge
valid signatures on behalf of honest parties. Using a stan-
dard hybrid argument and assuming the existence of one-
way functions [27, 32], this implies that our protocols
are secure against any computationally-bounded adversary.
(Alternately, if stronger setup is assumed then information-
theoretic pseudo-signatures [30] can be used.)

We now give the standard definition of broadcast [24].

Definition 1 (Broadcast). A protocol for partiesP =
{P1, . . . , Pn}, where a distinguished senderP ∗ ∈ P holds
an initial inputm, is abroadcast protocol toleratingt mali-
cious partiesif the following conditions hold for any adver-
sary controlling at mostt parties:

Agreement: All honest parties output the same value.

Validity: If the sender is honest, then all honest parties
outputm. ♦

We will also rely on protocols for the related task ofByzan-
tine agreement(BA). Here, each party holds an initial input:
the agreement condition remains the same as above; validity
requires that if all honest parties hold initial inputm, then
all honest parties will outputm. Note that BA is impossible
to achieve fort ≥ n/2 (in any setting).

3A rushingadversary waits until it receives messages from all honest
parties in a given round before sending any messages of its own for that
round.Adaptivecorruption means that the adversary is allowed to corrupt
parties on the fly, as opposed to deciding which parties to corrupt before
execution of the protocol begins.



2.2. Tools

We describe two technical tools we use to construct our
randomized broadcast protocol.

BA in expected constant rounds fort < n/2. The work
of Katz and Koo [23] gives an authenticated BA protocol
BAHonestMaj tolerating anyt < n/2 malicious parties and
running in expected constant rounds. ProtocolBAHonestMaj

satisfies the following stronger property that we will rely on
in the present work:

Lemma 1. If h > n/2 honest parties startBAHonestMaj with
the same input, then all honest parties terminate protocol
BAHonestMaj in exactlyK rounds for some constantK.

Gradecast.Gradecast, a generalization ofcrusader agree-
ment[11], was introduced by Feldman and Micali [14]. As
opposed to broadcast, where the honest parties are required
to reach a unanimous decision, in gradecast the honest par-
ties are allowed to disagree by “a small amount”. Specif-
ically, parties now output agradealong with their output
value; the grade output by a party can be viewed as the
“confidence” of this party in the sender. The gradecast pro-
tocol given by Feldman and Micali supports the three grades
{0, 1, 2}, and runs in three rounds. Here, we generalize their
protocol to the case of an arbitrary number of grades. We
first present the definition:

Definition 2 (Gradecast with multiple grades). A protocol
for partiesP = {P1, . . . , Pn}, whereP ∗ ∈ P holds an
initial input m, is ag∗-gradecast protocol(toleratingn− 1
malicious parties) if the following conditions hold for any
adversary controlling any number of parties:

Functionality: An honest partyPi outputs a message
mi and a gradegi ∈ {0, 1, . . . , g∗}.

Correctness: If the sender is honest, thenmi = m and
gi = g∗ for all honest partiesPi.

Soundness:Let Pi, Pj be any two honest parties. If
gi ≥ 2, thenmj = mi andgj ≥ gi−1. If gi = 1, then
mj = mi or gj = 0. ♦

A similar primitive called “proxcast” was defined and
constructed by Considine et al. [10]. Our construction dif-
fers from theirs in two ways. First, our construction is in
the authenticated setting while theirs relies on the existence
of “k-cast channels”. Second, our protocol can tolerate any
number of dishonest parties, while theirs only tolerates a
constant fraction (the exact constant depends on the value
of k) of malicious participants.

We now demonstrate a construction ofg∗-gradecast
for any value g∗. Specifically, we define a protocol
M-Gradecast(m, g∗) wherem represents the initial value
of the sender andg∗ denotes the maximum supported grade.

In the description that follows, each partyPi starts with in-
ternal variables̄gi, Si, andmi initialized to 0, the empty set,
and⊥, respectively.

ProtocolM-Gradecast(m, g∗)

Round 1: The sender computes a signatureσ on m and
sends(m, σ) to all parties.

Round 2 to Round 2g∗ + 1:
Step (a) Each partyPi does as follows: For each tu-

ple (m′, σ′) received by the end of the previous
round, ifσ′ is a valid signature by the sender on
m′ andm′ /∈ Si, then:

• SetSi := Si ∪ {m′}. If |Si| = 1, then set
mi := m′.
• Pi sends(m′, σ′) to all other parties.

Step (b) If (mi 6=⊥) and (|Si| = 1) then set̄gi :=
ḡi + 1.

Output determination : Each partyPi setsgi := ⌊ḡi/2⌋
and outputs(mi, gi).

Lemma 2. ProtocolM-Gradecast(·, g∗) is a g∗-gradecast
protocol with round complexity2g∗ + 1.

The proof is given in the Appendix.

3. Randomized Broadcast Protocols for Dis-
honest Majority

As a warm-up, we first construct an expected constant-
round broadcast protocol for the special case oft = n/2
(andn even) before dealing with the more general case.

3.1. The Case t = n/2

The main idea here is as follows: in the first phase, the
sender will gradecast its inputm. If the sender is honest,
this gradecast is already enough to implement broadcast; on
the other hand, if the other parties catch the sender cheating
then they can exclude the sender and determine their output
by executingBAHonestMaj. The key point is that in the latter
case, assumingt = n/2 to begin with, anhonest majorityis
present once the dishonest dealer is excluded. (Variants of
this idea — i.e., executing a protocol until either something
good happens or some dishonest parties can be excluded —
have been used in prior work on Byzantine agreement [1,
26, 5, 19].) Of course, we need to handle the scenario where
some parties believe the sender is honest while other parties
catch the sender cheating; this can be done using the grades
obtained in the initial gradecast. We now provide a formal
description of the protocol:



Phase I P ∗, who holds inputm, acts as the sender in an
execution ofM-Gradecast(m, 2), outputsm, and then
exits the protocol. Let(mi, gi) denote the output ofPi

in this step.

