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Abstract—An implicit goal of Bitcoin’s reward structure is to
diffuse network influence over a diverse, decentralized population
of individual participants. Indeed, Bitcoin’s security claims rely
on no single entity wielding a sufficiently large portion of the net-
work’s overall computational power. Unfortunately, rather than
participating independently, most Bitcoin miners join coalitions
called mining pools in which a central pool administrator largely
directs the pool’s activity, leading to a consolidation of power.
Recently, the largest mining pool has accounted for more than half
of network’s total mining capacity. Relatedly, “hosted mining”
service providers offer their clients the benefit of economies-
of-scale, tempting them away from independent participation.
We argue that the prevalence of mining coalitions is due to
a limitation of the Bitcoin proof-of-work puzzle – specifically,
that it affords an effective mechanism for enforcing cooperation
in a coalition. We present several definitions and constructions
for “nonoutsourceable” puzzles that thwart such enforcement
mechanisms, thereby deterring coalitions. We also provide an
implementation and benchmark results for our schemes to show
they are practical.

I. INTRODUCTION

Bitcoin [32] and subsequent decentralized cryptocurrencies
have gained rapid popularity in recent years, and are often
quoted as “a peek into the future financial and payment
infrastructure”. Security of such cryptocurrencies is critical,
and to ensure security the most fundamental assumption made
by decentralized cryptocurrencies is that no single entity or
adminstration wields a large fraction of the computational
resources in the network. Violation of this assumption can lead
to severe attacks such as history revision and double spending
which essentially nullify all purported security properties that
are widely believed today.

However, two recent trends in mining – namely, mining
pools and hosted mining – have led to the concentration
of mining power, and have cast serious doubt on the well-
foundedness of these fundamental assumptions that underly the
security of Bit-coin-like cryptocurrencies. Specifically, mining
pools exist because solo miners wish to hedge mining risks and
obtain rewards at a more stable, steady rate. At several times
over the past two years, the largest handful of mining pools
have accounted for well over a third of the network’s overall
computing effort [9]. For example, recently the largest mining
pool, GHash.IO, has even exceeded 50% of the total mining
capacity.1 Currently, Hosted mining, on the other hand, allows
individuals to outsource their mining effort to one or a few
large service providers. Hosted mining services have already

1See http://arstechnica.com/security/2014/06/bitcoin-security-guarantee-
shattered-by-anonymous-miner-with-51-network-power/

emerged, such as Alydian [8], whose “launch day pricing
was $65,000 per Terahash, and mining hosting contracts are
available in 5 and 10 Th/sec blocks” [8]. Hosted mining is
appealing because it can potentially reduce miners’ cost due
to economies of scale. Henceforth we will refer to both mining
pools and hosted mining as mining coalitions.

Such large mining coalitions present a potential lurking
threat to the security of Bitcoin-like cryptocurrencies. To
exacerbate the matter, several recent works [17], [23] showed
that it may be incentive compatible for a mining coalition
to deviate from the honest protocol – in particular, Eyal and
Sirer [17] showed that a mining concentration of about 1/3
of the network’s mining power can obtain disproportionately
large rewards by exhibiting certain “selfish mining” behavior.

While alternatives to centralized mining pools are well-
known and have been deployed for several years, (such as
P2Pool, [44] a decentralized mining pool architecture), these
have unfortunatley seen extremely low user adoption (at the
time of writing, they account for less than 2% of the network).
Fundamentally, the problem is that Bitcoin’s reward mecha-
nism provides no particular incentive for users to use these
decentralized alternatives.

Increasing understanding of these problems has prodded
extensive and continual discussions in the broad cryptocur-
rency community, regarding how to deter such coalitions from
forming and retain the decentralized nature of Bitcoin-like
cryptocurrencies [26]. The community demands a technical
solution to this problem.

A. Our Results and Contributions

Our work provides a timely response to this community-
wide concern [26], providing the first formally founded so-
lution to combat Bitcoin mining centralization. Our key ob-
servation is the following: an enabling factor in the growth of
mining pools is a simple yet effective enforcement mechanism;
members of a mining pool do not inherently trust one another,
but instead submit cryptographic proofs (called “shares”) to
the other pool members (or to the pool operator), in order to
demonstrate they are contributing work that can only benefit
the pool (e.g., work that is tied to the pool operator’s public
key).

Strongly nonoutsourceable puzzles. Our idea, therefore, is to
disable such enforcement mechanisms in a cryptographically
strong manner. To this end, we are the first to propose
strongly nonoutsourceable puzzles, a new form of proof-of-
work puzzles which additionally guarantee the following:

http://arstechnica.com/security/2014/06/bitcoin-security-guarantee-shattered-by-anonymous-miner-with-51-network-power/
http://arstechnica.com/security/2014/06/bitcoin-security-guarantee-shattered-by-anonymous-miner-with-51-network-power/


If a pool operator can effectively outsource mining work
to a worker, then the worker can steal the reward without
producing any evidence that can potentially implicate itself.

Intuitively, if we can enforce the above, then any pool
operator wishing to outsource mining work to an untrusted
worker runs the risk of losing its entitled mining reward, thus
effectively creating a disincentive to outsource mining work
(either in the form of mining pools or hosted mining). Our
nonoutsourceable puzzle is broadly powerful in that it renders
unenforceable even external contractual agreements between
the pool operator and the worker. In particular, no matter
whether the pool operator outsources work to the worker
through a cryptocurrency smart contract or through an out-
of-the-band legal contract, we guarantee that the worker can
steal the reward without leaving behind evidence of cheating.

Technical insights. At a technical level, our puzzle achieves
the aforementioned guarantees through two main insights:

P1: We craft our puzzle such that if a worker is doing a
large part of the mining computation, it must possess
a sufficiently large part of a “signing key” such that it
can later sign over the reward to its own public key –
effectively stealing the award from the pool operator;

P2: We offer a zero-knowledge spending option, such that a
worker can spend the stolen reward in a way that reveals
no information (including potential evidence that can be
used to implicate itself).

As a technical stepping stone, we formulate a weaker
notion of our puzzle referred to as a weakly nonoutsourceable
puzzle. A weakly nonoutsourceable puzzle essentially guar-
antees property P1 above, but does not ensure property P2.
As a quick roadmap, our plan is to first construct a weakly
nonoutsourceable puzzle, and from there we devise a generic
zero-knowledge transformation to compile a weakly nonout-
sourceable puzzle into a strongly nonoutsourceable one. It
turns out that a weakly nonoutsourceable puzzle is the implicit
security notion adopted by the recent work of Permacoin [28]
but without being formalized there. In Section VI, we argue
that weakly nonoutsourceable puzzles alone are inadequate to
defeat mining coalitions, and in particular hosted mining.

