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Abstract the feasibility of protocols for solving the problem in dif-
ferent settings, as well as on the inherentnd complexity
Broadcast among@ parties in the presence of> n/3 of such protocols. In a synchronous network with pairwise

malicious parties is possible only with some additional authenticated channels and no additional setup, the €lassi
setup. The most common setup considered is the existenceal results of Pease, Shostak, and Lamport [24, 29] show
of a PKI and secure digital signatures, where so-caked that broadcast among parties is achievable if and only if
thenticatecbroadcast is achievable for any< n. the number of malicious partiessatisfies < n/3. In this
It is known thatt + 1 rounds are necessary and suf- setting, a lower bound af+ 1 rounds for any deterministic
ficient for deterministicprotocols achieving authenticated protocol is known [16]. A protocol with this round com-
broadcast. Recently, howeveandomizedprotocols run- plexity — but with exponential message complexity — was
ning in expecteadonstantounds have been shown for the shown in the initial work by Pease et al. [24, 29]. Follow-
case oft < n/2. It has remained open whether random- ing a long sequence of works [9, 1, 33, 12, 26, 5, 4], Garay
ization can improve the round complexity when an honestand Moses [19] showed a deterministic, polynomial-time
majority is not present. We address this question and showByzantine agreement protocol having optimal resilience
upper/ lower bounds on how much randomization can help: ¢ < n/3 and optimal round complexity+ 1.
To circumvent the above-mentioned lower bound on the
round complexity (as well as impossibility results for asyn
. . chronous networks [15]), researchers beginning with Ra-
ticular, we obtain expected constant-round protocols bin [31] and Ben-Or [2] explored the use raindomization
fort =n/2+ O(1). i P . N
(See [7] for an early survey on the subject.) This culmi-
e On the negative side, we show that even randomizednated in the work of Feldman and Micali [14], who showed
protocols require(2n/(n—t)) rounds. This in partic- a broadcast protocol with optimal resilience that runs in ex
ular rules out expected constant-round protocols when pected constant rounds.
the fraction of honest parties is sub-constant. To achieve resilience > n/3, additional assumptions
are needed even if randomization is used. The most com-
mon assumptions are the existence of digital signatures and
the presence of a public-key infrastructure (PKI) estalelis
1. Introduction among then parties in the network; this is referred to as
the authenticatedsetting. Pease et al. [29, 24] showed
Designing protocols for simulating a broadcast channel an authenticated broadcast protocol for any n, and
over a point-to-point network in the presence of faults is a polynomial-time protocol achieving this resilience was
a fundamental problem in distributed computing and cryp- given by Dolev and Strong [13].
tography. Much work has focused both on characterizing The (¢ 4+ 1)-round lower bound for deterministic proto-
cols holds in the authenticated setting as well [13], and the

e For ¢t < n/2 + k, we show a randomized broadcast
protocol that runs in expecte@(k?) rounds. In par-

*A portion of this work was done while the authors were vigjtihe

Institute for Pure and Applied Mathematics (IPAM), UCLA. known protoco_ls [2_9’ 24, 13] meet this bound. Randomized
TBell Labs, Alcatel-Lucent. E-mail:gar ay@ esear ch. bel | - protocols running in expected constant roundstfer n/2
I'abs. com have been shown by Fitzi and Garay [17] (based on [6, 28])

fDept. of Computer Science, University of Maryland. E-mail:

(i kat 2, cykoo}@s. und. edu. Work of J.K. supported in part by under specific number-theoretic assumptions, and by Katz

NSF CAREER award #0447075 and US-Israel Binational Scigme- ~ @nd Koo [23] based on signatures and a PKI alone.

dation grant #2004240. When an honest majority isotavailable (i.e.f > n/2),
§Depts. of Computer Science and Mathematics, UCLA. E-mail:

rafail @s. ucl a. edu. Work supported in part by an IBM Faculty 1The Feldman-Micali protocol requires private channels|d@asser

Award, a Xerox Innovation Group Award, NSF Cybertrust gré0u30254, etal. [21] show a broadcast protocol foK n/(3+¢) that runs in expected

and a U.C. MICRO grant. O(log n) rounds and does not require private channels.



there has been no progress since the initial work of [29, using pairwise private and authenticated channels. When
24, 13] on improving the round complexity of authenticated we say a protocol tolerategsdishonest parties, we always
broadcast. Besides being an interesting and fundamental mean that it is secure againstushingadversary who may
problem in its own right, authenticated broadcast is often adaptivelycorrupt up tot parties during execution of the
used as a sub-routine within larger protocols that are de-protocol and coordinate the actions of these parties as they
signed and analyzed using the abstraction that a broadcasieviate from the protocol in an arbitrary manfeRarties
channel exists. For the specific case of secure multi-partynot corrupted by the adversary are calkexhest

computation with a dishonest majority, we remark that al-  The existence of a PKI means that prior to execution of
though meaningful security notions can be achieved eventhe protocol all parties hold the same vedtak, . . ., pky)
without broadcast [20], and fairness cannot be achievedof public keys for a digital signature scheme, and each hon-
even with broadcast [8], there are still advantages to hav-est partyP; holds the honestly generated secret kkyas-

ing broadcast available. Specifically, broadcast can be use sociated withpk;. When we describe signature computation
to achievaunanimous aborf20], or partial notions of fair- in our protocols, we omit for simplicity certain additional
ness [18, 22]. In contrast, the constant-round “broadcast-information that should be signed along with the message.
with-abort” protocol of [20] does not appear to suffice for That is, when we say that parfy, signs message: and
such applications. sends it toP;, we implicitly mean thatP; signs the con-