Phase II All parties exceptP ∗ (who has already exited the
protocol) runBAHonestMajin the following way:

• If gi = 2, thenPi enters protocolBAHonestMaj with
input mi, terminatesBAHonestMaj afterK rounds
(whereK is the constant from Lemma 1), and
outputsmi. We stress thatPi outputsmi regard-
less of the output (if any) of protocolBAHonestMaj.

• Otherwise (i.e.,gi < 2), Pi enters protocol
BAHonestMaj with inputmi, runsBAHonestMaj until
successful termination of the protocol, and out-
puts whatever directed to byBAHonestMaj.

We now argue that the above protocol achieves broad-
cast for t = n/2 in expected constant rounds. If the
sender is honest then, by the correctness property of
M-Gradecast(m, 2), each honest partyPi outputs(mi =
m, gi = 2) in Phase I and thus, in Phase II, outputsmi = m
after executingBAHonestMaj for exactlyK rounds. As the
round complexity of Phase I is constant, the entire protocol
runs for a strict constant number of rounds.

If the sender is dishonest, then protocolBAHonestMajis run
with an honest majority. There are two sub-cases to con-
sider. The first sub-case is that there exists an honest party
Pi whose output in Phase I is(mi, gi = 2). Then by the
soundness property ofM-Gradecast(m, 2), all honest par-
tiesPj havemj = mi. Hence all honest parties enter proto-
col BAHonestMajholding the same inputmi, and the protocol
BAHonestMajterminates afterK rounds with each honest party
Pj outputtingmi, regardless of the gradegj it output in the
first step. The second sub-case is when all honest parties
output a grade less than 2 in Phase I. Then all honest parties
run BAHonestMaj until termination, and so all honest parties
output the same value in expected constant rounds.

3.2. The Case t ≤ n/2 + k

In this section we construct a broadcast protocol
Rand-Bcast for t ≤ n/2 + k that runs in expectedO(k2)
rounds. For simplicity, we assumen is even and sot =
n/2 + k. (Everything that follows works also forn odd,

though things can be optimized somewhat.) Setc
def
= 2k;

this is equal to the difference between the number of dishon-
est parties and the number of honest parties. Without loss of
generality, letP1 be the sender.Rand-Bcast consists of two
phases: Phase I takes exactlyO(c2) rounds, while Phase II
runs forO(1) rounds in expectation. At the end of Phase I,

each party inInit
def
= {P1, . . . , Pc+1} outputs a message,

which will be its final output for the entire protocol, while

each partyPi in Rem
def
= {Pc+2, . . . , Pn} outputs a tuple of

the form {(mi,1, gi,1), (mi,2, gi,2), . . . , (mi,c+1, gi,c+1)}.
In the second phase, parties inRem = {Pc+2, . . . , Pn}
determine their outputs using the output they obtained in
Phase I. Parties inInit = {P1, . . . , Pc+1} do not take part
in Phase II.

Phase I is based on the authenticated broadcast proto-
col of Dolev and Strong [13] which tolerates anyt < n
dishonest parties and has the property that, in each round,
honest parties send the same message to all other parties.
Roughly speaking, partiesP1, . . . , Pc+1 will execute the
Dolev-Strong protocol with the following twist: whenever a
partyPi (in the Dolev-Strong protocol) is supposed to send
a message to every other party in{P1, . . . , Pc+1}, partyPi

insteadgradecaststhe messageto all n parties in the net-
work using protocolM-Gradecast from Section 2.2. This
has the effect of allowing partiesPc+2, . . . , Pn to “moni-
tor” the execution of the Dolev-Strong protocol being run
by partiesP1, . . . , Pc+1.

The Dolev-Strong protocol guarantees that broad-
cast is achieved amongP1, . . . , Pc+1 at the end of
Phase I. As mentioned earlier, each remaining party
Pi ∈ {Pc+2, . . . , Pn} outputs{(mi,1, gi,1), (mi,2, gi,2),
. . . , (mi,c+1, gi,c+1)} based on the messages and grades it
received in Phase I. Informally,mi,k is the message thatPi

“believes”Pk will output, with gi,k indicating the level of
“confidence”Pi has in this determination. In particular, if
Pk is honest thenmi,k will be equal to the message out-
put by Pk and gi,k will be the maximum possible grade.
Furthermore, based on the properties ofM-Gradecast, a
relaxed form of agreement is achieved among the remain-
ing parties. Specifically, for any honest partiesPi, Pj ∈
{Pc+2, . . . , Pn} andk ∈ {1, . . . , c + 1} we have:

• If gi,k > 1, thenmi,k = mj,k andgj,k ≥ gi,k − 1.

• If gi,k = 1, thenmi,k = mj,k or gj,k = 0.

Therefore, although the remaining honest parties may not
reach a unanimous decision whenPk is dishonest, the
remaining honest parties will only disagree by “a small
amount”.

In Phase II, each remaining partyPi first locally
“combines” its output {(mi,1, gi,1), (mi,2, gi,2), . . .,
(mi,c+1, gi,c+1)} into a single message/grade pair(mi, gi),
with gi ∈ {0, 1, 2}, such that the following hold for all hon-
est partiesPi, Pj ∈ {Pc+2, . . . , Pn}:

• If there exists an honest partyPk ∈ {P1, . . . , Pc+1},
thenmi is equal to the message output byPk, andgi =
2 (the maximum possible grade).