Implementation and practical performance. We show im-
plementation and evaluation results to demonstrate the prac-
tical performance of our puzzles. Based on an instantiation
using the succinct zero-knowledge option of Libsnark [4], we
show that it would take a cheating worker only 14 seconds
(using approximately a thousand parallel cores) to successfully
steal a block reward. Further, stealing a block’s reward in
zero knowledge consumes only $10 worth of Amazon AWS
compute-time, which is very small in comparison with the
block’s reward – roughly $8,750, based on Bitcoin’s current
market price. Clearly this provides a sufficiently strong de-
terrent against mining coalitions. Note also that this zero-
knowledge spending option is not normally incurred, since
honest miners can simply adopt a cheap plaintext spending
option whose cost is insignificant (see Section VI). For both
the zero-knowledge and the cheap plaintext spending options,
the block verification overhead is insignificant (at most 1.7

seconds) in comparison with the present Bitcoin epoch length
(roughly 10 minutes).

Deployment considerations. For our nonoutsourceable puz-
zles to be practically deployed, it is also important to address
several additional challenges, such as how to still allow miners
to reduce mining uncertainty (i.e., the positive effects of
mining pools), and how to simultaneously address various
other design goals such as ASIC resistance, and lightweight
clients. We give detailed explanations to address these practical
issues related to deployment (Section VII-C). Notably, inspired
by the design of state lottery games, we propose a new, multi-
tier reward system that allows us to achieve the best of both
worlds: ensure non-outsourceability of puzzles, and meanwhile
allow smaller players to reduce payoff variance.

Community demand and importance of formal security.
The community’s demand for a nonoutsourceable puzzle is
also seen in the emergence of new altcoins [31], [41] that (plan
to) adopt their own home-baked versions of nonoutsourceable
puzzles. Their solutions, however, offer only weak nonout-
sourceability, and do not provide any formal guarantees. The
existence of these custom constructions further motivates our
efforts, and demonstrates that it is non-trivial to both formalize
the security notions as well as design constructions with
provable security. To date, our work provides the only formally-
founded solution, as well as the first strongly nonoutsourceable
puzzle construction.

II. BITCOIN BACKGROUND

We define puzzles and nonoutsourceable puzzles as an
independent concept, abstracting away the less relevant details
about the Bitcoin protocol itself. Later, however, we will
discuss how the puzzles we introduce can be integrated into
a Bitcoin-like distributed digital currency. For this reason,
as well as to understand the motivation behind our formal
definitions, we first present some additional background on
Bitcoin and its use of computational puzzles. For a more
thorough explanation of the Bitcoin protocol, we refer the
readers to [2], [6], [32].

Puzzles, rewards, and epochs. In Bitcoin, new money is
printed at a predictable rate, through a distributed coin-minting
process. At the time of writing, roughly speaking, 25 bitcoins
are minted every 10 minutes (referred to as an epoch) on
average. When an epoch begins, a public puzzle instance
is generated by computing an up-to-date hash of the global
transaction log (called the “blockchain”). Then, Bitcoin nodes
race to solve this epoch’s puzzle. Whoever first finds an
eligible solution to the puzzle can claim the newly minted
coins corresponding to this epoch.

In slightly more detail, miners start with the puzzle in-
stance puz, and construct a payload m which contains (a
tree hash over) the miners public key and a new set of
transaction to commit to the log during this epoch. He then
searches for a nonce r such that H(puz‖m‖r) < 2λ−d, where
H : {0, 1}∗ → {0, 1}λ is a hash function and d is a difficulty
parameter. The difficulty parameter is adjusted according to the
total amount of computational resources devoted to mining to
ensure that each epoch lasts 10 minutes on average.



In Section IV, we formally define a generalization of
Bitcoin’s puzzle called scratch-off puzzles. More detail about
the original Bitcoin puzzle construction can found in the full
online version of our paper.

Consensus mechanism. Bitcoin nodes reach consensus on the
history of transactions by having nodes accept the blockchain
with the largest total difficulty. Roughly speaking, this defeats
history revision attacks, since to revise history would involve
computing a blockchain that is more difficult than the known
good chain. An adversary must therefore possess a significant
fraction of the total computational resources to successfully
race against the rest of the network in extending the chain.

Bitcoin is novel in its use of computational puzzles as part
of a consensus protocol for anonymous networks without any
pre-established PKI. A related approach was earlier proposed
by Aspnes et al. [1], although their network model nonetheless
retained a strong assumption about pre-established point-to-
point channels.

III. SCRATCH-OFF PUZZLES

As introduced earlier, the Bitcoin protocol is built around a
moderately hard computational puzzle. Bitcoin miners compete
to solve these puzzles, and whoever solves a puzzle first in each
epoch receives a reward. As there is no shortcut to solving this
puzzle, for an attacker to dominate the network would require
the attacker to expend more computational resources than the
rest of the honest participants combined. Although the Bitcoin
puzzle is commonly referred to as a proof-of-work puzzle, the
requirements of the puzzle are somewhat different than existing
definitions for proof-of-work puzzles [12], [15], [20], [42].

Before proceeding with our main contribution of nonout-
sourceable puzzles, we first provide a formal definition of the
basic requirements of the Bitcoin puzzle, which we call a
scratch-off puzzle.2 In particular, while a traditional proof-of-
work puzzle [20] need only be solvable by a single sequential
computation, a scratch-off puzzle must be solvable by several
concurrent non-communi-cating entities.

In what follows, we let λ denote a security parameter. A
scratch-off puzzle is parameterized by parameters (t, µ, d, t0)
where, informally speaking, t denotes the amount of work
needed to attempt a single puzzle solution, µ refers to the
maximum amount by which an adversary can speed up the
process of finding solutions, d affects the average number of
attempts to find a solution, and t0 denotes the initialiazation
overhead of the algorithm. We typically assume that t0 � 2dt,
where 2dt is the expected time required to solve a puzzle.

Definition 1. A scratch-off puzzle is parameterized by pa-
rameters (t, µ, d, t0), and consists of the following algorithms
(satisfying properties explained shortly):

1) G(1λ)→ puz: generates a puzzle instance.
2) Work(puz,m, t) → ticket: The Work algorithm takes a

puzzle instance puz, some payload m, and time parameter
t. It makes t unit scratch attempts, using t ·t+t0 time steps

2The terms “scratch-off puzzle” and “winning ticket” are motivated by the
observation that Bitcoin’s coin minting process resembles a scratch-off lottery,
wherein a participant expends a unit of effort to learn if he holds a winning
ticket.

in total. Here t = poly(λ) is the unit scratch time, and t0
can be thought of as the initialization and finalization cost
of Work.

3) Verify(puz,m, ticket) → {0, 1}: checks if a ticket is valid
for a specific instance puz, and payload m. If ticket passes
this check, we refer to it as a winning ticket for (puz,m).