Our contributions. In this paper we make the first progress catenation ofn with additional information such as: (1) the

toward characterizing when randomized protocols can beatdentity of the recipient’;, (2) the current round number,
the (¢ + 1)-round barrier fott > /2. (3) an identifier for the message (in case multiple messages

are sent taP; in the same round); and (4) an identifier for

e We show a randomized broadcast protocol tolerating the particular (sub-)protocol to whict belongs (in case

t < n/2 + k malicious parties that terminates in an multiple sub-protocols are being run; cf. [25]). This infor

expected)(k?) rounds. This is an improvement over mation is also verified, as appropriate, when the signasure |

existing state of the art for = n/2 + o(y/n), and verified.

gives an expected constant-round protocol when We assume in our proofs that the adversary cannot forge

n/2+ O(1). valid signatures on behalf of honest parties. Using a stan-
dard hybrid argument and assuming the existence of one-
atingt malicious parties terminates@m,/(n—t)—2 or way functions _[27, 32], this implies that our protocols
fewer rounds. This in particular means that when the &€ Secure against any computationally-bounded adversary
fraction of honest parties is sub-constant, it is impos- (Alternately, if stronger setup is assumed then infornmatio
sible to obtain protocols with expected constant round theoretic pseudo-signatures [30] can be used.)
complexity. It also implies that the Dolev-Strong pro- e now give the standard definition of broadcast [24].
tocol [13] has optimal round complexity (to within a
constant factor) wheh=n — O(1).

e We show that no randomized broadcast protocol toler-

Definition 1 (Broadcast) A protocol for partiesP =
{P,..., P}, where a distinguished send®* € P holds

Organization. In Section 2.1, we describe our model and &N initial inputin, is abroadcast protocol toleratirignali-
give the standard definitions of broadcast and ByzantineCious partiesf the following conditions hold for any adver-

agreement. We present the technical tools we use in SecSary controlling at most parties:

tion 2.2; these include a generalization of gradecast [14]  Agreement: All honest parties output the same value.
that may be of independent interest. We present our new
broadcast protocol in Section 3, and prove our imposgbilit

result in Section 4. Some proofs are deferred to the Ap-

Validity: If the sender is honest, then all honest parties
outputm. &

pendix. We will also rely on protocols for the related taskBfzan-
o tine agreemen(BA). Here, each party holds an initial input:
2. Preliminaries the agreement condition remains the same as above; validity
requires that if all honest parties hold initial input then
2.1. Model and Definitions all honest parties will output:. Note that BA is impossible

to achieve fort > n /2 (in any setting).
We assume a standard point-to-point network in which
partiesP;, P, ..., P, communicate in synchronous rounds 3A rushingadversary waits until it receives messages from all honest
parties in a given round before sending any messages of itsfamthat
2The techniques used for< n/2 do not immediately translate to the  round. Adaptivecorruption means that the adversary is allowed to corrupt
case oft > n/2: a key building block in the former setting \erifiable parties on the fly, as opposed to deciding which parties toupbbefore
secret sharingwhich is not even feasible in the latter setting. execution of the protocol begins.




2.2. Tools In the description that follows, each patfy starts with in-
ternal variableg;, S;, andm; initialized to 0, the empty set,
We describe two technical tools we use to construct our and_L, respectively.

randomized broadcast protocol.
ProtocolM-Gradecast(m, g*)

BA in expected constant rounds fort < n/2. The work
of Katz and Koo [23] gives an authenticated BA protocol
BAnonestMaj tolerating anyt < n/2 malicious parties and

Round 1: The sender computes a signatureon m and
sendgm, o) to all parties.

running in expected constant rounds. Prot@lonestmaj Round 2to Round 2¢* + 1:
satisfies the following stronger property that we will rety o Step (a) Each partyP; does as follows: For each tu-
in the present work: ple (m',o’) received by the end of the previous

round, if ¢’ is a valid signature by the sender on

Lemma 1. If h > n/2 honest parties staAponestmaj With m’ andm’ ¢ S;, then:

the same input, then all honest parties terminate protocol

BAnonestMaj IN €xactly K rounds for some constar. e SetS; := S, U {m'}. If |S;| = 1, then set
m; =m'.

Gradecast.Gradecasta generalization afrusader agree- e P; sends(m’, o’) to all other parties.

ment[11], was introduced by Feldman and Micali [14]. As Step (b) If (mi #1) and(|Si| = 1) then setj; :=

opposed to broadcast, where the honest parties are required
to reach a unanimous decision, in gradecast the honest par-
ties are allowed to disagree by “a small amount”. Specif- Output determination: Each partyP; setsg; = |g:/2]
ically, parties now output grade along with their output and outputgm, g;).

value; the grade output by a party can be viewed as the

“confidence” of this party in the sender. The gradecast pro-Lemma 2. ProtocolM-Gradecast(-, g*) is ag*-gradecast
tocol given by Feldman and Micali supports the three gradesprotocol with round complexit@g* + 1.

{0,1,2},and runs in three rounds. Here, we generalize their

protocol to the case of an arbitrary number of grades. We The proofis given in the Appendix.

first present the definition:

gi + 1.

Definition 2 (Gradecast with multiple gradesi protocol 3. Randomized Broadcast Protocols for Dis-

for parties? = {P,...,P,}, where P* € P holds an honest Majority
initial input m, is a g*-gradecast protocgtoleratingn — 1
malicious parties) if the following conditions hold for any As a warm-up, we first construct an expected constant-
adversary controlling any number of parties: round broadcast protocol for the special case ef n/2
Functionality: An honest partyP; outputs a message (andn even) before dealing with the more general case.
m; and a gradey; € {0,1,...,g*}.

Correctness: If the sender is honest, them; = m and 3.1. The Case t =n/2
g; = g* for all honest parties’;.