• If gi = 2, thenmi = mj andgj ≥ 1.

Finally, partiesPc+2, . . . , Pn determine their final output as
in Phase II of the broadcast protocol fort = n/2 described



earlier. The key observation is that if there exists even a
single honest partyPk ∈ {P1, . . . , Pc+1}, then for every
honest partyPi ∈ {Pc+2, . . . , Pn} it holds thatmi = mk

(wheremk is the output ofPk) andgi = 2; otherwise (i.e.,
if P1, . . . , Pc+1 are all dishonest), a majority of the remain-
ing parties are honest, and so they can rely on the output
of BAHonestMaj.

Gradecast is also used as a building block in the (ex-
pected) sub-linear broadcast protocols of [14, 23, 3, 21]. In
these works, gradecast is used to replace the broadcast chan-
nel in various sub-protocols that are run among alln parties
in the network; these sub-protocols achieve some relaxed
functionality that suffices for achieving broadcast. Here,we
use gradecast in a different way, by having a smallsubsetof
the parties run some sub-protocol while gradecasting their
messages to all parties in the network.

We now describe the two phases of the protocol in more
detail, and prove the protocol’s correctness.

3.2.1 Phase I

Setg∗
def
= 2⌈log(c+1)⌉+1 + 2⌈log(c+1)⌉ − 1.4 Recall that we

assume, without loss of generality, thatP1 is the sender.

Let Init
def
= {P1, . . . , Pc+1} (these are the parties who

run the Dolev-Strong protocol in theinitial phase) and let

Rem
def
= {Pc+2, . . . , Pn} (these are the parties whoremain

in the second phase). Each partyPi ∈ Init\{P1} has a vari-
ableMi initialized to the empty set; each partyPi ∈ Rem

has variablesgi,1, . . . , gi,c+1 all initialized tog∗, and vari-
ablesMi,1, . . . , Mi,c+1 all initialized to the empty set.

Roughly speaking, when a partyPi ∈ Init\{P1} receives
a new message that originated fromP1 (with correct signa-
tures attached), then as long as|Mi| < 2 it signs and grade-
casts the received message, and adds the message toMi.
However,Pi stops adding new messages once|Mi| = 2,
as this meansPi has received valid signatures of the sender
on two different messages (and soPi knows the sender is
dishonest). EachPi determines its output based on the con-
tents ofMi at the end of Phase I.

Each partyPi ∈ Rem acts as follows: every time it
hearsPj ∈ Init gradecast a new message that originated
from P1 (with correct signatures attached), then as long as
|Mi,j| < 2 it adds the message toMi,j and updatesgi,j

based on the grade it received in the aforementioned execu-
tion of gradecast. At the end of Phase I,Pi determinesMi,j

(i.e., its determination as to whatPj will output) based on
the contents ofMi,j .

4Jumping ahead, the reasong∗ is set to this particular value is related
to the second phase of the protocol. In Phase II, the parties will combine
c+1 message/grade pairs into a single message/grade pair in a sequence of
log(c+1) steps. In each step, the maximum possible grade will be reduced
by half, and we setg∗ to this particular value so that the final grade will lie
between 0 and 2.

ProtocolRand-Bcast — Phase I
Step 1: P1 computes a signatureσ of m, runs
M-Gradecast((m, σ, P1), g

∗), outputsm, and exits the pro-
tocol.

Stepj, for 2 ≤ j ≤ c + 2:

1. EachPi does the following: For each gradecast per-
formed in the previous step, let(m′

i,ℓ, g
′
i,ℓ) be the local

output (of partyPi) of an invocation ofM-Gradecast
with Pℓ ∈ Init as the sender. (Note: eachPℓ may
gradecast multiple times in a given step. The output of
each gradecast is handled separately.) Letm′

i,ℓ have
the form (m, σα0

, P1, σα1
, Pα1

, . . . , σαj−2
, Pαj−2

=
Pℓ).

If P1, Pα1
, . . . , Pαj−2

∈ Init are all unique;σα0
is a

valid signature onm by P1; andσαk
is a valid signa-

ture onσαk−1
by Pαk

for 1 ≤ k ≤ j − 2 (if all these
conditions hold, we saym′

i,ℓ is valid in stepj), then:

Case 1:Pi ∈ Init \ {P1}. If j < c + 2, m /∈ Mi

and |Mi| < 2, then: setMi := Mi ∪ {m};
compute a signatureσαj−1

on σαj−2
; and run

M-Gradecast((m′
i,ℓ, σαj−1

, Pi), g
∗).

Case 2:Pi ∈ Rem. Set gi,ℓ := min{gi,ℓ, g
′
i,ℓ}. If

m /∈ Mi,ℓ and |Mi,ℓ| < 2, then setMi,ℓ :=
Mi,ℓ ∪ {m}.

2. If Pi ∈ Init \ {P1}: Let d ≤ 2 denote the number
of timesPi has already runM-Gradecast in this step.
Run2−d invocations ofM-Gradecast(‘nothing’, g∗).
(This ensures that eachPi ∈ Init \ {P1} acts as the
sender in exactly two executions ofM-Gradecast in
each step.)

Output determination: Let⊥ andφ be two special sym-
bols, with⊥ indicating that a party has received two dif-
ferent messages with valid signatures of the sender, andφ
indicating that a party did not receive any messages with a
valid signature of the sender.

Each party Pi ∈ Init \ {P1} does: If |Mi| = 2, output⊥;
if |Mi| = 1, output the message inMi; if |Mi| = 0,
outputφ.

