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Abstract

The problem of (stateless, symmetric-key) broadcast encryption, in which a central authority
distributes keys to a set of receivers and can then send encrypted content that can be decrypted
only by a designated subset of those receivers, has been the focus of a significant amount of
attention. Here, we consider a generalization of this problem in which all members of the group
have the ability to act as both sender and receiver. The parameters of interest are the number
of keys stored per user and the bandwidth required per transmission, as a function of the total
number of users n and the number of excluded/revoked users r.

As our main result, we show a multi-sender scheme allowing revocation of an arbitrary
number of users in which users store O(n) keys and the bandwidth is O(r). We prove a matching
lower bound on the storage, showing that for revoking an arbitrary number of users Ω(n) keys
are necessary (regardless of the bandwidth) for unique predecessor schemes, a class of schemes
capturing most known constructions in the single-sender case. Previous work has shown that
Ω(r) bandwidth is needed when the number of keys per user is polynomial, even in the single-
sender case; thus, our scheme is optimal in both storage and bandwidth.

We also show a scheme with storage polylog(n) and bandwidth O(r) that can be used to
revoke any polylog(n) users.

1 Introduction

In the classical setting of broadcast encryption [16], there is a group of n users to which a sender
periodically transmits encrypted data. At times, the sender requires that only some designated
subset S of the users should be able to decrypt the transmission and recover the original plaintext;
the remaining users R—who should be unable to learn anything about the underlying plaintext,
even if they all collude—are said to be revoked from that transmission. We are interested here in
symmetric-key schemes that use no public-key operations, and which are also stateless, i.e., in which
the keying material stored by each user remains fixed even as different subsets of users are revoked.
This problem is motivated by applications to secure content distribution, but has applications to
secure multicast communication more generally.

To the best of our knowledge, all previous considerations of broadcast encryption explicitly
consider the case in which there is one, designated sender, and each of the n users acts only as
a (potential) receiver. (A case that has been considered previously is the “point-to-point” setting
in which each user should be able to communicate securely with every other user. See further
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discussion in Section 1.1.) But in the setting of multicast communication it makes sense to assume
that each of the n users might want to communicate with any subset of the others; that is, each of
the n users might sometimes act as a sender and sometimes as a receiver. We refer to this as the
multi-sender setting. Multi-sender broadcast encryption is applicable whenever there is some group
of users all of whom wish to jointly communicate, yet from time-to-time some users’ devices are
compromised and so those users must be revoked. Or, users in the group may each have different
access privileges, and so the set of revoked users for any particular transmission (being made by
any one of the n users) may vary depending on the context. We initiate a study of multi-sender
broadcast encryption in this paper.

As in the single-sender case, the main parameters of interest are the storage per user and the
bandwidth overhead per transmission, as a function of the total number of parties n and the number
of revoked users r. There is a trivial solution in which each user shares a key with every other
user, and uses the appropriate keys to encrypt to any desired subset. This solution requires each
user to store n − 1 keys and has bandwidth n − r − 1. The natural questions are whether it is
possible to achieve storage and/or bandwidth sublinear in n. (We remark that traditionally r ≪ n
is considered the interesting case, as it is assumed that the number of revoked users will be small
in normal operation of the scheme.) As our main results, we show:

• There is a multi-sender scheme supporting revocation of arbitrarily many users, in which
each user stores O(n) keys and the bandwidth is O(r). Moreover, we prove a lower bound
(when revocation of arbitrarily many users must be supported) showing that Ω(n) storage is
necessary, regardless of the bandwidth, for unique predecessor schemes [2], a class capturing
all recent constructions in the single-sender setting [29, 20, 19].

Austrin and Kreitz [2] have previously shown that the bandwidth must be Ω(r), even in the
single-sender case, when polynomially many keys are used; thus, our scheme is asymptotically
optimal in both storage and bandwidth.

• There is a multi-sender scheme supporting revocation of any set of r ≤ polylog(n) users,
having storage polylog(n) and bandwidth O(r).

We refer to Section 1.2 for a more complete discussion of our results.

1.1 Prior Work

As noted earlier, to the best of our knowledge all prior work treating (symmetric-key) broadcast
encryption focuses only on the case of a single sender. (Nevertheless, as we discuss below, some
prior work is applicable to the multi-sender setting.) We briefly survey this body of work here,
without intending to be exhaustive.