The main idea here is as follows: in the first phase, the
sender will gradecast its input. If the sender is honest,
this gradecast is already enough to implement broadcast; on
the other hand, if the other parties catch the sender clgeatin

A similar primitive called “proxcast” was defined and then they can exclude the sender and determine their output
constructed by Considine et al. [10]. Our construction dif- by executindBBAnonestvaj. The key point is that in the latter
fers from theirs in two ways. First, our construction is in case, assuming= n/2 to begin with, arhonest majoritys
the authenticated setting while theirs relies on the eméste  present once the dishonest dealer is excluded. (Variants of
of “k-cast channels”. Second, our protocol can tolerate anythis idea — i.e., executing a protocol until either someghin
number of dishonest parties, while theirs only tolerates agood happens or some dishonest parties can be excluded —
constant fraction (the exact constant depends on the valudave been used in prior work on Byzantine agreement [1,
of k) of malicious participants. 26, 5, 19].) Of course, we need to handle the scenario where

We now demonstrate a construction gf-gradecast some parties believe the sender is honest while other partie
for any valueg*. Specifically, we define a protocol catch the sender cheating; this can be done using the grades
M-Gradecast(m, g*) wherem represents the initial value obtained in the initial gradecast. We now provide a formal
of the sender angl* denotes the maximum supported grade. description of the protocol:

Soundness:Let P;, P; be any two honest parties. If
gi; > 2,thenm; = m; andg; > g;— 1. If g; = 1, then
m; = m; orgj:O. <>



Phase | P*, who holds inputm, acts as the sender in an  each partyP; in Rem def {P.ys,...,P,} outputs a tuple of

execution oM-Gradecast(m, 2), outputsm, andthen  the form {(m; 1,9i1), (Mi2, gi2);- -+, (Mict1, Gicr1)}
exits the protocol. Letm;, g;) denote the output of; In the second phase, parties Rem = {P.i5,...,P,}
in this step. determine their outputs using the output they obtained in
Phase Il All parties excep®* (who has already exited the ~Phase I. Parties imit = {P,..., P41} do not take part
protocol) runBAponestmajin the following way: in Phase ”-. .
Phase | is based on the authenticated broadcast proto-
e If g; = 2, thenP; enters protoC®Aonestmaj With col of Dolev and Strong [13] which tolerates ahy< n

inputm;, t_ermi”ateﬁAHonestMaj after K rounds  dishonest parties and has the property that, in each round,
(where K is the constant from Lemma 1), and honest parties send the same message to all other parties.

outputsm;. We stress thab; outputsm; regard-  Roughly speaking, partie®,, ..., P..; will execute the
less of the output (if any) of protocBRronestma;- Dolev-Strong protocol with the following twist: whenever a
e Otherwise (i.e.,g; < 2), P; enters protocol partyP; (in the Dolev-Strong protocol) is supposed to send
BAHonestMaj With inputm;, runsBAnenestmaj Until a message to every other party{iffy, . .., P.41}, party P;
successful termination of the protocol, and out- insteadgradecastthe message all n parties in the net-
puts whatever directed to BAronestmaj- work using protocoM-Gradecast from Section 2.2. This
has the effect of allowing partieB, -, ..., P, to “moni-
We now argue that the above protocol achieves broad-tor” the execution of the Dolev-Strong protocol being run
cast fort = n/2 in expected constant rounds. If the by partiesP,..., P.11.
sender is honest then, by the correctness property of The Dolev-Strong protocol guarantees that broad-
M-Gradecast(m,2), each honest part®; outputs(m; = cast is achieved amond’,...,P..; at the end of
m, g; = 2) in Phase | and thus, in Phase II, outputs= m Phase |. As mentioned earlier, each remaining party
after executindBAronestvaj for exactly K rounds. Asthe P, € {P.i2,...,P,} outputs{(mi1,9i1), (miz2,9i2),
round complexity of Phase | is constant, the entire protocol ..., (m; .41, g:c+1)} based on the messages and grades it
runs for a strict constant number of rounds. received in Phase I. Informally; ;. is the message tha;
If the sender is dishonest, then protoB&ionestmajiS run “believes” P, will output, with g; ;. indicating the level of

with an honest majority. There are two sub-cases to con-“confidence”P; has in this determination. In particular, if
sider. The first sub-case is that there exists an honest party?, is honest thenn; ;. will be equal to the message out-
P, whose output in Phase | {8n;,g9; = 2). Then by the put by P, and g; , will be the maximum possible grade.
soundness property tfGradecast(m, 2), all honest par-  Furthermore, based on the propertiesMefradecast, a
ties P; havemn; = m;. Hence all honest parties enter proto- relaxed form of agreement is achieved among the remain-
col BAnonestmajholding the same input;, and the protocol  ing parties. Specifically, for any honest partiBs P, €
BAnonestmait€rminates aftef’ rounds with each honestparty {P.;o,...,P,} andk € {1,...,c+ 1} we have:

P; outputtingm,, regardless of the gradge it output in the

first step. The second sub-case is when all honest parties
output a grade Ies_s than_2 in Phase I. Then all honest pgrties o If g;x = 1, thenm, ;, = m;, Or g x = 0.
run BAonestmaj UNtil termination, and so all honest parties

o |f gik > 1, thenmi_,k = Mjk andgjyk > Gik — 1.