Each party Pi ∈ Rem does: For eachPℓ ∈ Init, compute
mi,ℓ as follows:

• If |Mi,ℓ| = 2, setmi,ℓ :=⊥; if |Mi,ℓ| = 1, set
mi,ℓ to be the message inMi,ℓ; if |Mi,ℓ| = 0, set
mi,ℓ := φ.

The round complexity of Phase I isO(k2) as claimed.
We now state several properties related to the first phase of
our protocol (proofs appear in the Appendix). Phase II of
Rand-Bcast is described in Section 3.2.2.



Lemma 3. If the senderP1 is honest, the following holds
at the end of Phase I:

1. All honest parties inInit \ {P1} outputm;

2. For all honest partiesPi ∈ Rem, it holds thatmi,1 =
m andgi,1 = g∗. Furthermore, for each2 ≤ j ≤ c+1
it holds thatmi,j = m or mi,j = φ (this holds even if
Pj is dishonest).

The next three lemmas concern the case when there ex-
ists an honest party inInit \ {P1}.

Lemma 4. If any honest partyPi ∈ Init \ {P1} outputs⊥,
then all honest parties inInit \ {P1} output⊥, and for any
honestPj ∈ Rem it holds thatmj,i =⊥ andgj,i = g∗ at
the end of Phase I.

Lemma 5. If any honest partyPi ∈ Init \ {P1} outputsφ,
then all honest parties inInit \ {P1} outputφ, and for any
honestPj ∈ Rem it holds thatmj,i = φ andgj,i = g∗ at
the end of Phase I. Moreover, ifmj,k 6= φ for somek ∈
{1, . . . , c + 1}, thengj,k ≤ 1.

Lemma 6. If any honest partyPi ∈ Init \ {P1} outputs
m 6∈ {⊥, φ}, then all honest parties inInit\{P1} outputm,
and for any honestPj ∈ Rem it holds thatmj,i = m and
gj,i = g∗ at the end of Phase I. Moreover, ifmj,k 6= m and
mj,k 6= φ for somek ∈ {1, . . . , c + 1}, thengj,k ≤ 1.

The next lemma states that some relaxed form of agree-
ment exists among the parties inRem regarding their deter-
mination as to what a (dishonest)Pℓ ∈ Init outputs. (Note
that the case of an honestPℓ is handled in the previous three
lemmas.) The lemma follows directly from the properties of
gradecast and the specification of Phase I.

Lemma 7. For 1 ≤ ℓ ≤ c + 1, at the end of Phase I:

• If an honest partyPi ∈ Rem hasgi,ℓ > 1, then all
honest partiesPj ∈ Rem have bothmj,ℓ = mi,ℓ and
gj,ℓ ≥ gi,ℓ − 1.

• If an honest partyPi ∈ Rem hasgi,ℓ = 1, then all
honest partiesPj ∈ Rem have eithermj,ℓ = mi,ℓ or
gj,ℓ = 0.

3.2.2 Phase II

In the second phase of the protocol, the parties
in Rem determine their outputs based on the in-
formation they obtained in the first phase. Recall
that by the end of Phase I, eachPi holds values
{(mi,1, gi,1), (mi,2, gi,2), . . . , (mi,c+1, gi,c+1)} where0 ≤
gi,j ≤ g∗ for all 1 ≤ j ≤ c + 1. In Phase II, based
on these values, eachPi first locally computes a single
message/grade pair(m(0)

i , g
(0)
i ), and then determines its

output as in Phase II of the protocol fort = n/2 de-

scribed earlier. The message/grade(m
(0)
i , g

(0)
i ) is com-

puted from{(mi,1, gi,1), (mi,2, gi,2), . . . , (mi,c+1, gi,c+1)}
in a sequence of⌈log(c + 1)⌉ (non-interactive) steps: in
each step the number of message/grade pairs is reduced by
half by “combining” two adjacent message/grade pairs into
a single pair.

Before we describe the second phase of the protocol, we
first describe a subroutine which takes a valued, two mes-
sagesm1, m2, and two gradesg1, g2 (where0 ≤ g1, g2 ≤
2d+1 + 2d − 1) as input, and outputs a messagem and a
gradeg (where0 ≤ g ≤ 2d + 2d−1 − 1).

SubroutineCombine(d, m1, m2, g1, g2)

If (m1 = m2) then
m := m1 andg := max{g1 − 2d − 2d−1, g2 − 2d −

2d−1, 0};
else if(m1 6= m2) and(m1 6= φ) and(m2 6=⊥) then

begin
If (g1 ≤ 1) and(g2 = 2d+1 + 2d − 1) then m := m2

andg := 2d + 2d−1 − 1
else if(g1 ≤ 2) and(g2 ≥ 2d+1+2d−2) then m := m2

andg := 2d + 2d−1 − 2
. . .
else if (g1 ≤ 2d + 2d−1) and(g2 ≥ 2d + 2d−1) then

m := m2 andg := 0
elsem := m1 andg := max{g1 − 2d − 2d−1, 0}
end

else(Note: here, either (m1 = φ andm2 6= φ) or (m1 6=⊥
andm2 =⊥))

begin
if (g2 ≤ 1) and(g1 = 2d+1 + 2d − 1) then m := m1

andg := 2d + 2d−1 − 1
else if(g2 ≤ 2) and(g1 ≥ 2d+1+2d−2) then m := m1

andg := 2d + 2d−1 − 2
. . .
else if (g2 ≤ 2d + 2d−1) and(g1 ≥ 2d + 2d−1) then

m := m1 andg := 0
elsem := m2 andg := max{g2 − 2d − 2d−1, 0}
end

output(m, g).