We remark that in some formulations of broadcast encryption, security is defined to hold with
respect to all coalitions R ⊆ [n] \ S containing at most r′ users, for some bound r′, rather than

with respect to R
def
= [n]\S as here. The former offers reduced security, but (potentially) allows for

security/efficiency tradeoffs depending on the assumed number of colluding users. For simplicity,
and following recent work in this area (e.g., [29, 20, 19, 18]), we assume R = [n]\S in the discussion
below and throughout the paper.

Single-sender broadcast encryption. The work of Blundo et al. [7], which extends the work of
Blom [6], can be used to construct a scheme in which a group of n users is given keying material

2



that allows any subset S′ of size t to compute a shared key that is information-theoretically hidden
from the r = n − t other users. Their work implies a multi-sender broadcast encryption scheme
with bandwidth 1: user i can transmit to a set of n − r − 1 other users S by encrypting with
the key shared by users in S′ = S ∪ {i}. Unfortunately, the storage per user in their scheme is(

n−1
n−r−1

)
, which they prove is optimal for their setting. Blundo et al. [8] also consider a more careful

application of these ideas to the problem of broadcast encryption, trading off higher bandwidth for
lower storage. For most interesting settings of the parameters, however, this work is subsumed by
the schemes discussed below.

Fiat and Naor [16] introduce the term “broadcast encryption,” and show a scheme with storage
O(rmax log rmax log n) and bandwidthO(r2max log2 rmax log n), where rmax denotes a pre-determined
upper bound on the size of r. Further improvements were given by [1, 17, 24, 25, 18]. Note that
in all these schemes both the storage and the bandwidth depend on rmax, so either rmax must be
small or the parameters of the scheme are high even if only few users are actually revoked.1

Most recent work has focused on schemes that directly have the flexibility to communicate with
arbitrary subsets of users while revoking all others. The following general approach can be used for
constructing such schemes: Fix a set of keys K held by the sender. Each user i is given some subset
Ki ⊂ K of these keys. For the sender to securely send a message to a group S, it suffices if there is
a set KS ⊂ K of keys such that (1) each user in S knows at least one key in KS , and (2) no user in
the revoked set R = [n] \ S knows any of the keys in KS . This implies a solution with bandwidth
|KS | in which the sender encrypts the content independently using each of the keys in KS , and
each intended receiver decrypts the appropriate ciphertext using a key they know. Following [26],
we refer to this as the OR approach. Naor, Naor, and Lotspiech [29] propose the complete subtree
(CS) scheme that uses this approach, and has storage log n and bandwidth r log n/r.

The schemes above have information-theoretic security. One can use key derivation to reduce
the per-user storage, at the expense of achieving only computational security. When using key
derivation, roughly speaking, users need not explicitly store all the keys they have access to; instead,
they may derive one key from another, or derive multiple keys from a single predecessor, using a hash
function (possibly modeled as a random oracle), a pseudorandom generator, or a pseudorandom
function. Naor, Naor, and Lotspiech [29] present the subset difference (SD) scheme that uses the
OR approach and key derivation, and achieves storage O(log2 n) and bandwidth O(r). This was
improved in subsequent work [20, 5, 4], culminating in the SSD scheme of Goodrich et al. [19] that
achieves storage O(log n) and bandwidth O(r), though at the expense of requiring computation
linear in n. (Hwang et al. [21] show how to improve the computation to O(log n) at the expense of
a small increase in bandwidth.) Jho et al. [22] show a scheme with storage O(cp) and bandwidth
O( rp + n−r

c ), where c, p are parameters; the scheme fares best (and beats [29, 20] in terms of both
storage and bandwidth) when r is a large constant fraction of n. This scheme was further improved
in [21], but even in that case either the bandwidth is Ω(

√
n) when r = O(1) or else the scheme

requires storage Ω(
√
n). Other relevant work in the single-sender case includes [12, 31].

Lower bounds for broadcast encryption schemes following the OR approach have been studied
in both the information-theoretic setting [26, 29, 18] and when key derivation is used [2].

Secure point-to-point communication. Motivated by achieving secure point-to-point commu-
nication, Dyer et al. [14] (see also [28]) consider the setting in which each user i holds a subset

1Another possibility is to run log rmax independent copies of the scheme using powers of two for the maximum size
of the revoked set. This allows the bandwidth to depend on the actual number of revoked users r, though increases
space by a factor of log rmax.
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Security Storage Bandwidth Scheme

info. theoretic O(r2max log n) O(r2max log n) Follows from prior work [14]

info. theoretic n log n r log n
r Result 1 applied to CS scheme [29]

info. theoretic O(n1+1/k) O(kr) Result 1 applied to Scheme 1

info. theoretic O(r4max n
1/2 log n) 2 rmax Result 3 applied to [18]

computational O(n) O(r) Result 2 applied to Scheme 1

computational O(r2max log2 n) O(r) Result 3 applied to SSD scheme [19]

Table 1: Constructions of multi-sender broadcast encryption schemes. Scheme 1 is described in
Appendix A.