Intuitively, the honest Work algorithm makes t unit scratch
attempts, and each attempt has probability 2−d of finding
a winning ticket, where d is called the puzzle’s difficulty
parameter. For simplicity, we will henceforth use the notation

ζ(t, d) := 1− (1− 2−d)t

to refer to the probability of finding a winning ticket using
t scratch attempts. For technical reasons that will become
apparent later, we additionally define the shorthand ζ+(t, d) :=
ζ(t+1, d). For the remainder of the paper, we assume that the
puzzle’s difficulty parameter d is fixed, hence we omit the d
and write ζ(t) and ζ+(t) for simplicity. We also define the
algorithm WorkTillSuccess(puz,m) as Work(puz,m,∞); i.e.,
this algorithm runs until it finds a winning ticket for the given
instance and payload.

A scratch-off puzzle must satisfy three requirements:

1) Correctness. For any (puz,m, t), if Work(puz,m, t) out-
puts ticket 6= ⊥, then Verify(puz,m, ticket) = 1.

2) Feasibility and parallelizability. Solving a scratch-off
puzzle is feasible, and can be parallelized. More formally,
for any ` = poly(λ), for any t1, t2, . . . , t` = poly(λ), let
t :=

∑
i∈[`] ti.

Pr

 puz← G(1λ),
m← {0, 1}λ,
∀i ∈ [`] : ticketi ←Work(puz,m, ti) :
∃i ∈ [`] : Verify(puz,m, ticketi)


≥ ζ(t)− negl(λ).

Intuitively, each unit scratch attempt, taking time t, has
probability 2−d of finding a winning ticket. Therefore,
if ` potentially parallel processes each makes t1, t2, . . .,
t` attempts, the probability of finding one winning ticket
overall is ζ(t)± negl(λ) where t =

∑
i∈[`] ti.

3) µ-Incompressibility. Roughly speaking, the work for solv-
ing a puzzle must be incompressible in the sense that even
the best adversary can speed up the finding of a puzzle
solution by at most a factor of µ. More formally, a scratch-
off puzzle is µ-incompressible (where µ ≥ 1) if for any
probabilistic poly-nomial-time adversary A taking at most
t · t steps,

Pr

 puz← G(1λ),
(m, ticket)← A(puz) :
Verify(puz,m, ticket) = 1

 ≤ ζ+(µt)± negl(λ).

Note that ζ+(t) = 1 − (1 − 2−d)t+1 is roughly the
probability of outputting a winning ticket after t unit scratch
attempts, though we additionally allow the adversary to
make a final guess at the end (as in [42]), and hence the
t+1 in the exponent instead of just t. Ideally, we would like
the compressibility factor µ to be as close to 1 as possible.



When µ = 1, the honest Work algorithm is the optimal
way to solve a puzzle.

This definition implies, in particular, that solutions to
previous puzzles do not help in solving a freshly generated
puzzle unseen ahead of time.

A. Non-Transferability

For a practical scheme we could integrate into Bitcoin, we
should require that the payload of a ticket is non-transferable,
in the following sense: if an honest party publishes a ticket
attributed to a payload m (e.g., containing a public key
belonging to the party to whom the reward must be paid),
the adversary should not gain any advantage in obtaining a
puzzle solution attributed to some different payload m∗ for
the same puz. This is because in Bitcoin, each epoch is
defined by a globally known, unique puzzle instance puz;
at most one winning ticket for puz and a payload message
is accepted into the blockchain; and a user who solves a
puzzle only receives the reward if their message is the one
that is attributed. If an adversary can easily modify a victim’s
winning ticket to be attributed to a different payload of its
choice, then the adversary can listen for when the victim’s
ticket is first announced in the network, and then immediately
start propagating the modified ticket (e.g., containing its own
public key for the reward payment) and attempt to outrace
the victim. It is possible that the network will now deem
the adversary as the winner of this epoch—this is especially
true if the adversary has better network connectivity than the
victim (as described in [17]). For simplicity in developing our
constructions and nonoutsourceable definition, we define this
non-transferability requirement separately below. Intuitively,
non-transferability means that seeing a puzzle solution output
by an honest party does not help noticeably in producing a
solution attributed to a different payload m∗.

Definition 2. Let δ be a nonnegative function of `. A scratch-
off puzzle is δ-non-transferable if it additionally satisfies the
following property:

For any ` = poly(λ), and for any adversary A taking t · t
steps,

Pr


puz← G(1λ)
m1,m2, . . . ,m` ← A(1λ)
∀i ∈ [`] : ticketi ←WorkTillSuccess(puz,mi),
(puz,m∗, ticket∗)← A(puz, {mi, ticketi}`i=1) :
Verify(puz, ticket∗,m∗) ∧ (∀i ∈ [`] : m∗ 6= mi)


≤ ζ+((µ+ δ)t) + negl(λ)

IV. OUTSOURCED MINING AND WEAKLY
NONOUTSOURCEABLE PUZZLES

The Bitcoin scratch-off puzzle described in the previous
section is amenable to secure outsourcing, in the sense that it
is possible for one party (the worker) to perform mining work
for the benefit of another (the pool operator) and to prove to
the pool operator that the work done can only benefit the pool
operator.

To give a specific example, let m be the public key of
the pool operator; if the worker performs 2d

′
scratch attempts,

on average it will have found at least one value r such that
H(puz‖m‖r) < 2λ−d

′
. The value r can be presented to

the pool operator as a “share” (since it represents a portion
of the expected work needed to find a solution); intuitively,
any such work associated with m cannot be reused for any
other m∗ 6= m. This scheme is an essential component of
nearly every Bitcoin mining pool to date [39]; the mining pool
operator chooses the payload m, and mining participants are
required to present shares associated with m in order to receive
participation credit. The rise of large, centralized mining pools
is due in large part to the effectiveness of this mechanism.

We now formalize a generalization of this outsourcing
protocol, and then proceed to construct puzzles that are not
amenable to outsourcing (i.e., for which no effective outsourc-
ing protocol exists).

A. Notation and Terminology

Pool operator and Worker. We use the terminology pool
operator and worker referring respectively to the party out-
sourcing the mining computation and the party performing
the mining computation. While this terminology is natural for
describing mining pools, we stress that our results are intended
to simultaneously discourage both mining pools and hosted
mining services. In the case of hosted mining, the roles are
roughly swapped; the cloud server performs the mining work,
and the individuals who hire the service receive the benefit
and must be convinced the work is performed correctly. We
use this notation since mining pools are more well-known and
widely used today, and therefore we expect the mining-pool
oriented terminology to be more familiar and accessible.

Protocol executions. A protocol is defined by two algorithms
S and C, where S denotes the (honest) worker, and C the
(honest) pool operator. We use the notation (oS ; oC)← (S, C)
to mean that a pair of interactive Turing Machines S and C
are executed, with oS the output of S, and oC the output of C.

In this paper we assume the pool operator executes the
protocol program C correctly, but the worker may deviate
arbitrarily.3 We use the notation (A, C) to denote an execution
between a malicious worker A and an honest pool operator C.
Note that protocol definition always uses the honest algorithms,
i.e., (S, C) denotes a protocol or an honest execution; whereas
(A, C) represents an execution.