Each party invokes the above subroutine using as input
its own set of message/grade pairs. Informally, if a “re-
laxed” form of agreement on the input message/grade pairs
has been established among the parties, this “relaxed” form
of agreement still holds for the output message/grade pair.
We make three observations regardingCombine. The first
observation states that if one of the input messages is equal
to ⊥ and the corresponding grade is the maximum grade
possible, then the output message will be equal to⊥ and
the output grade will be the maximum grade possible.

Observation 1. If m1 =⊥ (resp., m2 =⊥) and g1 =



2d+1 +2d− 1 (resp.,g2 = 2d+1 +2d− 1), thenm =⊥ and
g = 2d + 2d−1 − 1.

The second observation is that if one of the input mes-
sages is equal tom′ /∈ {⊥, φ}, the corresponding grade is
the maximum grade possible, and one of the three follow-
ing conditions hold: (i) the other input message is equal to
φ; (ii) the other input grade is “low” (i.e., at most 1); or
(iii) the two input messages are the same, then the output
message will be equal tom′ and the output grade will be
the maximum grade possible.

Observation 2. If m1 /∈ {⊥, φ}; g1 = 2d+1 + 2d − 1; and
either (1)m2 = φ or (2) g2 ≤ 1 or (3)m2 = m1, thenm =
m1 andg = 2d + 2d−1 − 1. Analogously, ifm2 /∈ {⊥, φ};
g2 = 2d+1 + 2d − 1; and either (1)m1 = φ or (2) g1 ≤ 1
or (3) m1 = m2, thenm = m2 andg = 2d + 2d−1 − 1.

The third observation is that if one of the input mes-
sages is equal toφ, the corresponding grade is the max-
imum grade possible, and one of the two following condi-
tions hold: (i) the other input message is equal toφ or (ii) the
other input grade is “low” (i.e., at most 1), then the output
message will be equal toφ and the output grade will be the
maximum grade possible.

Observation 3. If m1 = φ; g1 = 2d+1 + 2d − 1; and
either (1)m2 = φ or (2) g2 ≤ 1, thenm = φ and g =
2d+2d−1−1. Analogously, ifm2 = φ; g2 = 2d+1+2d−1;
and either (1)m1 = φ or (2) g1 ≤ 1, thenm = φ and
g = 2d + 2d−1 − 1.

We are now ready to specify the second phase of the pro-
tocol. Recall that the parties inInit do not take part in this
phase.

ProtocolRand-Bcast — Phase II:
PartiesPi ∈ Rem perform the following steps:

1. For 1 ≤ j ≤ c + 1 set m
(⌈log(c+1)⌉)
i,j := mi,j and

g
(⌈log(c+1)⌉)
i,j := gi,j

for c+2 ≤ j ≤ 2⌈log(c+1)⌉ setm(⌈log(c+1)⌉)
i,j := φ and

g
(⌈log(c+1)⌉)
i,j := 0.

2. For d := ⌈log(c + 1)⌉ to 1 do:

for e := 1 to 2d−1 do: (m
(d−1)
i,e , g

(d−1)
i,e ) ←

Combine(d, m
(d)
i,2e−1, g

(d)
i,2e−1, m

(d)
i,2e, g

(d)
i,2e).

3. Set(mi, gi) := (m
(0)
i,1 , g

(0)
i,1 ).

If gi = 2 thenPi enters protocolBAHonestMajwith input
mi, terminatesBAHonestMaj afterK rounds (whereK is
the constant from Lemma 1), and outputsmi.
else(i.e., gi < 2) Pi enters protocolBAHonestMaj with
inputmi, runsBAHonestMaj until successful termination
of the protocol, and outputs whatever directed to by
BAHonestMaj.

We prove the following technical lemma in the Apendix
which states that relaxed agreement is established on the
message/grade pairs{(mi, gi)}.
Lemma 8. By the end of Phase II, the following holds for
all honest partiesPi, Pj ∈ Rem:

• If gi > 1, thenmj = mi andgj ≥ gi − 1.

• If gi = 1, thenmj = mi or gj = 0.

We now argue thatRand-Bcast achieves broadcast.
There are three cases:

The senderP1 is honest. By Lemma 3, all honest parties
in Init \ {P1} outputm. For any honest partyPi ∈ Rem,
it follows from Lemma 3 and Observation 2 thatmi = m
andgi = 2 at the end of Phase II, which implies thatPi

outputsm.

P1 is dishonest but there is an honest partyPi ∈ Init \
{P1}. SupposePi outputs⊥. By Lemma 4, all honest par-
ties in Init \ {P1} output⊥. Lemma 4 and Observation 1
show that, at the end of Phase II,mj =⊥ andgj = 2 for any
honest partyPj ∈ Rem, which implies thatPj outputs⊥.
On the other hand, ifPi outputsφ it follows from Lemma 5
and Observation 3 that all honest parties outputφ. Finally,
if Pi outputsm 6∈ {⊥, φ} it follows from Lemma 6 and
Observation 2 that all honest parties outputm.

All parties in Init are dishonest. This means that a strict
majority of the parties inRem are honest. There are two
sub-cases. The first sub-case is that by the end of Phase II
there exists an honest partyPi ∈ Rem such thatgi = 2.
Then, by Lemma 8,mj = mi for all honest partiesPj and
so all honest parties will output the same valuemi. The
second sub-case is thatgi ≤ 1 for all honest partiesPi. In
this case, it follows from the properties ofBAHonestMaj that
all honest parties output the same message.