Ki ⊂ K of keys, and each pair of users i, j has a set of keys Ki,j = Ki ∩Kj in common that are
not all known to any set of at most rmax other users. Although Dyer et al. do not explicitly treat
the case of multi-sender broadcast encryption, we observe that their scheme can be used to solve
that problem if the number of revoked users is bounded: Consider a user i who wishes to securely
transmit a message to some set S of users. Let R = [n] \ (S ∪ {i}), where |R| ≤ rmax. Then i
and each user in S must share at least one key not known to any user in R; user i can encrypt
its content using all such keys. This results in a multi-sender broadcast encryption scheme with2

storage and bandwidth O(r2max log n).

Other related work. The case of stateful broadcast encryption has also received extensive at-
tention (for the single-sender case), in terms of both constructions [30, 32, 3, 11, 10] and lower
bounds [11, 27]. Here, some set of authorized users S is continually maintained by the sender;
the authorized users always share a single key under which the sender encrypts its communication.
From time to time, the sender revokes a user i, thus changing the set of authorized users. When
this happens, the sender transmits rekeying information that allows all users in S \ {i} to both
compute a new, shared key as well as to update their individual keying material.

Broadcast encryption has also been studied in the public-key setting [13, 9]. Of course, in
this setting every receiver can trivially also act as a sender. Public-key schemes inherently require
stronger assumptions than symmetric-key schemes, and generally incur higher computational costs.

1.2 Our Results

We show general transformations from single-sender broadcast encryption (BE) schemes to multi-
sender ones. Fix a single-sender BE scheme Π with storage s, bandwidth b, and where the sender
stores s∗ keys.3 We show:

Result 1: There is a multi-sender BE scheme with storage (n− 1) · s+ s∗ and bandwidth b that
supports the same number of revoked users as Π does; if Π is information-theoretic then so
is the derived scheme.

2These parameters are not stated explicitly by Dyer et al., who report only the total number of keys. However,
Corollary 1 and the proof of Theorem 4 in their paper show that the per-user storage is O(r2max logn); the bandwidth
is bounded by the number of keys held by any user acting as a sender.

3When computational security suffices, any single-sender BE scheme can be modified to have s∗ = 1 by having
the sender use a PRF to derive all the keys in the system. In the information-theoretic setting that is not the case.
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Result 2: If Π is information-theoretic, there is a multi-sender BE scheme with storage s∗ and
bandwidth b that supports the same number of revoked users as Π does. The scheme uses
key derivation, and so is no longer information-theoretically secure.

Result 3: For any bound rmax on the number of revoked users, there is a multi-sender BE scheme
with storage O((s · r2max + s∗ · rmax) · log n) and bandwidth b; moreover, if Π is information-
theoretic then so is the derived scheme.

Applying the above to known single-sender schemes (see also Appendix A) gives the results in
Table 1. Particularly interesting in practice, where computational security suffices, are:

• A scheme supporting revocation of arbitrarily many users, where each user stores O(n) keys
and the bandwidth is O(r). (Although the storage may seem high, we prove that it is optimal
for schemes of a certain class allowing arbitrary revoked sets.)

• A scheme with a pre-determined bound rmax on the number of revoked users that has storage
O(r2max log

2 n) and bandwidth O(r).

As noted earlier, we also prove a lower bound on the key storage for multi-sender BE schemes
that support revocation of an arbitrary number of users, and that are constructed in a certain
way. Specifically, we focus on so-called unique predecessor schemes [2], which are schemes that
follow the OR approach and in which keys are derived from secret values by applying a hash
function (possibly modeled as a random oracle), a pseudorandom generator, or a pseudorandom
function to those values individually. To the best of our knowledge, this class includes all known
computationally secure, single-sender schemes that improve on information-theoretic schemes, and
lower bounds for unique predecessor schemes (in the single-sender case) were previously studied
by Austrin and Kreitz [2]. Our bound shows that, in the multi-sender setting, any such scheme
requires at least one user to store at least n−1

2 keys. Interestingly, we also show that this bound is
tight, as there is a multi-sender BE scheme in which all users hold this many keys. (The bandwidth
in this scheme is n− r, which is why we do not include it in Table 1.)