output the same value in expected constant rounds. Therefore, although the remaining honest parties may not
reach a unanimous decision whdt, is dishonest, the
3.2. The Case t <n/2+k remaining honest parties will only disagree by “a small
amount”.
In this section we construct a broadcast protocol In Phase I, each remaining party; first locally
Rand-Bcast for t < n/2 + k that runs in expecte@(k2) ~ “combines” its output {(mi1,gi1), (miz2,gi2), ..
rounds. For simplicity, we assumeis even and s¢ = (Mi,c+1, gi,e+1) } INto @ single message/grade pait;, g;),

n/2 + k. (Everything that follows works also for odd, ~ With gi € {0, 1, 2}, such that the following hold for all hon-
though things can be optimized somewhat.) SE& 2k; estparties’s, P € {Pey2, ..., Pn}:

this is equal to the difference between the number of dishon- e If there exists an honest parf§, € {P1,..., P41},
est parties and the number of honest parties. Without loss of thenm; is equal to the message outputBy, andg; =
generality, letP; be the sendeRand-Bcast consists of two 2 (the maximum possible grade).

phases: Phase | takes exaaflyc?) rounds, while Phase II

runs forO(1) rounds in expectation. At the end of Phase |,  ® If 9i = 2, thenm; =m; andg; > 1.

each party innit def {P,...,P.41} outputs a message, Finally, partiesP. o, ..., P, determine their final output as

which will be its final output for the entire protocol, while in Phase Il of the broadcast protocol for n /2 described



earlier. The key observation is that if there exists even aProtocolRand-Bcast — Phase |

single honest party’, € {P,..., P.+1}, then for every Step 1: P computes a signaturer of m, runs

honest party?;, € {P.42,..., P, } it holds thatm; = my M-Gradecast((m, o, P1), g*), outputsn, and exits the pro-

(wherem,, is the output ofP;) andg; = 2; otherwise (i.e.,  tocol.

if Pp,...,P.y; are all dishonest), a majority of the remain-

ing parties are honest, and so they can rely on the output>t€PJ: fOr 2 <j < c+2:

Of BAronestia- 1. EachP; does the following: For each gradecast per-
Gradecast is also used as a building block in the (ex- formed in the previous step, et ,, g/ ,) be the local

pected) sub-linear broadcast protocols of [14, 23, 3, 21]. | output (of partyP;) of an invocation oM-Gradecast

these works, gradecastis used to replace the broadcastchan  wjth P, € Init as the sender. (Note: eadh may

nelin various sub-protocols that are run among:aiarties gradecast multiple times in a given step. The output of

in the network; these sub-protocols achieve some relaxed  each gradecast is handled separately.) 1hép have

functionality that suffices for achieving broadcast. Here, the form (m, gy, Pi,0ays Pags -+ 100, 5y Pa, 5 =

use gradecast in a different way, by having a ssatiseof P)).

the parties run some sub-protocol while gradecasting their
messages to all parties in the network.

We now describe the two phases of the protocol in more
detail, and prove the protocol’s correctness.

If P1,Py,,,...,P,_, € Init are all uniquep,, is a
valid signature onn by P;; ando,, is a valid signa-
ture ono,,_, by P,, for1 < k < j — 2 (if all these
conditions hold, we say; , is valid in stepj), then:

and |[M;| < 2, then: setM; := M; U {m};
Setg* X gflog(c+)1+1 4 oflog(e+1)] _ 1 4 Recall that we compute a signature,, , on o, ,; and run
assume, without loss of generality, thBt is the sender. M-Gradecast((m] 4, 0a; ., i), 9")
Let Init 4 {Py,...,P.41} (these are the parties who Case 2:P; € Rem. Setg;¢ := min{gir,g;,}. |If
run the Dolev-Strong protocol in thaitial phase) and let m ¢ M;, and|M;,| < 2, then setM;, :=
Rem % {P.42,..., P} (these are the parties whemain M U{m}.

in the second phase). Each paRye Init\ {P;} has a vari-
able M; initialized to the empty set; each parly € Rem
has variableg; 1, . .., g; .41 all initialized to g*, and vari-
ablesM; 1, ..., M; .4 allinitialized to the empty set.
Roughly speaking, when a pa® € Init\{P; } receives
a new message that originated frdn (with correct signa-
tures attached), then as long|a$;| < 2 it signs and grade-
casts the received message, and adds the messdde to
However, P; stops adding new messages ontg| = 2,
as this meang; has received valid signatures of the sender
on two different messages (and b knows the sender is
dishonest). Eaclr; determines its output based on the con-

2. 1f P, € Init\ {P}: Letd < 2 denote the number
of times P; has already ruii-Gradecast in this step.
Run2 — d invocations of-Gradecast(‘nothing’, g*).
(This ensures that eadf, € Init \ {P1} acts as the
sender in exactly two executions BGradecast in
each step.)

Output determination: Let L and¢ be two special sym-
bols, with L indicating that a party has received two dif-
ferent messages with valid signatures of the sendergand
indicating that a party did not receive any messages with a

tents ofM; at the end of Phase I. valid signature of the sender.
Each partyP; € Rem acts as follows: every time it Each party P; € Init \ {P;} does: If |M;| = 2, output L;
hearsP; < Init gradecast a new message that originated if |M;| = 1, output the message i;; if |M;| = 0,

from P1 (with correct signatures attached), then as long as outpute.
|M; ;| < 2 it adds the message t/; ; and updateg; ;
based on the grade it received in the aforementioned execu-
tion of gradecast. At the end of Phasé’},determinesV/; ;

Each party P, € Rem does: For eachP; € Init, compute
m; ¢ as follows:

(i.e., its determination as to what will output) based on o If |M; | = 2, setm; :=1;if |M;,| = 1, set
the contents of\/; ;. m; ¢ to be the message W, ¢; if | M, ¢| = 0, set
mie = (;5

4Jumping ahead, the reasgh is set to this particular value is related
to the second phase of the protocol. In Phase Il, the pariiesamnbine The round complexity of Phase | '(Q(kQ) as claimed.