Phase I terminates in exactlyO(k2) rounds. Arguing as
in the case oft = n/2, we see that Phase II terminates
in expected constant rounds. We thus obtain the following
theorem:

Theorem 1. There exists an authenticated randomizedn-
party broadcast protocol toleratingt = n/2 + k dishonest
parties that runs in (expected)O(k2) rounds.

4. A Lower Bound on the Round Complexity

We start by considering a group ofk parties
P1, P2, . . . , Pk such that only two of them are honest. We
show that there does not exist any (randomized) broadcast
protocol having any runs that terminate in fewer thank − 1
rounds.

Consider a broadcast protocolΠ for k parties that toler-
atesk − 2 dishonest parties. For1 ≤ i ≤ k, we construct a
protocolΠ̄i that is the same asΠ except that:



• If i = 1, thenP1 ignores all the messages sent to it
except for those fromP2, and only sends messages to
P2 (i.e.,P1 only communicates withP2).

• If 2 ≤ i ≤ k − 1, Pi ignores all the messages sent
to it except for those fromPi−1 andPi+1, and only
sends messages toPi−1 andPi+1 (i.e., Pi only com-
municates withPi−1 andPi+1).

• If i = k, thenPk ignores all the messages sent to it
except for those fromPk−1, and only sends messages
to Pk−1 (i.e.,Pk only communicates withPk−1).

For 1 ≤ i ≤ k − 1 andb ∈ {0, 1}, define scenarioS(b)
i

as follows:

• P1 is the sender and the bitb is its input.

• All parties except forPi andPi+1 are dishonest. The
honest partiesPi andPi+1 execute the protocolΠ; a
dishonest partyPj executes the protocol̄Πj .

For any2 ≤ i ≤ k, partyPi cannot distinguish whether
it is in S

(b)
i−1 or S

(b)
i . In scenarioS(b)

1 , partiesP1 andP2 are
both honest. Thus,P1 andP2 have to outputb by the end
of the protocol. SinceP2 cannot distinguish whether it is in
S

(b)
1 or S

(b)
2 , we see thatP2 has to outputb in scenarioS(b)

2

as well; this means thatP3 has to outputb as well. Prior
to round 1, however, the view ofP2 is completely indepen-
dent ofb, and so the view ofP3 is independent ofb prior to
round 2.

In general, in scenarioS(b)
i , partiesPi andPi+1 have to

outputb and the view ofPi+1 is completely independent
of b prior to roundi. If b is chosen uniformly at random
andΠ terminates before roundk− 1, then in scenarioS(b)

k−1

the output ofPk will not be equal tob with probability at
least1/2. SinceΠ is a broadcast protocol,Π cannot termi-
nate before roundk − 1. We conclude that there does not
exist any broadcast protocol that can terminate in less than
k − 1 rounds ifk − 2 out ofk parties are dishonest.

Using standard player-partitioning techniques (see the
Appendix), we can generalize the above to show:

Theorem 2. There does not exist any (randomized)n-party
broadcast protocol toleratingt dishonest parties that termi-
nates in fewer than2n/(n−t)−1 rounds (whenn−t ≥ 2).
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A. Deferred Proofs

A.1. Correctness of M-Gradecast

Lemma 2. ProtocolM-Gradecast(·, g∗) is ag∗-gradecast
protocol with round complexity2g∗ + 1.

Proof. We first prove correctness. Suppose the sender is
honest and letPi be any honest party. All parties receive
(m, σ) in round 1. Since the adversary cannot forge signa-
tures,|Si| = 1 andmi = m at all times. Hencēgi = 2g∗

by the end of the protocol andPi will output (m, g∗).
Next we prove soundness. Suppose there exists an hon-

est partyPi that outputsgi ≥ 1. Note thatḡi ≥ 2gi by
the end of the protocol. Let roundr1 be the round during
which mi is added toSi by Pi. Then|Si| = 0 (and hence
ḡi = 0) prior to roundr1. We claim that if there exists an
honest partyPj who receives(m′, σ′) in roundr2 such that
m′ 6= mi andσ′ is a valid signature onm by the sender,
thenr2 > r1 + 2gi − 3. Assume the claim is not true, i.e.,
r2 ≤ r1 + 2gi − 3. SincePj is honest, it sends(m′, σ′) to
all parties (includingPi) in roundr2 + 1. Then by the end
of step (a) in roundr2 + 2, it holds that|Si| ≥ 2 (note that
Si containsmi by then asmi is the first message added to
it). Hence the value of̄gi is at mostr2 + 2− r1 ≤ 2gi − 1,
a contradiction.

We now complete the proof. SincePi is honest,Pi sends
mi along with a valid signature from the sender to all parties
in roundr1. All honest parties receive it by the end of round
r1. The claim we proved in the last paragraph states that
no honest partyPj receives a different messagem′ 6= mi

(with a valid signature from the sender) in or before round
r1 + 2gi − 3. Consider the value of̄gj by the end of the
protocol. Ifgi ≥ 2, thenḡj ≥ r1+2gi−3+1−r1 ≥ 2gi−2,



and soPj outputsmi with gj ≥ gi−1. For the casegi = 1,
following the claim in the previous paragraph, no honest
partyPj receives a messagem′ different frommi (with a
valid signature from the sender) in or before roundr1 − 1.
SincePj receivesmi (along with a valid signature from the
sender) in roundr1, it holds thatmi ∈ Sj by the end of
step (a) in roundr1 +1. It follows thatgj = 0 (if a different
messagem′ is received byPj in roundr1) ormj = mi.