Austrin and Kreitz [2] also show that any (unique predecessor) single-sender BE scheme with
polynomially many keys per user has bandwidth Ω(r) for small r, showing that our computationally
secure scheme supporting unbounded revocation is asymptotically optimal in terms of both storage
and bandwidth.

2 Definition of the Problem

We consider multi-sender broadcast encryption schemes, in which there is a set of users [n] =
{1, . . . , n}, each of whom is given some keying material by a trusted authority. Subsequently, each
user i ∈ [n] should be able to send a message to any desired subset of users S ⊆ [n] \ {i} such
that the revoked users R = [n] \ (S ∪ {i}) cannot recover the message even if they all collude. We
let r = |R| denote the number of revoked users. Some schemes support revocation of an arbitrary
number of users, whereas others impose an a priori bound rmax on the number of users who can
be revoked. We consider two classes of schemes—information-theoretic and computational—both
following the OR approach described in the previous section.

Information-theoretic schemes. In the information-theoretic schemes we consider, there is a
set K of keys chosen uniformly and independently from some key space. Each user i is assigned a
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set Ki ⊂ K, and the per-user storage of the scheme is defined as maxi |Ki|. When user i wishes to
send a message to a subset S, it finds the smallest Ki,S ⊆ Ki such that (1) each user j ∈ S holds at
least one of the keys in Ki,S (i.e., Kj ∩Ki,S ̸= ∅ for j ∈ S) and (2) no user j ∈ R holds any of the
keys in Ki,S (i.e., Kj ∩Ki,S = ∅ for j ∈ R). (For schemes supporting a bounded number rmax of
revoked users, such a Ki,S is only required to exist if n− |S| − 1 ≤ rmax.) User i can then encrypt
its message using4 each key in Ki,S . The bandwidth of the scheme for a given number of revoked
users r is defined to be maxi,S:n−|S|−1≤r |Ki,S |.
Computationally secure schemes. We consider unique predecessor schemes, as defined by
Austrin and Kreitz [2], that can offer reduced storage but only achieve computational security.
In such schemes, we have sets K,Ki, and Ki,S satisfying the same conditions as above, and the
bandwidth is defined in the same way. Now, however, users need not store their keys explicitly.
Instead, they may derive their keys from secret values they store, with the canonical example of
this being the use of a single secret value v to derive keys k1 = Fv(1), . . . , kℓ = Fv(ℓ) for F a
pseudorandom function. Following [2], we model this by a set V ⊇ K of “secret values” along with
a directed graph G (a key-derivation graph) whose nodes are in one-to-one correspondence with the
elements of V and such that each node has in-degree 0 or 1 (hence the name “unique predecessor”).
To instantiate such a scheme, a uniform value is chosen for each node with in-degree 0; then, for
every v′ ∈ V that is the ℓth child of some node v ∈ V , we set the value of v′ equal to Fv(ℓ).

Nodes labeled with elements of K are called “keys”; we say k ∈ K can be derived from v ∈ V
if v is an ancestor of k in the graph G (this includes the case v = k). Each user i is now given a
subset Vi ⊂ V of secret values, and we define Ki to be the set of keys that can be derived from Vi.
The per-user storage is now maxi |Vi|.

We remark that the information-theoretic setting is a special case of the above, where V = K
and all nodes have in-degree 0.

3 Constructions

We first consider two transformations of single-sender BE schemes to multi-sender BE schemes that
are applicable for any number of revoked users. Then, we look at the special case where there is
an a priori bound rmax on the number of users to be revoked.

3.1 A Trivial Construction

Let Π be a single-sender BE scheme for n users. The construction described here applies regardless
of how Π works, but for simplicity we assume Π is a unique predecessor scheme as defined in
Section 2 (adapted appropriately for the single-sender case). Thus, we let V̄ denote the set of
secret values in Π, let V̄i ⊂ V̄ denote the values given to user i, and let V̄0 ⊂ V̄ denote the values
with in-degree 0 (these are the only values the sender needs to store). We construct a multi-sender
scheme for n users by simply running Π in parallel n times, with each user acting as the sender in
an instance of Π. Our set of secret values will be V = [n]× V̄ , and user i will be given

Vi =
{
(i, v) | v ∈ V̄0

}
∪
{
(j, v) | j ̸= i, v ∈ V̄i

}
;

that is, user i will be given the values that the sender would store in the ith instance of Π, and
the values that user i would store (as a receiver) in all other instances of Π. For a user i to send a

4For long messages, user i can encrypt the message using a fresh key k and encrypt k using each key in Ki,S .
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message to a designated subset S, that user will simply act as the sender would in the ith instance
of Π when sending to S.