¢+ 1 message/grade pairs into a single message/grade pairqo@r@e of  \va oy state several properties related to the first phase of
log(c+1) steps. In each step, the maximum possible grade will be eeluc

by half, and we se§* to this particular value so that the final grade will lie our prOtOCOI_ (proofs. app(_aar in the Appendix). Phase Il of
between 0 and 2. Rand-Bcast is described in Section 3.2.2.



Lemma 3. If the senderP; is honest, the following holds
at the end of Phase I:

1. All honest parties init \ { P, } outputm;

2. Forall honest partie®; € Rem, it holds thatmn, ; =
mandg; 1 = g*. Furthermore, foreacB < j <c+1
it holds thatm; ; = m or m; ; = ¢ (this holds even if
P; is dishonest).

The next three lemmas concern the case when there ex-

ists an honest party imit \ {P; }.

Lemma 4. If any honest partyP; € Init \ {P;} outputs.L,

then all honest parties ifnit \ {P; } output_L, and for any
honestP; € Rem it holds thatm;, =1 andg;; = ¢* at

the end of Phase I.

Lemma 5. If any honest party?; € Init \ {P;} outputse,

then all honest parties itnit \ {P; } outpute, and for any
honestP; € Rem it holds thatm;; = ¢ andg;; = ¢g* at
the end of Phase |. Moreover,if; ;, # ¢ for somek €

{1,...,c¢+ 1}, theng; , < 1.

Lemma 6. If any honest party?; € Init \ {P;} outputs
m & {1, ¢}, thenall honest parties imit\ { P, } outputm,
and for any honesP; € Rem it holds thatm;; = m and
g;: = g~ atthe end of Phase |. Moreoveryif; ;, # m and
mj i, 7 ¢ forsomek € {1,...,c+ 1}, theng, , < 1.

The next lemma states that some relaxed form of agree-

ment exists among the partiesRam regarding their deter-
mination as to what a (dishones®) < Init outputs. (Note

that the case of an honegtis handled in the previous three
lemmas.) The lemma follows directly from the properties of

gradecast and the specification of Phase I.

Lemma?7. For1l </ < c¢+ 1, atthe end of Phase I:

o If an honest partyP; € Rem hasg; , > 1, then all
honest parties?; € Rem have bothn; , = m; , and
9je 2 gie — 1.

o If an honest party?; € Rem hasg; , = 1, then all
honest parties”; € Rem have eithern; , = m; ¢ or

gje = 0.

3.2.2 Phasell

In the second phase of the protocol,
in Rem determine their outputs based on the
formation they obtained in the first phase.
that by the end of Phase |, each; holds values
{(mi1,9i1), (Mi2, Gi2)s - -5 (Micq1, Gier1) } WhereO <

gij < g-foralll < j < ¢+ 1. In Phase Il, based
on these values, each; first locally computes a single

message/grade paﬁm§0)7 gfo)

the parties

), and then determines its

output as in Phase Il of the protocol for = n/2 de-
scribed earlier. The message/gra(de(o)7gl ) is com-
puted from{ (m; 1, g:.1), (M2, i2)s - -, (Mi,ct1, Gier1) }

in a sequence oflog(c + 1)] (non-interactive) steps: in
each step the number of message/grade pairs is reduced by
half by “combining” two adjacent message/grade pairs into

a single pair.

Before we describe the second phase of the protocol, we
first describe a subroutine which takes a valuévo mes-
sagesni, mo, and two gradeg;, go (wherel < g1,g92 <
24+1 4 24 _ 1) as input, and outputs a messageand a
gradeg (where0 < g < 29 4-24-1 —1).

SubroutineCombine(d, m1,ma, g1, g2)

If (m1 = mg) then
m := my andg := max{g, — 2¢ _ 9d-1
24=10};
else if(m1 # ms) and(m; # ¢) and(msy #1) then
begin
If (g1 <1) and(gg =24+l 4 24 _ 1) then m = my
andg := 24 + 24-1
elseif(g1 <2) and(92
andg := 24 +29°1 2

g2 — 2% —
> 24+ 124 2)thenm := my

else if (g1 < 2% +2971) and (g, > 2¢ + 2971) then
m :=ms andg :=0

elsem := m; andg := max{g; —2¢ — 2471 0}

end
else(Note: here, eitherf; = ¢ andms # ¢) or (my #L
andmsy =1))

begin

if (QQ < 1) and(gl = 2d+1 + 2d _
andg := 2d 4 9d=1_ 1
elseif(g2 < 2)and(g; > 29+ +29-2) thenm := m,

andg := 27 42471 — 2

1) thenm := my

else if (g2 < 29 + 2971) and(g; > 2¢ + 29-1) then
m :=mq andg :=0

elsem := my andg := max{g, — 2¢ — 2471 0}

end
output(m, g).

Each party invokes the above subroutine using as input
its own set of message/grade pairs. Informally, if a “re
laxed” form of agreement on the input message/grade pairs
has been established among the parties, this “relaxed” form
of agreement still holds for the output message/grade pair.

o |n” We make three observations regarditgbine. The first
ecal

observation states that if one of the input messages is equal
to L and the corresponding grade is the maximum grade
possible, then the output message will be equal tand

the output grade will be the maximum grade possible.

Observation 1. If m; =1 (resp.,me =1) andg; =



24+1 1 24 1 (resp.,go = 2911 4+ 29 — 1), thenm =1 and
g=2%420"1 1,

We prove the following technical lemma in the Apendix
which states that relaxed agreement is established on the

o ) , message/grade paif$m;, g;)}.