A.2. Properties of Rand-Bcast

Lemma 3. If the senderP1 is honest, the following holds
at the end of Phase I:

1. All honest parties inInit \ {P1} outputm;

2. For all honest partiesPi ∈ Rem, it holds thatmi,1 =
m andgi,1 = g∗. Furthermore, for each2 ≤ j ≤ c+1
it holds thatmi,j = m or mi,j = φ (this holds even if
Pj is dishonest).

Proof. If the senderP1 is honest, then in step 1 all honest
partiesPi ∈ Init \ {P1} receive(m, σ, P1) as the output
of the gradecast byP1, whereσ is a valid signature onm
byP1. Hencem ∈Mi by the end of step 2. Since the adver-
sary cannot forge a signature ofP1, no message besidesm
will be added toMi by the end of Phase I. Thus, all honest
partiesPi ∈ Init \ {P1} will output m.

For all honest partiesPj ∈ Rem, we havemj,1 = m and
gj,1 = g∗ by the properties ofM-Gradecast. Furthermore,
mj,i = m or mj,i = φ for any 2 ≤ i ≤ c + 1 as the
adversary cannot forge a valid signature ofP1.

We prove two technical results that will be used in the
proofs of Lemmas 4– 6.

Lemma 9. Let Pi ∈ Init \ {P1} be honest. Ifm ∈ Mi by
the end of Phase I, then:

1. For any honestPj ∈ Init\{P1} it holds thatm ∈Mj

or |Mj | = 2.

2. For any honestPj ∈ Rem it holds thatm ∈Mj,i.

Proof. Supposem is added toMi in step k. Then in
step k − 1, party Pi received a messagem′

i,αk−2
=

(m, σα0
, P1, σα1

, Pα1
, . . . , σαk−2

, Pαk−2
) as the output of

a gradecast by some partyPαk−2
. In stepk, Pi verifies

that m′
i,αk−2

is valid, addsm to Mi, computes a signa-
ture σαj−1

of σαj−2
, and gradecasts(m′

αk−2,i, σαj−1
, Pi).

All honest parties receive(m′
i,αk−2

, σαj−1
, Pi) as the out-

put of that gradecast. Sincem is added toMi in stepk,
it means thatm is not in Mi in stepk − 1. Therefore,
Pi /∈ {P1, Pα1

, . . . , Pαk−2
}. This implies thatk ≤ c + 1.

We know that(m′
i,αk−2

, σαj−1
, Pi) is valid in stepk+1.

Consider an honestPj ∈ Init \ {P1}. If m is not added to
Mj in stepk + 1, then it means thatm is already inMj or

|Mj| = 2 by the end of stepk + 1. This proves the first
item. Next consider an honest partyPj ∈ Rem. Following
the properties ofM-Gradecastand the protocol description,
m ∈Mj,i by the end of stepk+1, which proves the second
item.

Lemma 10. Let Pi ∈ Rem be honest. If, for somePj ∈
Init, it holds thatm ∈ Mi,j and gi,j ≥ 2 at the end of
Phase I, then for all honest partiesPk ∈ Init\{P1} it holds
that eitherm ∈Mk or |Mk| = 2 at the end of Phase I.

Proof. Supposem is added toMi,j in stepr. This means
Pj gradecastsmj = (m, σα0

, . . . , σαr−2
, Pj) in stepr − 1,

and Pi receivesmj with grade at least 2. Following the
properties ofM-Gradecast, all honest parties receivemj

with grade at least 1. We know thatmj is valid in stepr
sincem is added toMi,j in stepr. Therefore, by the end
of stepr, it holds thatm ∈ Mk or |Mk| = 2 for all honest
partiesPk ∈ Init \ {P1}.

Lemma 4. If any honest partyPi ∈ Init \ {P1} outputs⊥,
then all honest parties inInit \ {P1} output⊥, and for any
honestPj ∈ Rem it holds thatmj,i =⊥ andgj,i = g∗ at
the end of Phase I.

Proof. If Pi outputs⊥, then|Mi| = 2 by the end of Phase I.
Using Lemma 9, by the end of Phase I|Mj| = 2 for all
honest partiesPj ∈ Init \ {P1}. ThereforePj outputs⊥. If
Pj ∈ Rem is honest,Pj always receives gradeg∗ in every
gradecast byPi. By Lemma 9,mj,i =⊥ andgj,i = g∗.

We prove Lemma 6 first, since we rely on it to prove
Lemma 5.

Lemma 6. If any honest partyPi ∈ Init \ {P1} outputs
m 6∈ {⊥, φ}, then all honest parties inInit\{P1} outputm,
and for any honestPj ∈ Rem it holds thatmj,i = m and
gj,i = g∗ at the end of Phase I. Moreover, ifmj,k 6= m and
mj,k 6= φ for somek ∈ {1, . . . , c + 1}, thengj,k ≤ 1.

Proof. By the end of Phase I,m ∈Mi. Consider an honest
partyPj ∈ Init \ {P1}. By Lemma 9, we havem ∈ Mj by
the end of Phase I. IfPj does not outputm, then|Mj| = 2
which meansPj outputs⊥. By Lemma 4,Pi should output
⊥ instead ofm, a contradiction.

Next consider an honest partyPj ∈ Rem. We know that
mj,i = m andgj,i = g∗ by the properties ofM-Gradecast.
Now suppose there exists a1 ≤ k ≤ c+1 such thatmj,k 6=
m andmj,k 6= φ. Then there existsm′ 6= m such that
m′ ∈Mj,k by the end of Phase I. By Lemma 10, this means
gj,k ≤ 1 or m′ ∈ Mi or |Mi| = 2 by the end of Phase I.
SincePi outputsm, we haveMi = {m} and this means
gj,k ≤ 1.