It is easy to see that this multi-sender scheme is secure if Π is. Consider any sender i and
designated subset of receivers S. Since only the ith instance of Π will be used, we can focus our
attention on values of the form {(i, v)}v∈V̄ . But then security of Π implies that even if all the users
in R collude, they will not be able to decrypt the message sent by user i. We thus have:

Theorem 1. Let Π be a single-sender BE scheme with s∗ sender storage, per-user storage s,
and bandwidth b. Then the multi-sender BE scheme described above supports the same number of
revoked users as Π does, and has per-user storage (n − 1) · s + s∗ and the same bandwidth as Π.
Moreover, if Π is information-theoretic then so is the derived scheme.

3.2 An Improved Construction

We now give an improved construction that uses key derivation applied to an information-theoretic,
single-sender scheme Π. Let K̄ denote the set of keys used by Π, and let K̄i ⊂ K̄ denote the keys
stored by user i in that scheme. Conceptually, in our multi-sender scheme we will again have n
instances of Π, with each user acting as a sender in one of the schemes. Now, however, the keys
in the various schemes will be correlated. Specifically, the keys used in the ith instance of Π will
be K(i) = {Fk̄(i) | k̄ ∈ K̄}. In our multi-sender scheme, each user i is given all the keys that the
sender would store in the ith instance of Π (namely, K(i)), as well as the values K̄i ⊂ K̄ that can
be used to derive the keys that user i would store (as a receiver) in all other instances of Π. Note
that user i need not store Fk̄(i) for k̄ ∈ K̄i; hence the storage of user i is exactly |K̄|.

More formally, we now have a set of keys K = {ki,j | i ∈ [n], j ∈ K̄} and additional values
V0 = {k0,j | j ∈ K̄}; define V = K ∪ V0. The keys satisfy ki,j = Fk0,j (i); in terms of the underlying
key-derivation graph, all nodes corresponding to V0 have in-degree 0, and node k0,j is a parent of
all nodes of the form ki,j . User i is given

Ki =
{
k0,j | j ∈ K̄i

}
∪
{
ki,j | j ∈ K̄

}
.

(We can also use the optimization mentioned above to reduce the storage slightly.) If we let

K(i) = {ki,j | j ∈ K̄} and K
(i)
ℓ = {ki,j | j ∈ K̄ℓ} ⊂ K(i), then the key observations are: (1) for

each i, the sets K(i),K
(i)
1 , . . . ,K

(i)
n correspond to K̄, K̄1, . . . , K̄n, and we thus have n instances of Π;

moreover, (2) user i can derive both K(i) as well as K
(j)
i for all j. Put differently, user i can act as

a sender in the ith instance of Π, and as a receiver in any other instance of Π. Thus, for a user i to
send a message to some designated subset S, that user simply acts as the sender using keys K(i);

each receiver j ∈ S derives the keys K
(i)
j and uses those to decrypt.

Security follows in a straightforward manner based on security of Π and the assumption that
F is a pseudorandom function. We thus have:

Theorem 2. Let Π be an information-theoretic, single-sender BE scheme with s∗ total keys, per-
user storage s, and bandwidth b. Then the multi-sender BE scheme described above is computa-
tionally secure, supports the same number of revoked users as Π does, and has per-user storage s∗

and the same bandwidth as Π.
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3.3 A Construction Supporting Bounded Revocation

In this section we explore an approach for constructing multi-sender BE schemes supporting a
bounded number of revoked users. Our construction uses the notion of r-cover-free families [23, 15]:

Definition 3. Fix a universe K, and 1 ≤ r < n. A family of sets F = {K1, . . . ,Kn} with Ki ⊂ K
is r-cover free if Kj ̸⊆ Ki1 ∪ · · · ∪Kir for any distinct j, i1, . . . , ir ∈ [n].

Kumar et al. [24] show, for any r, n, an explicit construct of an r-cover-free family of size n with
|K| ≤ 16r2 log n and |Ki| ≤ 4r log n for all i. We remark that rmax-cover-free families immediately
imply single-sender broadcast encryption schemes supporting up to rmax revoked users. In general,
however, the bandwidth of the resulting construction may be high.

We now show how to use an rmax-cover-free family in conjunction with any single-sender broad-
cast encryption scheme Π supporting up to rmax revoked users to construct a multi-sender scheme
supporting up to rmax revoked users.