B. Definitions

Outsourcing protocol. We now define a generalization of
outsourced mining protocols, encompassing both mining pools
and hosted mining services. Our definition of outsourcing
protocol is broad – it captures any form of protocol where
the pool operator and worker may communicate as interactive
Turing Machines, and at the end, the pool operator may
obtain a winning ticket with some probability. The protocol is
parametrized by three parameters tC , tS , and te, which roughly
models the pool operator’s work, honest worker’s work, and
the “effective” amount of work during the protocol.

3This is without loss of generality, and does not mean that we assume the
mining pool operator is honest, since the protocol (S, C) may deviate from
“honest” Bitcoin mining.



Definition 3. A (tS , tC , te)-outsourcing protocol for scratch-
off puzzle (G,Work,Verify), where te < tS + tC and tc < te,
is a two-party protocol, (S, C), such that

• The pool operator’s input is puz, and the worker’s input is
⊥.

• The pool operator C runs in at most tC · t time, and the
worker S in at most tS · t time.

• C outputs a tuple (ticket,m) at the end, where ticket is
either a winning ticket for payload m or ticket = ⊥.
Further, when interacting with an honest S, C outputs a
ticket 6= ⊥ with probability at least ζ(te)− negl(λ).

Formally,

Pr

 puz← G(1λ)
(·; ticket,m)← (S, C(puz)) :
Verify(puz,m, ticket)

 ≥ ζ(te)− negl(λ).

The parameter te is referred to as the effective billable
work, because the protocol (S, C) has the success probability
of performing te unit scratch attempts. Note that it must be the
case that te < µ(tS + tC). Intuitively, an outsourcing protocol
allows effective outsourcing of work by the pool operator if
te � tC .

Note that this definition does not specify how the payload
m is chosen. In typical Bitcoin mining pools, the pool operator
chooses m so that it contains the pool operator’s public key.
However, our definition also includes schemes where m is
jointly computed during interaction between S and C, for
example.

Weak nonoutsourceability. So far, we have formally defined
what an outsourcing protocol is. Roughly speaking, an out-
sourcing protocol generally captures any possible form of con-
tractual agreement between the pool operator and the worker.
The outsource protocol defines exactly what the worker has
promised to do for the pool operator, i.e., the “honest” worker
behavior. If a worker is malicious, it need not follow this honest
prescribed behavior. The notion of weak non-outsourceability
requires that no matter what the prescribed contractual agree-
ment is between the pool operator and the worker– as long as
this agreement “effectively” outsources work to the worker–
there exists an adversarial worker that can always steal the
pool operator’s ticket should the pool operator find a winning
ticket during the protocol. Effectiveness is intuitively captured
by how much effective work the worker performs vs. the
work performed by the pool operator in the honest protocol.
Note that there always exists a trivial, ineffective outsourcing
protocol, where the pool operator always performs all the work
by itself – in this case, a malicious worker will not be able
to steal the ticket. Therefore, the weak non-outsourceability
definition is parametrized by the effectiveness of the honest
outsourcing protocol.

More specifically, the definition says that the adversarial
worker can generate a winning ticket associated with a payload
of its own choice, over which the pool operator has no
influence. In a Bitcoin-like application, a natural choice is for
an adversarial worker to replace the payload with a public key
it owns (potentially a pseudo-nym), such that it can later spend
the stolen awards. Based on this intuition, we now formally

define the notion of a weakly nonoutsourceable scratch-off
puzzle.

Definition 4. A scratch-off-puzzle is (tS , tC , te, α, ps)-
weakly nonoutsourceable if for every (tS , tC , te)-outsourcing
protocol (S, C), there exists an adversary A that runs in time
at most tS · t+ α, such that:

• Let m∗ $← {0, 1}λ. Then, at the end of an execution
(A(puz,m∗), C(puz)), the probability that A outputs a
winning ticket for payload m∗ is at least psζ(te). Formally,

Pr

puz← G(1λ);m∗ $← {0, 1}λ
(ticket∗; ticket,m)← (A(puz,m∗), C(puz)) :
Verify(puz, ticket∗,m∗)

 ≥ psζ(te).

• Let viewh denote the pool operator’s view in an execution
with the honest worker (S, C(puz)), and let view∗ denote
the pool operator’s view in an execution with the adversary
(A(puz,m∗), C(puz)). Then,

view∗
c≡ viewh.

When C interacts with A, the view of the pool operator
view∗ is computationally indistinguishable from when in-
teracting with an honest S.

Later, when proving that puzzles are weakly nonoutsource-
able, we typically construct an adversaryA that runs the honest
protocol S until it finds a ticket for m, and then transforms the
ticket into one for m∗ with probability ps. For this reason, we
refer to the adversary A in the above definition as a stealing
adversary for protocol (S, C). In practice, we would like α
to be small, and ps ≤ 1 to be large, i.e., A’s run-time is not
much different from that of the honest worker, but A can steal
a ticket with high probability.

If the pool operator outputs a valid ticket for m and the
worker outputs a valid ticket for m∗, then there is a race to
determine which ticket is accepted by the Bitcoin network and
earns a reward. Since the µ-incompressibility of the scratch-
off puzzle guarantees the probability of generating a winning
ticket associated with either m or m∗ is bounded above by
ζ+(µ(tS+tC)), the probability of the pool operator outputting
a ticket — but not the worker — is bounded above by
ζ+(µ(tS + tC))− psζ(te).

Note that weak nonoutsourceability does not imply that
the puzzle is transferable. In other words, a puzzle can be
simultaneously non-transferable and weakly nonoutsourceable.
This is so because the stealing adversary A may rely on its
view of the entire outsourcing protocol when stealing the ticket
for its own payload m∗, whereas the adversary for the non-
transferability game is only given winning tickets as input (but
no protocol views).

As we mentioned in the beginning of this section, the
prevalence of Bitcoin mining pools can be attributed in part to
the effective outsourcing protocol used to coordinate untrusted
pool members - in other words, the Bitcoin puzzle is not
nonoutsourceable. We state and prove a theorem to this effect
in the full online version of this paper.



V. A WEAKLY NONOUTSOURCEABLE
PUZZLE

In this section, we describe a weakly nonoutsourceable
construction based on a Merkle-hash tree construction. We
prove that our construction satisfies weak nonoutsourceability
(for a reasonable choice of parameters) in the random oracle
model. Informally, our construction achieves the following:

For any outsourcing protocol that can effectively outsource a
fixed constant fraction of the effective work, an adversarial
worker will be able to steal the puzzle with at least constant
probability.

Our construction is inspired by the Floating Preimage
Signature (FPS) scheme used in Permacoin [28], which is
a puzzle integrated with a proof-of-retrievablity. However,
Permacoin [28] only described the issue of nonoutsourceability
informally, and made no attempt to formalize the definition nor
to discuss nonoutsourceability beyond the context of archival
storage. Our construction is formally defined in our online full
version [29], but here we provide an informal explanation of
the intuition behind it.