The second observation is that if one of the input mes- _
sages is equal to’ ¢ {1, ¢}, the corresponding grade is Leémma 8. By Fhe end of Phase I, the following holds for
the maximum grade possible, and one of the three follow- all honest parties’;, P; € Rem:
ing conditions hold: (i) the other input message is equalto e If g; > 1, thenm; = m; andg; > g; — 1.
¢; (ii) the other input grade is “low” (i.e., at most 1); or
(iii) the two input messages are the same, then the output
message will be equal te’ and the output grade will be
the maximum grade possible.

o If g; =1, thenm; =m;org; =0.

We now argue thaRand-Bcast achieves broadcast.
There are three cases:

The sender P; is honest. By Lemma 3, all honest parties
in Init \ {P;} outputm. For any honest party; € Rem,

it follows from Lemma 3 and Observation 2 that = m
andg; = 2 at the end of Phase Il, which implies thBt
outputsm.

Observation 2. If m; ¢ {L,¢}; g1 = 24+ +2¢ — 1; and
either (L)ms = ¢ or (2) g2 < 1 or (3)mg = my, thenm =
my andg = 2¢ + 24-1 — 1. Analogously, ifns ¢ { L, ¢};
g2 = 291 129 _ 1; and either (1)m; = ¢ or (2) g; < 1
or (3) my = ma, thenm = my andg = 2¢ +24-1 — 1,
P, is dishonest but there is an honest partyP; € Init \
The third observation is that if one of the input mes- {P1}. SupposeP; outputs.. By Lemma 4, all honest par-
sages is equal t¢, the corresponding grade is the max- ties inInit \ {P;} output L. Lemma 4 and Observation 1
imum grade possible, and one of the two following condi- show that, at the end of Phasertl; =1 andg; = 2 for any
tions hold: (i) the other input message is equal tr (ii) the honest party?; € Rem, which implies thatP; outputs_L..
other input grade is “low” (i.e., at most 1), then the output on the other hand, iP; outputss it follows from Lemma 5
message will be equal tpand the output grade will be the  and Observation 3 that all honest parties outauEinally,
maximum grade possible. if P, outputsm & {L,¢} it follows from Lemma 6 and

Observation 3. If my = ¢; g1 — 24+ 4 24 — 1: and Observation 2 that all honest parties output

either (1)mqe = ¢ or (2) go < 1, thenm = ¢ andg =
2¢424=1_1. Analogously, ifny = ¢; go = 241 +291;
and either (1)m; = ¢ or (2) g1 < 1, thenm = ¢ and
g=24420"1 1,

All parties in Init are dishonest. This means that a strict
majority of the parties irRem are honest. There are two
sub-cases. The first sub-case is that by the end of Phase I
there exists an honest parly € Rem such thatg; = 2.

_ Then, by Lemma 8p; = m; for all honest partie$’; and
We are now ready to specify the second phase of the pro-g5 4| honest parties will output the same vatug The

tocol. Recall that the parties Init donottake partinthis  gacond sub-case is that < 1 for all honest parties;. In

phase. this case, it follows from the properties Bponestmaj that

ProtocolRand-Bcast — Phase II: all honest parties output the same message.

PartiesP; € Rem perform the following steps:

Phase | terminates in exacty(k?) rounds. Arguing as

1.Forl < j < c+1 set mgf!og(‘?“ﬂ) := m;; and in the case of = n/2, we see that Phase Il terminates
(Mog(e+D)T) . 7 7 in expected constant rounds. We thus obtain the following
Jisj = 9 theorem:

for c+2 < j < 2floe(c+1)] setm(UOg(C“m .— pand

g{Tlose ) _ g,

. For d := [log(c+1)] to 1 do:

for e := 1 to 297! do: (mgjl;”, giﬁl)) —
Combine(d’ ml(',dQ)efD gl(.é)efl’ ml(',dQ)e’ gz(é)e)

. Set(mi, g;) == (m{%, g\).

If g; = 2then P; enters protocAonestvajWith input
m;, terminate®Aponestvaj after K rounds (wherés is
the constant from Lemma 1), and outputs.

else(i.e., g; < 2) P; enters protoCoBAwonestimaj With
inputm;, ruNSBAHonestMaj UNtil successful termination

Theorem 1. There exists an authenticated randomized
party broadcast protocol tolerating= n/2 + k dishonest
parties that runs in (expected)(k?) rounds.

4. A Lower Bound on the Round Complexity

We start by considering a group of parties
Py, Py, ..., P, such that only two of them are honest. We
show that there does not exist any (randomized) broadcast
protocol having any runs that terminate in fewer than 1
rounds.

Consider a broadcast protodalfor k& parties that toler-

of the protocol, and outputs whatever directed to by atesk — 2 dishonest parties. Fdar< i < k, we construct a

BAHonestMaj .

protocolll; that is the same d$ except that:



e If 4+ = 1, thenP; ignores all the messages sent to it
except for those fron®, and only sends messages to
P, (i.e., P, only communicates witl#).

e If 2 < i < k— 1, P;ignores all the messages sent
to it except for those fronP;_; and P;; 1, and only
sends messages 1§ _; and P, (i.e., P; only com-
municates withP;,_; and P, 1).

e If i = K, then P, ignores all the messages sent to it
except for those fronP,_1, and only sends messages
to P, (i.e., P, only communicates witlP;_1).

Forl <i <k —1landb e {0,1}, define scenariSfb)
as follows:

e P is the sender and the liitis its input.

o All parties except forP; and P;, ; are dishonest. The
honest partied®; and P, ., execute the protocdl; a
dishonest party’; executes the protocl;.