Fix some rmax, and let {T1, . . . , Tn} be an rmax-cover-free family over a set T of size t. The
construction described below applies regardless of how Π works, but for simplicity we assume Π is
a unique predecessor scheme as defined in Section 2 (adapted appropriately for the single-sender
case). Thus, we let V̄ denote the set of secret values in Π, let V̄i ⊂ V̄ denote the values given to
user i, and let V̄0 ⊂ V̄ denote the values with in-degree 0 (these are the values the sender stores).

Our construction of a multi-sender scheme works by generating t independent instances of Π,
and giving each user i (1) the values that the sender would store in the jth instance of Π, for all
j ∈ Ti, and (2) the values that user i would store in all instances of Π. That is, our set of values is
now V = T × V̄ , and user i is given

Vi =
{
(j, v) | j ∈ Ti, v ∈ V̄0

}
∪
{
(i, v) | i ∈ T, v ∈ V̄i

}
.

Say user i wants to send a message to some designated subset S, where R = [n] \ (S ∪ {i}) has
size at most rmax. User i first finds an i∗ ∈ Ti such that i∗ ̸∈

∪
j∈R Tj ; such an i∗ exists by the

properties of the cover-free family. It then acts as the sender in instance i∗ of Π, revoking the users
in R. Security follows since Π is secure for at most rmax revoked users. Using [24], we thus have:

Theorem 4. Let Π be a single-sender BE scheme supporting up to rmax revoked users, and having
s∗ sender storage, per-user storage s, and bandwidth b(r) when revoking r ≤ rmax users. Then
the multi-sender BE scheme described above supports up to rmax revoked users, and has per-user
storage O(s∗ rmax log n+ s r2max log n) and the same bandwidth as Π. If Π is information-theoretic
then so is the derived scheme.

4 Lower Bounds on Per-User Storage

In this section we consider bounds on the per-user storage s for multi-sender broadcast encryption
schemes. We first observe a storage/communication tradeoff for information-theoretic schemes. Say
there is a scheme with per-user storage s and bandwidth b when revoking r users. Consider some
sender i storing keys Ki with |Ki| = s. There are

(
n−1
r

)
different authorized subsets S ⊂ [n]/{i}

that exclude r users, and for each one the set of keys Ki,S ⊆ Ki used by user i to encrypt must be
different and non-empty. Moreover, |Ki,S | ≤ b for all S. Thus, we must have

b∑
j=1

(
s

j

)
≥

(
n− 1

r

)
.
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Simplifying, this gives s ≥
(
n−1
r

)1/b
. If r is small, the above gives (asymptotically) b ≥ r log(n−1)

log s .
The most relevant consequence is that if r is constant, and the per-user storage is polylogarithmic
in n, then b = ω(r). It is interesting to note (cf. Table 1) that when r is constant there is a
computationally secure scheme with polylogarithmic storage and b = O(r).

Can the storage be improved in computationally secure schemes? Unfortunately, the following
theorem shows that any unique predecessor scheme supporting arbitrarily many revoked users must
have per-user storage Ω(n).

Theorem 5. Any unique predecessor scheme for n-user, multi-sender broadcast encryption sup-
porting arbitrarily many revoked users has per-user storage at least ⌈n−1

2 ⌉.

Proof. The ability to revoke r = n − 2 users implies that each pair of distinct users i, j must be
able to derive a shared key k{i,j} that cannot be derived by any other user. Call this the pairwise
key for i and j. We claim that for each such i, j, either user i or user j (or possibly both) explicitly
stores a value v{i,j} such that the only pairwise key that can be derived from v{i,j} is k{i,j}. This
implies that there are at least

(
n
2

)
values v{i,j} that are stored overall, and hence some user must

store at least
(
n
2

)
/n = n−1

2 values.
To prove the claim, let vi (resp., vj) denote the stored value used by user i (resp., user j) to

derive k{i,j}. Assume toward a contradiction that user i derives some other pairwise key (say, k{i,j′}
with j′ ̸= j) from vi, and that user j derives some other pairwise key (say, k{i′,j} with i′ ̸= i) from vj .
(Security implies that user i cannot derive the pairwise key k{i′,j′} if i ̸∈ {i′, j′}, and similarly for
user j.) The unique predecessor property implies that vi and vj must lie on the same path in the
underlying graph, and hence one must be an ancestor of the other. Without loss of generality, say
vi is an ancestor of vj . But then user i can derive vj and hence k{i′,j}, violating security.

This lower bound is essentially tight, as we now show an n-user scheme in which each user
stores exactly ⌈n−1

2 ⌉ + 1 values. For notational convenience, define H(x) = Fx(0) where F is a

pseudorandom function, and let H(i)(·) denote the i-fold iteration of H. Number the users from 0
to n− 1. Each user i stores:

• A value vi. Define k{i,j} = H(j)(vi) for j = i+ 1, . . . , i+ ⌊n−1
2 ⌋ (taken modulo n).