Intuition. To solve a puzzle, a node first builds a Merkle
tree with random values at the leaves; denote the root by
digest. Then the node repeatedly samples a random value r,
computes h = H(puz||r||digest), and uses h to select q leaves
of the Merkle tree and their corresponding branches (i.e., the
corresponding Merkle proofs). It then hashes those branches
(along with puz and r) and checks to see if the result is less
than 2λ−d.

Once successful, the node has a value r what was “difficult”
to find, but is not yet bound to the payload message m. To
effect such binding, a “signing step” is performed in which
h′ = H(puz||m||digest) is used to select a set of 4q′ leaf
nodes (i.e., using h′ a seed to a pseudorandom number gener-
ator). Any q′ of these leaves, along with their corresponding
branches, constitute a signature for m and complete a winning
ticket.

Intuitively, this puzzle is weakly nonoutsourceable because
in order for the worker to perform scratch attempts, it must

• either know a large fraction of the leaves and branches of
the Merkle tree, in which case it will be able to sign an
arbitrary payload m∗ with high probability – by revealing
q′ out of the 4q′ leaves (and their corresponding branches)
selected by m∗,

• or incur a large amount of overhead, due to aborting scratch
attempts for which it does not know the necessary leaves and
branches,

• or interact with the pool operator frequently, in which case
the pool operator performs a significant fraction of the total
number of random oracle queries.

To formally prove this construction is weakly nonout-
sourceable, we assume that the cost of the Work algorithm
is dominated by calls made to random oracles. Thus, for sim-
plicity, in the following theorems we equate the running time
with the number of calls to the random oracle. However, the
theorem can be easily generalized (i.e., relaxing by a constant

factor) as long as the cost of the rest of the computation is
only a constant fraction of the random-oracle calls.

Theorem 1. The construction sketched above, and formally
defined in our online full version, is a scratch-off puzzle.

We defer this proof to our online full version [29].

Theorem 2. Let q, q′ = O(λ). Let the number of leaves
L ≥ q + 8q′. Suppose d > 10 and te · 2−d < 1/2. Under
the aforementioned cost model, the above construction is
a (tS , tC , te, α, ps) weakly nonoutsourceable puzzle, for any
0 < γ < 1 s.t. tC < γte, ps > 1

2 (1 − γ) − negl(λ), and
α = O(λ2); and is 0-non-transferable.

In other words, if the pool operator’s work tC is a not a
significant fraction of te, i.e., work is effectively outsourced,
then an adversarial worker will be able to steal the pool
operator’s ticket with a reasonably big probability, and without
too much additional work than the honest worker.

The proof that this puzzle is weakly nonoutsourceable can
be found in our online full version [29], but we sketch the main
idea here. Informally, to “effectively” outsource work to the
worker, the worker must know more than a constant fraction
(say, 1/3) of the leaves before calling the random oracle to
determine whether an attempt is successful. However, if the
worker knows more than 1/3 fraction of the leaves, due to
a simple Chernoff bound, it will be able to easily steal the
solution should one be found. To make this argument formally
is more intricate. For lack of space, we defer (to the full
online version of our paper) the proof that this puzzle is non-
transferable.

VI. STRONGLY NONOUTSOURCEABLE
PUZZLES

In the previous section, we formally defined and con-
structed a scheme for weakly nonoutsourceable puzzles, which
ensure that for any “effective” outsourcing protocol, there
exists an adversarial worker that can steal the pool operator’s
winning ticket with significant probability, should a winning
ticket be found. This can help deter outsourcing when individ-
uals are expected to behave selfishly.

One critical drawback of the weakly nonoutsourceable
scheme (and, indeed, of Permacoin [28]) is that a stealing
adversary may be detected when he spends his stolen reward,
and thus might be held accountable through some external
means, such as legal prosecution or a tainted public reputation.

For example, a simple detection mechanism would be for
the pool operator and worker to agree on a λ/2-bit prefix of the
nonce space to serve as a watermark. The worker can mine by
randomly choosing the remaining λ/2-bit suffix, but the pool
operator only accepts evidence of mining work bearing this
watermark. If the worker publishes a stolen puzzle solution,
the watermark would be easily detectable.

Ideally, we should enable the stealing adversary to evade
detection and leave no incriminating trail of evidence. There-
fore, in this section, we define a “strongly nonoutsourceable”
puzzle, which has the additional requirement that a stolen
ticket cannot be distinguished from a ticket produced through
independent effort.



Let NIZK be a non-interactive zero-knowledge proof system. Also
assume that E = (Key,Enc,Dec) is a CPA-secure public-key
encryption scheme.
Let (G′,Work′,Verify′) be a weakly nonoutsourceable scratch-
off puzzle scheme. We now construct a strongly nonoutsourceable
puzzle scheme as below.
• G(1λ): Run the puzzle generation of the underlying scheme

puz′ ← G′(1λ). Let crs ← NIZK.Setup(1λ); and let
(skE , pkE)← E .Key(1λ). Output puz← (puz′, crs, pkE)

• Work(puz,m, t):
Parse puz := (puz′, crs, pkE).
ticket′ ←Work′(puz′,m, t),
Encrypt c← Enc(pkE ; ticket

′; r).
Set π ← NIZK.Prove(crs, (c,m, pkE , puz

′), (ticket′, r))
for the following NP statement:

Verify′(puz′,m, ticket′) ∧ c = Enc(pkE ; ticket
′; r)

Return ticket := (c, π).
• Verify(puz,m, ticket);

Parse puz := (puz′, crs, pkE), and parse ticket as (c, π).
Check that Verify(crs, (c,m, pkE , puz

′), π) = 1.

Fig. 1: A generic transformation from any weakly nonoutsourceable
scratch-off puzzle to a strongly nonoutsourceable puzzle.

Definition 5. A puzzle is (tS , tC , te, α, ps)-
strongly nonoutsourceable if it is (tS , tC , te, α, ps)-weakly
nonoutsourceable, and additionally the following holds:

For any (tS , tC , te)-outsourcing protocol (S, C), there ex-
ists an adversary A for the protocol such that the stolen
ticket output by A for payload m∗ is computationally indistin-
guishable from a honestly computed ticket for m∗, even given
the pool operator’s view in the execution (A, C). Formally,
let puz ← G(1λ), let m∗ $← {0, 1}λ. Consider a protocol
execution (A(puz,m∗), C(puz)): let view∗ denote the pool
operator C’s view and ticket∗ the stolen ticket output by A in
the execution. Let ticketh denote an honestly generated ticket
for m∗, (ticketh := WorkTillSuccess(puz,m∗)), and let viewh
denote the pool operator’s view in the execution (S, C(puz)).
Then,

(view∗, ticket∗)
c≡ (viewh, ticketh)

Recall that in Bitcoin, the message payload m typically
contains a Merkle root hash representing a set of new trans-
actions to commit to the blockchain in this round, including
the public key to which the reward is assigned. Thus to take
advantage of the strongly nonoutsourceable puzzle, the stealing
worker should bind its substituted payload m∗ to a freshly
generated public key for which it knows the corresponding
private key. It can then spend its stolen reward anonymously,
for example by laundering the coins through a mixer [7].