For any2 < i < k, party P, cannot distinguish whether
itisin Si@l or Sl.(b). In scenari09§b), partiesP; andP; are
both honest. ThusP; and P, have to outpub by the end
of the protocol. Sincé, cannot distinguish whether it is in
Sf’) or Séb), we see thaP, has to outpub in scenarioséb)
as well; this means tha?; has to outpub as well. Prior
to round 1, however, the view d?®, is completely indepen-
dent ofb, and so the view of; is independent of prior to
round 2.

In general, in scenariSfb), partiesP; and P;; have to
outputb and the view ofP;,; is completely independent
of b prior to roundi. If b is chosen uniformly at random
andII terminates before rourfd— 1, then in scenaricS?,(ff1
the output of P, will not be equal tob with probability at
leastl/2. Sincell is a broadcast protocdll cannot termi-
nate before round — 1. We conclude that there does not

(3]

(4]

(5]

(6]

[7]

(8]

9]

[10]

exist any broadcast protocol that can terminate in less than

k — 1 rounds ifk — 2 out of k parties are dishonest.

Using standard player-partitioning techniques (see the

Appendix), we can generalize the above to show:

Theorem 2. There does not exist any (randomized)arty
broadcast protocol toleratingdishonest parties that termi-
nates in fewer than /(n—t) — 1 rounds (whem — ¢ > 2).
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and soP; outputsm; with g; > ¢g; — 1. For the case; = 1,

|M;| = 2 by the end of stefz + 1. This proves the first

following the claim in the previous paragraph, no honest item. Next consider an honest patfy € Rem. Following

party P; receives a message’ different fromm; (with a
valid signature from the sender) in or before round- 1.
SinceP; receivesn; (along with a valid signature from the
sender) in round, it holds thatm; € S; by the end of
step (a) inround; + 1. It follows thatg,; = 0 (if a different
messagen’ is received byP; in roundr,) orm; = m,. O

A.2. Properties of Rand-Bcast

Lemma 3. If the senderP; is honest, the following holds
at the end of Phase I:

1. All honest parties itnit \ { P, } outputm;

2. For all honest parties®; € Rem, it holds thatm,; ; =
mandg; 1 = g*. Furthermore, foreacB < j <c+1
it holds thatm; ; = m or m; ; = ¢ (this holds even if
P; is dishonest).

Proof. If the senderP; is honest, then in step 1 all honest
partiesP; € Init \ {P} receive(m,o, P;) as the output
of the gradecast by’;, whereos is a valid signature om

by P,. Hencem € M; by the end of step 2. Since the adver-
sary cannot forge a signature Bf, no message besides
will be added tolM; by the end of Phase I. Thus, all honest
partiesP; € Init \ {P;} will outputm.

For all honest partie®; € Rem, we haven;; = m and
g;1 = g* by the properties ofi-Gradecast. Furthermore,
m;; = morm;,; = ¢ forany2 < i < ¢+ 1 as the
adversary cannot forge a valid signaturerpf O

We prove two technical results that will be used in the
proofs of Lemmas 4— 6.

Lemma 9. Let P; € Init\ {P;} be honest. lin € M; by
the end of Phase I, then:

1. Forany honesP; € Init\{P; } itholds thatm € M;
or|M;| = 2.

2. For any honesP; € Rem it holds thatm € M; ;.

Proof. Supposem is added toM; in stepk. Then in
step k — 1, party P; received a message:; ,,
(M, 000 P1,00y, Payy -y 0ay_ss Pa,_,) @S the output of
a gradecast by some parfy,, ,. In stepk, P; verifies
thatm; ,, , is valid, addsm to M;, computes a signa-
tureo,; , of 0., ,, and gradecasten;, _ ; 04, ,,F;).
All honest parties receiven; , .0, ,, ;) as the out-
put of that gradecast. Sinee is added toM; in stepk,

it means thatn is not in M; in stepk — 1. Therefore,
P, ¢ {P1,Ps,,...,Pa,_,} Thisimplies that < c+ 1.
We know that(m; ,, ,,0a,_,,F:)isvalidin stepk +1.
Consider an honest; € Init \ {P;}. If m is not added to
Mj in stepk + 1, then it means that is already inM; or

the properties af-Gradecast and the protocol description,
m € M; ; by the end of step + 1, which proves the second
item. O

Lemma 10. Let P, € Rem be honest. If, for som&; €

Init, it holds thatm € M;; andg;; > 2 at the end of
Phase I, then for all honest partid3, < Init\ {P; } it holds
that eitherm € M, or |M}| = 2 at the end of Phase .

Proof. Supposen is added tal/; ; in stepr. This means
P; gradecastsr; = (m, 04y, - ..,0a,_,, P;) in stepr — 1,
and P; receivesm; with grade at least 2. Following the
properties ofM-Gradecast, all honest parties receive;;
with grade at least 1. We know that; is valid in stepr
sincem is added tal; ; in stepr. Therefore, by the end
of stepr, it holds thatm € Mj, or |M}| = 2 for all honest
partiesP;, € Init\ {P;}. O

Lemma 4. If any honest party?; € Init\ {P; } outputsL,

then all honest parties ifnit \ { P } output_L, and for any
honestP; € Rem it holds thatm;; =1 andg;; = g* at

the end of Phase .

Proof. If P; outputsL, then|M;| = 2 by the end of Phase I.
Using Lemma 9, by the end of PhaséM;| = 2 for all
honest partie®; € Init\ { P4 }. ThereforeP; outputsL. If
P; € Rem is honest,P; always receives gradg' in every
gradecast by’;. By Lemma 9yn;; =1 andg;; = ¢*. O

We prove Lemma 6 first, since we rely on it to prove
Lemma 5.