• Keys ki,j for j = i+ ⌊n+1
2 ⌋, . . . , i+ n− 1 (taken modulo n).

Each user stores 1+
(
n− ⌊n+1

2 ⌋
)
= ⌈n−1

2 ⌉+1 values. Note that each key k{i,j} can be derived only
by users i and j. Any user i can thus securely send a message to any designated subset S by using
the set of keys {k{i,j} | j ∈ S}.

As described, key derivation requires O(n) invocations of H. Using a tree-based construction,
however, this can be improved to O(log n).

5 Conclusion

We have introduced the problem of multi-sender broadcast encryption, a natural generalization of
symmetric-key broadcast encryption, and explored upper- and lower bounds on such schemes.

The most pressing question is whether or not there exists a computationally secure scheme
with storage o(n) using an altogether different paradigm. It would also be interesting to find an
information-theoretic scheme with storage O(n) and bandwidth better than the trivial n − r − 1,
or to show that to do asymptotically better is not possible.
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[15] P. Erdös, P. Frankl, and Z. Füredi. Families of finite sets in which no set is covered by the
union of r others. Israeli Journal of Mathematics, 51(1–2):79–89, 1985.

[16] Amos Fiat and Moni Naor. Broadcast encryption. In Advances in Cryptology—Crypto ’93,
volume 773 of LNCS, pages 480–491. Springer, 1994.

[17] Eli Gafni, Jessica Staddon, and Yiqun Lisa Yin. Efficient methods for integrating traceability
and broadcast encryption. In Advances in Cryptology—Crypto ’99, volume 1666 of LNCS,
pages 372–387. Springer, 1999.

[18] Craig Gentry, Zulfikar Ramzan, and David P. Woodruff. Explicit exclusive set systems with
applications to broadcast encryption. In 47th Annual Symposium on Foundations of Computer
Science (FOCS), pages 27–38. IEEE, 2006.

[19] Michael T. Goodrich, Jonathan Z. Sun, and Roberto Tamassia. Efficient tree-based revocation
in groups of low-state devices. In Advances in Cryptology—Crypto 2004, volume 3152 of LNCS,
pages 511–527. Springer, 2004.

[20] Dani Halevy and Adi Shamir. The LSD broadcast encryption scheme. In Advances in
Cryptology—Crypto 2002, volume 2442 of LNCS, pages 47–60. Springer, 2002.

[21] Jung Yeon Hwang, Dong Hoon Lee, and Jongin Lim. Generic transformation for scalable
broadcast encryption schemes. InAdvances in Cryptology—Crypto 2005, volume 3621 of LNCS,
pages 276–292. Springer, 2005.

[22] Nam-Su Jho, Jung Yeon Hwang, Jung Hee Cheon, Myung-Hwan Kim, Dong Hoon Lee,
and Eun Sun Yoo. One-way chain based broadcast encryption schemes. In Advances in
Cryptology—Eurocrypt 2005, volume 3494 of LNCS, pages 559–574. Springer, 2005.

[23] W.H. Kautz and R.C. Singleton. Nonrandom binary superimposed codes. IEEE Trans. Infor-
mation Theory, 10(4):363–377, 1964.

[24] Ravi Kumar, Sridhar Rajagopalan, and Amit Sahai. Coding constructions for blacklisting
problems without computational assumptions. In Advances in Cryptology—Crypto ’99, volume
1666 of LNCS, pages 609–623. Springer, 1999.

[25] Ravi Kumar and Alex Russell. A note on the set systems used for broadcast encryption. In
14th Annual Symposium on Discrete Algorithms (SODA), pages 470–471. ACM-SIAM, 2003.

11



[26] Michael Luby and Jessica Staddon. Combinatorial bounds for broadcast encryption. In Ad-
vances in Cryptology—Eurocrypt ’98, volume 1403 of LNCS, pages 512–526. Springer, 1998.

[27] Daniele Micciancio and Saurabh Panjwani. Optimal communication complexity of generic
multicast key distribution. In Advances in Cryptology—Eurocrypt 2004, volume 3027 of LNCS,
pages 153–170. Springer, 2004.

[28] Chris J. Mitchell and Fred C. Piper. Key storage in secure networks. Discrete Applied Math-
ematics, 21(3):215–228, 1988.

[29] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for state-
less receivers. In Advances in Cryptology—Crypto 2001, volume 2139 of LNCS, pages 41–62.
Springer, 2001.