In Figure 1, we present a generic transformation that turns
any weakly nonoutsourceable puzzle into a strongly nonout-
sourceable puzzle. The strengthened puzzle is essentially a
zero-knowledge extension of the original – a ticket for the
strong puzzle is effectively a proof of the statement “I know
a solution to the underlying puzzle.”

Theorem 3. If (GenKey′,Work′,Verify′) is a (tS , tC , te, α, ps)
weakly nonoutsourceable puzzle, then the puzzle described in
Figure 1 is a (tS , tC , te, α+ tenc + tNIZK, ps−negl(λ)) strongly
nonoutsourceable puzzle, where tenc + tNIZK is the maximum

time required to compute the encryption and NIZK in the
honest Work algorithm.

We next state a theorem that this generic transformation
essentially preserves the non-transferability of the underlying
puzzle.

Theorem 4. If the underlying puzzle (G′,Work′,Verify′) is δ′-
non-transferable, then the derived puzzle through the generic
transformation is δ non-transferable for

µ+ δ′ ≤ (µ+ δ)t

t · t+ (tenc + tnizk)`

where tenc and tnizk are the time for performing each encryption
and NIZK proof respectively.

Again, due to space restrictions, we defer the proof of this
theorem to the full online version of our paper.

Cheap plaintext option. Although we have shown it is
plausible for a stealing worker (with parallel resources) to
compute the zero-knowledge proofs, this would place an undue
burden on honest independent miners. However, it is possible
to modify our generic transformation so that there are two ways
to claim a ticket: the first is with a zero-knowledge proof as
described, while the second is simply by revealing a plaintext
winning ticket for the underlying weakly nonoutsourceable
puzzle.

VII. IMPLEMENTATION AND MICRO-
BENCHMARKS

In order to demonstrate the practicality of our schemes, we
implemented both our weakly nonoutsourceable and strongly
nonoutsourceable puzzle schemes and provide benchmark re-
sults below.

Metrics. We are concerned with two main performance cri-
teria. First, the size of a ticket and cost of verifying a ticket
should be minimal, since each participant on the network is
expected to verify every ticket independently. Second, in order
for our scheme to be an effective deterrent, the cost and latency
required to “steal” a ticket should be low enough that it is at
least plausible for an outsourcing worker to compute a stolen
ticket and propagate it throughout the network before any other
solution is found.

When comparing the verification cost of our schemes to
that of the current Bitcoin protocol, we include both the
cost due to the puzzle itself, as well as the total cost of
validating a block including transactions. At present, there are
over 400 transactions per block on average; 4 we assume each
transaction carries at least 1 ECDSA signature that must be
verified. In general, the computational cost of validating blocks
in Bitcoin is largely dominated by verifying the ECDSA sig-
natures in transactions rather than verifying puzzle solutions.
We measured that the time to verify an ECDSA signature on
a 2.4GHZ Intel CPU is 1.7ms.5 On average, at the time of

4Average number of transactions per block: https://blockchain.info/charts/n-
transactions-per-block

5Unless otherwise noted, we conducted our measurements over at least 1000
trials, and omit the error statistic if the standard deviation is within ±1%.

https://blockchain.info/charts/n-transactions-per-block
https://blockchain.info/charts/n-transactions-per-block


TABLE I: Estimated puzzle and block verification costs for various schemes

Puzzle only Transactions Included
Scheme Verif. Ratio Size Ratio Verif. Ratio Size Ratio
Bitcoin 11.7µs 1 80B 1 0.68s 1 350KB 1
Weak 15.1ms 1.3e3 6.6KB 83 0.70s 1.02 357KB 1.02
Strong (C = 4) 0.48s 4.1e+04 10.8KB 135 1.16s 1.71 361KB 1.03
Strong (C = 3) 0.62s 5.3e+04 17.0KB 213 1.30s 1.91 367KB 1.05
Strong (C = 2) 0.93s 8e+04 23.2KB 290 1.61s 2.37 373KB 1.07
Strong (C = 1) 1.68s 1.4e+05 29.4KB 368 2.36s 3.47 379KB 1.08

writing, a block contains about 350 kilobytes of data and 600
transactions, each with an average of two signatures. 6

A. Our Weakly Nonoutsourceable Puzzle

The weakly nonoutsourceable puzzle is straightforward to
implement, and its overhead relative to the Bitcoin puzzle
consists only of λ log λ additional hashes; we implemented
this in unoptimized Python and discuss its performance later
on. In contrast, the strongly nonoutsourceable puzzle requires
much more care in implementation due to the NIZK proof,
which we will describe shortly.

We used the SHA-1 hash function throughout our imple-
mentation, since this has a relatively efficient implementation
as an arithmetic circuit [36]. We restricted our focus to the
following puzzle parameters: the signature tree consists of
2h = 210 leaves, and the number of leaves revealed during
a scratch attempt and a claim is q = q′ = 10. This provides
roughly 50 bits of security for the non-transferability property.

Performance results. In Table I (first and second rows), we
show that if we replace Bitcoin’s puzzle with our weakly non-
outsourceable puzzle, the slowdown for the block verification
operation will be only 2%. More specifically, while our puzzle
verification itself is over a thousand times more expensive
than the Bitcoin puzzle, puzzle verification only accounts for
a very small percentage of the overall verifier time. Therefore,
the overall performance slowdown is insignificant for practical
purposes. Likewise, while the size of the ticket in our scheme
is almost a hundred times larger than that of Bitcoin, the ticket
is a small fraction of the total size of a block when transactions
are included.

An adversarial worker can steal a ticket in a marginal
amount of time (only one additional hash in expectation, for
example, assuming the worker knows at least a third of the
Merkle tree branches used during scratch attempts). This cost
is insignificant compared to the expected time for solving a
puzzle.

B. Our Strongly Nonoutsourceable Puzzle

We next describe more details of our instantiation and
implementation of our strongly nonoutsourceable puzzle, fol-
lowed by evaluation.

We implemented our puzzle twice, each time using a differ-
ent NIZK libraries: Pinocchio [36] and Libsnark [4]. Both are

6 Average block size: https://blockchain.info/charts/

implementations of a generic [19] NIZK scheme. 7 Pinocchio
includes a compiler that generates an arithmetic circuit from
high-level C code, while Libsnark [4] provides a library C++
for composing systems of equations. We used a combination
of hand-tuned and generated-from-C-code arithmetic circuits,
and developed an adapter for Libsnark to use Pinocchio’s
arithmetic circuit files.