Lemma 5. If any honest partyPi ∈ Init \ {P1} outputs
φ, then all honest parties inInit \ {P1} outputφ, and for
any honestPj ∈ Rem it holds thatmj,i = φ andgj,i = g∗

at the end of Phase I. Moreover, ifmj,k 6= φ for somek ∈
{1, . . . , c + 1}, thengj,k ≤ 1.

Proof. Consider an honest partyPj ∈ Init \ {P1}. If Pj

does not outputφ then, using Lemma 4 and Lemma 6,Pi

should output⊥ or m′ instead, a contradiction.
Now consider an honest partyPj ∈ Rem. Properties of

M-Gradecast imply thatmj,i = φ andgj,i = g∗. Suppose
there exists a1 ≤ k ≤ c + 1 such thatmj,k 6= φ. Then
there exists anm′ ∈Mj,k by the end of Phase I. Following
Lemma 10,gj,k ≤ 1 or m′ ∈ Mi or |Mi| = 2. SincePi

outputsφ, this implies thatgj,k ≤ 1.

Lemma 8. By the end of Phase II, the following holds for
all honest partiesPi, Pj ∈ Rem:

• If gi > 1, thenmj = mi andgj ≥ gi − 1.

• If gi = 1, thenmj = mi or gj = 0.

Proof. The lemma follows once we show that, by the end of
Phase II, for any0 ≤ d ≤ ⌈log(c + 1)⌉ and1 ≤ e ≤ 2d:

• If g
(d)
i,e > 1 for some honest partyPi ∈ Rem, then

m
(d)
j,e = m

(d)
i,e andg

(d)
j,e ≥ g

(d)
i,e − 1 for any honest party

Pj ∈ Rem .

• If g
(d)
i,e = 1 for some honest partyPi ∈ Rem , then

eitherm(d)
j,e = m

(d)
i,e or g

(d)
j,e = 0 for any honest party

Pj ∈ Rem.

We prove the above by induction ond.

Base Case:The statement is true ford = ⌈log(c + 1)⌉ and
anye by Lemma 7.

Inductive Step: Assume the statement is true ford = d′+1
ande = 2e′− 1 ande = 2e′. We show that the statement is
true ford = d′ ande = e′. We have the following cases:

1. Suppose that for all honest partiesPi, Pj ∈ Rem,

we havem(d′+1)
i,2e′−1 = m

(d′+1)
j,2e′−1. Consider the two sub-

cases:

• m
(d′+1)
i,2e′ = m

(d′+1)
j,2e′ for all honest partiesPi, Pj .

Then following the protocol specification, the
statement is true ford = d′ ande = e′.

• m
(d′+1)
i,2e′ 6= m

(d′+1)
j,2e′ for some honest parties

Pi, Pj . This meansg(d′+1)
k,2e′ ≤ 1 for all honest

partiesPk. Following the protocol specification,

if g
(d′+1)
k,2e′−1 > 2d + 2d−1, thenm

(d′)
k,e′ = m

(d′+1)
k,2e′−1

andg
(d′)
k,e′ = g

(d′+1)
k,2e′−1− 2d− 2d−1, elseg

(d′)
k,e′ = 0.

Thus the statement is true ford = d′ ande = e′.

2. Next suppose that for all honest partiesPi, Pj ∈
Rem, it holds thatm(d′+1)

i,2e′ = m
(d′+1)
j,2e′ . The proof of

this case is analogous to the previous case.

3. Finally, consider the case where neither condition

above holds. This means thatg
(d′+1)
i,2e′−1 ≤ 1 and

g
(d′+1)
i,2e′ ≤ 1 for all honest partiesPi. Following the

protocol specification,g(d′)
i,e′ = 0. Hence the statement

holds.

A.3. The Lower Bound

Theorem 2. There does not exist any (randomized)n-party
broadcast protocol toleratingt dishonest parties that termi-
nates in fewer than2n/(n−t)−1 rounds (whenn−t ≥ 2).

Proof. Let h = n − t. We divide the parties intok =
n/(h/2) disjoint groupsG1, . . . , Gk, each of sizeh/2.
Consider a broadcast protocolΠ for n parties that can tol-
eratet dishonest parties. For1 ≤ i ≤ k, we construct a
protocolΠ̄i that is the same asΠ except that

• If i = 1, then the parties inG1 ignore all the messages
sent to them except for those from the parties inG1 ∪
G2, and only send messages to the parties inG1 ∪G2

(i.e., parties inG1 only communicates with parties in
G1 ∪G2).

• If 2 ≤ i ≤ k−1, parties inGi ignore all the messages
sent to them except for those from the parties inGi−1∪
Gi∪Gi+1, and only send messages to parties inGi−1∪
Gi ∪Gi+1 (i.e., parties inGi only communicates with
parties inGi−1 ∪Gi ∪Gi+1).

• If i = k, then the parties inGk ignore all the mes-
sages sent to them except for those from the parties in
Gk−1 ∪ Gk, and only send messages to the parties in
Gk−1∪Gk (i.e., parties inGk only communicates with
parties inGk−1 ∪Gk).

For 1 ≤ i ≤ k − 1 andb ∈ {0, 1}, define scenarioS(b)
i

as follows:

• The sender is inG1 and the bitb is its input.

• All parties except for the parties inGi ∪ Gi+1 are
dishonest.

• The honest parties inGi ∪Gi+1 execute protocolΠ;
each dishonest party inGj executes protocol̄Πj .

The rest of the proof proceeds analogously to the discussion
in Section 4.