[30] Debby M. Wallner, Eric J. Harder, and Ryan C. Agee. Key management for multicast: Issues
and architectures. Internet Draft, RFC 2627, 1999.

[31] Shyh-Yih Wang, Wu-Chuan Yang, and Ying-Jen Lin. Balanced double subset difference broad-
cast encryption scheme. Security and Communication Networks, 8(8):1447–1460, 2015.

[32] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. Secure group communications using
key graphs. In Proceedings of ACM SIGCOMM, pages 68–79, 1998.

A Information-Theoretic Single-Sender Schemes

In this section we describe various single-sender schemes that, to the best of our knowledge, have
not appeared previously in the literature. The parameters of the schemes presented here do not
beat the parameters of the best known single-sender schemes, but they have the advantage of having
information-theoretic security.

We begin with a simple scheme that revokes exactly one user (i.e., rmax = 1). Fix some b, and
identify the n users with b-tuples whose coordinates range from 1 to n1/b. The sender holds a set
of keys K = {ki,w}i∈[b], w∈[n1/b] of size b · n1/b. The user associated with tuple (w1, . . . , wb) is given
the set of keys {ki,w}i∈[b], w ̸=wi

; in other words, key ki,w is held by all users whose ith coordinate
is not w. To revoke the single user (w1, . . . , wb), the sender encrypts the message using the b keys
k1,w1 , . . . , kb,wb

not held by that user. It follows that:

Theorem 6. For any b, there is an information-theoretic, single-sender BE scheme with rmax = 1
having per-user storage b · n1/b − b, bandwidth b, and b · n1/b total keys.

Gentry et al. [18] show that in any information-theoretic, single-sender scheme with rmax = 1,
storage s, and bandwidth b, it holds that n ≤ sb. The above scheme shows this bound is tight
within a constant factor.

We now show how to build an information-theoretic scheme Π∗ revoking any number of users
based on any scheme Π revoking a single user. The high-level idea is to apply the SD approach [29]
but to schemes rather than keys. In the SD approach, users are arranged at the leaves of a binary
tree, and for each pair of nodes i, j in the tree with i a parent of j, we let Si,j denote the users
who are descendants of i but not descendants of j. Naor et al. show that any set of users S can
be partitioned into O(r) such sets, where r = n − |S| is the number of revoked users. In the SD
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scheme, for all i, j as above there is a single key ki,j that is known exactly to those users in Si,j ;
hence, the bandwidth of the scheme is O(r). Here, we generalize the approach so that there is a
set of keys allowing only those users in Si,j to decrypt.

We again arrange the users at the leaves of a binary tree. In this tree, let Ti denote the sub-tree
rooted at some node i. For each such sub-tree Ti of height h, we associate the root node i of that
sub-tree with h instances of Π (recall, Π is a single-sender scheme supporting revocation of a single
user) corresponding to the h levels of Ti not including the root node itself. The “virtual users” of
instance ℓ ∈ {0, . . . , h − 1} of Π correspond to the nodes at height ℓ in Ti, and we imagine giving
each node the keys it would receive as a virtual user in all instances of Π in which it is involved.
The real users, at the leaves, store the keys that would be given to its ancestors.

To send a message to a subset S of the users, the sender partitions S into a collection of subsets
Si,j as in the SD scheme. To encrypt a message such that only the users in Si,j can read it, the
sender uses the instance of Π in which node i is the sender and the nodes on the same level as j
are the receivers, and revokes user j.

Rather than analyzing the above in the general case, we compute the bandwidth and storage
when applied to the single-sender scheme Π from Theorem 6. Naor et al. showed that any set of S
users can be partitioned into at most 2r − 1 subsets Si,j , where r = n−|S| is the number of revoked
users. Since the scheme Π from Theorem 6 has fixed bandwidth b independent of the number of
users, we conclude that the bandwidth of our scheme here is at most b · (2r − 1). The storage per

user is given by
∑logn

h=1

∑h−1
ℓ=0 (n/2

h−ℓ)1/b = O(n1/b). Similarly, one can show that the total number
of keys is O(n). Summarizing:

Theorem 7 (Scheme 1). For any b, there is an information-theoretic, single-sender BE scheme
supporting arbitrarily many revoked users having per-user storage O(n1/b), bandwidth O(b · r), and
O(n) total keys.

Specifically, there is an information-theoretic, single-sender BE scheme supporting arbitrarily
many revoked users having per-user storage O(

√
n), bandwidth O(r), and O(n) total keys.
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