In the full online version of our paper we discuss a
concrete parameterization of our scheme. We implemented
an optimization to improve the parallel running time of the
prover. Essentially, we break the overall statement into many
substatements, all of which can be proven concurrently; the
overall proof consists of a proof for one “Type II” statement,
and proofs for some number of “Type I” statements. The
number of Type I statements is determined by a parameter
C (smaller C means a larger number of smaller circuits). We
discuss this in more detail in the full online version.

Performance results. The prover and verifier costs for our
strongly nonoutsourceable implementation are presented in
Tables Iand II. Each of the bottom four rows of Table I and top
four rows of Table II corresponds to a different setting of the
parameter C, the number of 160-bit blocks (of the underlying
ticket) checked by each substatement (smaller values of C
indicate higher degrees of parallelism). The total number of
substatements required (#) is reported along with computing
time per circuit for the prover and verifier. We also report the
total verification time over all the statements, as well as the
total proof size. Note that our benchmarks are for a sequential
verifier, although verification could also be parallelized. The
bottom row is for the second type of statement, which does
not depend on C. Due to the longer time required to compute
these proofs, the quantities reported are averaged over only
three trials.

The reader may immediately notice the vast improvement
in prover performance using Libsnark rather than Pinocchio
for our implementation; in particular the speedup is much
greater than previous reports (i.e, several orders of magnitude
vs one order of magnitude) [4]. This is readily explained with
reference to the highly sequential nature of our statements,
which yields deep and highly-connected circuits. Profiling
reveals that the cost of generating our proofs in Pinocchio is
dominated by the polynomial interpolation step, which greatly
exceeds that of simpler circuits with comparable number of
gates [36].

7 Libsnark [4] implements several optimizations over the original
GGPR [19] scheme. The version we used includes an optimization that turns
out to be unsound. [35] Libsnark has since been patched to restore soundness;
the patch is reported only to incur an overhead of 0.007% on typical circuits,
hence we report our original figures.

https://blockchain.info/charts/


Keeping in mind our goal is to prove it is plausible for a
worker to produce stolen ticket proof with low latency, we
believe it is reasonable to assume that such a worker has
access to parallel computing resources. Using Libsnark, the
combination of our statement-level parallelism and the parallel
SNARK implementation leads to proof times in under 15
seconds at the C = 2 setting. Since the average time between
puzzle solutions in the Bitcoin network is 10 minutes, this can
be a wholly plausible deterrent. At this setting, verification of
an entire proof takes under one second. Since approximately
144 Bitcoin puzzle solutions are produced each day, it would
take approximately two minutes for a single-threaded verifier
to validate a day’s worth of puzzle solutions.

Assuming computational power can be rented at $1.68 per
hour (based on Amazon EC2 prices for the c3.8xlarge used in
our trials, which provides 32 cores), it would cost an attacker
less than $10 in total to produce a stolen ticket proof within 20
seconds. This is vastly less than reward for a puzzle solution,
which at the current time is approximately $8,750.

C. Cryptocurrency Integration

We now discuss several practical aspects of integrating
nonoutsourceables puzzles within existing cryptocurrency de-
signs.

Integrating the puzzle with Bitcoin-like cryptocurrencies.
In our definitions, we indicate that GenPuz(1λ) must be a
random function that generates a puzzle instance, and in all
of our schemes GenPuz(1λ) simply returns a uniform random
string. However, in the actual Bitcoin protocol, the next puzzle
instance is generated by applying a hash function to the
solution of the previous puzzle. Our approach is likewise to
determine each next puzzle instance from the hash of the
previous solution and message, puz′ := H(puz‖m‖ticket).

Further Integration Issues. In the full online version of
our paper, we further discuss how our nonoutsourceable
puzzles can be combined with other proposals for comple-
mentary properties, such as faster blocks [25], [40], sup-
port for lightweight mobile clients [32], and either ASIC-
resistance [43] or backward-compatibility with existing mining
equipment [16].

VIII. MULTI-TIER BLOCK REWARDS

We want to arrive at a cryptocurrency design that simul-
taneously discourages centralized mining pools and hosted
mining services, yet encourages participation from individual
miners and provides similar overall functionality and security
as Bitcoin today. To achieve this, there are two major remain-
ing challenges.

Challenge 1: Lower variance rewards for individual min-
ers. Individual miners should not have to wait an unreasonable
amount of time to earn a Bitcoin reward. Intuitively, we can
achieve this by decreasing the average time between blocks,
so that rewards are given out much more frequently. We are
constrained, however, by the latency of network propagation,
and the time it takes to compute the zero knowledge proofs
used in the strongly nonoutsourceable puzzle.

Challenge 2: Discourage statistical enforcement over time.
Our definition of nonoutsourceable puzzles essentially de-
scribes a one-shot game, and ensures that the worker can
steal a single puzzle solution from the pool operator and
evade detection. However, this definition does not immediately
eliminate statistical enforcement techniques over time. For
example, pool operators could monitor the output of a hosted
service provider and punish it (e.g., through legal prosecution)
if it underperforms significantly. Intuitively, we should address
this by giving out larger rewards much less frquently, so that
the worker can steal solutions over some reasonable timeframe
and plausibly claim it was just unlucky.

Conflicting requirements. What we need is a reward structure
that simultaneously answers the above challenges. Challenge 1
desires paying out small rewards rapidly, whereas Challenge 2
clearly favors paying out large rewards less frequently. Further,
to satisfy Challenge 1, if we reduce the inter-block time to the
order of seconds, we phase another challenge: since it takes
at least 14 seconds to generate the zero-knowledge proof, it
would be infeasible for a miner to steal a block this way.
The miner could choose to steal the reward using the plaintext
option, but since the reward at stake is low, the mining pool
could require a small collateral deposit to discourage such
blatant stealing.

A. Proposed Multi-Tier Reward Structure

We propose to satisfy both of these properties by designing
a reward structure with multiple possible prizes. Our multi-
tier design is inspired by the payoff structure of state lottery
games, which often have several consolation prizes as well as
large, less frequent jackpots [34], [38]. The effectiveness of
such lotteries at encouraging wide participation has long been
proven in practice. Our implicit assumption is that miners will
tolerate a high-variance payoff overall, as long as they earn
some reward fairly frequently.

In Table III, we provide a concrete example of such a
multi-tier reward schedule, the rationale for which we discuss
below. Each attempt at solving a puzzle yields some chance of
winning each of three possible prizes (in contrast with Bitcoin
today, in which every block earns the same reward). The prizes
are not only associated with different reward values, but also
count with varying weight towards the blockchain “difficulty”
scoring function. The first two columns indicate the average
time between rewards of a given type, along with their relative
frequency (adding up to 1). The middle two columns indicate
the prize value (in btc), along with the realtive contribution to
the total expected reward value (adding up to 1). Note that the
overall expected payout rate is the same as in Bitcoin today
(25btc every 10 minutes, on average). The final pair of columns
indicates the blockchain difficulty weight associated with each
reward type along with their expected relative contributions
towards the overall difficulty of a blockchain (again, adding
up to 1).