Lemma 6. If any honest party?; € Init \ {P;} outputs
m & {1, ¢}, thenall honest parties imit\ { P, } outputm,
and for any honesP; € Rem it holds thatm;; = m and
g;; = g* atthe end of Phase |. Moreoveryif; ;, # m and
mj i, # ¢ forsomek € {1,...,c+ 1}, theng, , < 1.

Proof. By the end of Phase #p € M;. Consider an honest
party P; € Init \ {P1}. By Lemma 9, we have: € M; by
the end of Phase I. IP; does not output, then|A/;| = 2
which means’; outputsL. By Lemma 4,P; should output
L instead ofmn, a contradiction.

Next consider an honest pa € Rem. We know that
m;; = mandg;; = ¢g* by the properties df-Gradecast.
Now suppose there existda< k < ¢+ 1 such thatn; ;, #
m andm; # ¢. Then there exist&n’ # m such that
m’ € M; ; by the end of Phase |. By Lemma 10, this means
gjx < 1orm’ € M; or |M;| = 2 by the end of Phase .
Since P; outputsm, we haveM; = {m} and this means
gjk < 1. U



Lemma 5. If any honest partyP; € Init \ {P;} outputs 2. Next suppose that for all honest partiBs P; €

¢, then all honest parties iiit \ {P;} outpute, and for Rem, it holds thatm(.‘g“fl) — m(d *1 The proof of
any hones?’; € Rem it holds thatm; ; = ¢ andg; ; = g* this case is analogous to the previous case.
at the end of Phase |. Moreoveryit; ;. # ¢ for somek € ) i i .
_ ’ 3. Finally, consider the case where neither condition

{1,...,c¢+ 1}, theng; , < 1. 71

above holds. This means thgf)zj_l < 1 and
Proof. Consider an honest party;  Init \ {F1}. If P gf‘g:” < 1 for all honest parties;. Following the
does not outpup then, using Lemma 4 and Lemma B,
should outputlL orm’ instead, a contradiction. protocol specn‘lcatlongZ ., = 0. Hence the statement

Now consider an honest parfy; € Rem. Properties of holds.

M-Gradecast imply thatm,; = ¢ andg;; = g*. Suppose O

there exists d < k£ < ¢+ 1 such thatm;, # ¢. Then

there exists am’ € M; ;. by the end of Phase I. Following A.3. The Lower Bound

Lemma 10,9 < 1 orm’ € M, or |M;| = 2. SinceP;

outputse, this implies thay; 5, < 1. O Theorem 2. There does not exist any (randomizeeparty
broadcast protocol toleratingdishonest parties that termi-

Lemma 8. By the end of Phase I, the following holds for "ates in fewer tha@in/(n —t) —1 rounds (whem —¢ > 2).

all honest parties’;, P; € Rem: Proof. Let h = n — t. We divide the parties inté =
e If g; > 1,thenm; = m, andg; > ¢; — 1. n/(h/2) disjoint groupsGy,...,Gy, each of sizeh/2.

Consider a broadcast protodalfor n parties that can tol-

eratet dishonest parties. Fdr < ¢ < k, we construct a

Proof. The lemma follows once we show that, by the end of Protocolll; thatis the same ds except that

Phase Il, forany < d < [log(c +1)] and1 < e < 2% o If i = 1, thenthe parties it¥; ignore all the messages
sent to them except for those from the partie&inu
G-, and only send messages to the partie§inJ Gs

o |f gi; = 1, thenmj =m; 0rg; = 0.

o If ggde) > 1 for some honest party; € Rem, then

d (d : ) . : 2
m§2 =m{? andg ) > {9 — 1 for any honest party (i.e., parties inG; only communicates with parties in
P; € Rem . G1UGY).

o If gY = 1 for some honest party; € Rem , then e If 2 <i < k—1, parties inG; ignore all the messages
eitherm'® — m(d) or g(d) 0 for any honest party sent to them except for those from the partie§jn; U
J,€ J,€ . ) . .
P, € Rem. G;UG;+1, and only send messages to partie§jn, U
J

G; UGy (i.e., parties inGG; only communicates with
parties inG;—1 U G; U Gi41).
Base CaseThe statement is true faf = [log(c + 1)] and e If i = k, then the parties &, ignore all the mes-

anye by Lemma7. sages sent to them except for those from the parties in
Gi_1 U Gy, and only send messages to the parties in
Gi_1UG (i.e., parties irGj, only communicates with
parties inGy_1 U Gg).

We prove the above by induction ahn

Inductive Step: Assume the statementis true fbe= d’+1
ande = 2¢’ — 1 ande = 2¢’. We show that the statement is
true ford = d’ ande = ¢’. We have the following cases:

. ' - o(b
1. Suppose that for all honest parti€s P; € Rem, Forl <i < k- 1andb € {0,1}, define scenaris”
we haver!% 11, = m!% 5V, . Consider the two sub- @ follows: - o
cases: 7 e The sender is it7; and the bit is its input.
All parties except for the parties i, U G;,.; are
o m{G5Y = m{% Y for all honest parties;, P;. .dishc?nest P P i

Then foIIowmg the protocol specmcatlon the '

statement is true faf = &’ ande = ¢'. e The honest parties i&; U G;1 execute protocdll;

each dishonest party ifi; executes protocdl;.

The rest of the proof proceeds analogously to the discussion
in Section 4. O

m(d/+1> 4 m(d/+1>

i 20/ joer  for some honest parties

P, P;. This meang’,’") < 1 for all honest

partiesP;,. Following the protocol specification,

if g,(ch:,l)l > 2% 4 2471, thenm,(cd/z = m,gdézl)l
andg®) = g{%t) | — 242971 elseg!”) = 0.

Thus the statement is true fér= d’ ande = ¢’.