Low-value consolation prize: provides low-variance re-
wards to solo-miners. The consolation prize is awarded the
most frequently (e.g., once every three seconds). The prize
is small, less than a tenth of a Bitcoin (≈$21 at the time of
writing), but the small prizes contribute overall to 70% of the
total expected value.



TABLE II: Proof and verification micro-benchmarks for strongly nonoutsourceable puzzles

Type I Statements
Pinocchio [36] Libsnark [4]

C # Gates Prove Verify Total Prove (Single-core) Prove (Multi-core) Verify Total Size
1 220 213k 268.2s 11ms 2.42s 16.33s 9.84s 7.6ms 1.672s 29.4KB
2 120 280k 578.4s 11ms 1.32s 20.29s 13.90s 7.7ms 0.924s 23.2KB
3 80 392k 1002.9s 11ms 0.80s 26.92s 17.18s 7.7ms 0.616s 17.0KB
4 60 467k 1242.1s 11ms 0.66s 32.88s 20.71s 7.8ms 0.468s 10.8KB

Type II Statements
# Gates Prove Verify Total Prove (Single-core) Prove (Multi-core) Verify Total Size
1 282K 508.5s 10ms 0.01s 19.42s 13.34s 7.8ms 0.008s <1KB

Medium-value main prize: ensures block confirmations
arrive regularly. The medium-value prizes are necessary to
ensure that the log of transactions approximately as quickly
and securely as in Bitcoin. They are given out at the same rate
as ordinary Bitcoin blocks; they carry a larger reward than
the low-value prize, but contribute much less to the overall
expected payout. However, the medium-value blocks account
for nearly 75% of the total difficulty, and a miner who finds
one of these blocks has an average of 7.5 minutes to propagate
her solution before it would become stale. The 14 seconds it
takes to compute a zero-knowledge proof is relatively small in
comparison.

High-value jackpot: defends against statistical detection
of cheating hosted mining services. The jackpot prize is very
rare, and accounts for a small, yet disproportionately large
fraction of the total expected value. The role of this reward is
to engender distrust of hosted mining providers; they would
profit greatly by stealing these rewards, but it would be hard
to obtain statistical evidence that they have done so.

Implementing Multi-Tier Rewards. It is straightforward to
implement multi-tier rewards on top of any known scratch-
off puzzle constructions (i.e., Bitcoin or our nonoutsourceable
constructions). Recall that in these constructions, the criti-
cal step of a mnining attempt is to compare a hash value

to a threshold, H(puz‖ticket)
?
< T , where the threshold

T = 2λ−d is parameterized by the difficulty d. To implement
three reward tiers, we introduce two additional thresholds,
Tmedium < Thigh < T . If the hash value lies between Thigh
and T , then this attempt earns a high-value reward; if it is
between Tmedium and Thigh it earns a medium-value reward;
and otherwise it earns a low-value reward. These thresholds
must be set according to the desired frequency of each reward
type.

B. Economic Analysis of Multi-Tier Rewards

We argue that our proposed reward structure would simul-
taneously satisfy the necessary properties.

First, our scheme offers small payoff variance. At the time
of writing, the overall Bitcoin hashpower is over 3.5 · 1017
hashes per second. The most cost effective entry-level Bitcoin
ASIC we know of is the 8.0·1014 ASICMiner BE Tube, which
costs $320. Using this device to solo-mine, the expected time
to find a block would be over 8.3 years. However, under our
proposed scheme and typical parameters, over a 60 day period,
the mining rig mentioned earlier has a better than 98% chance
of winning at least one of these prizes.

TABLE III: Reward schedules for Bitcoin & our scheme.
We give a typical parametrization for the multi-tier reward
structure. Parameters can be tuned based on different scenarios.

Time Freq Prize (btc) (rel) Weight (rel)
Bitcoin 10m 1 25 1 1 1

Low 3s .995 8.8E-2 0.7 1 0.2499
Med 10m .005 5 0.2 600 0.7497
High 3mo 3.8E-7 3.3E4 0.1 1800 3.4E-4

Next we argue that the payoff structure is also effective
at preventing temporal statistical detection. Suppose a large
hosted mining provider controls 25% of the network hash-
power. Under the original Bitcoin reward structure, it should
expect to mine 6574 blocks during a six-month period, and the
chance of it mining fewer than 6429 blocks (≈ 98%) is less
than one in a thousand. Hence, it could expect steal at most
145 puzzle solutions (worth $900,000, at today’s price) over
this time period before being implicated with high confidence
– and even less before generating considerable suspicion. On
the other hand, under our proposed scheme, even if the service
provider is honest, it has a better than 60% chance of failing
to find any jackpot during the same time period. Thus if it
does steal one, it would arouse no suspicion, yet the expected
value of this strategy is over $4.1 million USD.

Finally, we explain that as in the strawman scheme, it is
plausible that if miners joined pools requiring small collateral
deposits that they would prefer not to defect when they find
low-value blocks. However, since the low-value blocks account
for only 25% of the blockchain’s total difficulty, even if a
coercer influences all the transactions in these blocks, this
would be insufficient to enforce a blacklist policy, for example.
The difficulty weight of the main prize is high enough to
provide ample time to steal the puzzle solution (7.5 minutes)
and adequate incentive to do so (thousands of dollars worth).
Since these blocks account for 75% of the overall difficulty,
pool members would be encouraged at least to steal these
blocks. Note that the jackpot blocks count more towards the
blockchain weight than the other blocks (so that a miner who
finds a jackpot block has a long time window (45 minutes on
average) before it becomes stale), but contributes very little to
the total difficulty of a chain. This prevents an attacker from
revising a large span of history by finding a single jackpot
block.

IX. DISCUSSION

We have proposed a technical countermeasure against the
consolidation of mining power that threatens the decentral-



ization of Bitcoin and other cryptocurrencies. Although we
have presented a formal definition that captures the security
guarantees of our construction and described how it can
be practically integrated into a cryptocurrency, due to the
difficulty involved in modifying an in-use cryptocurrency (i.e.,
via a “hard fork” upgrade [6]) and the high stakes involved in
cryptocurrencies generally, the bar for adopting a new design
is set very high. Our work provides a significant step in
this direction by providing a sound and practical approach to
discouraging centralization. However, in order for our solution
to be deployed we must provide a thorough and compelling
argument that this solution is fully effective, preferable to all
alternatives, and does not conflict with other aspects of the
system. Towards this end, we address several typical objections
we have encountered in the past, from academic reviewers and
the Bitcoin community alike:

“Mining pools are good because they lower the variance
for solo miners. Therefore, nonoutsourceable puzzles are
not well-motivated.” In Section I we describe the severe
consequences that can occur due to the concentration of mining
power — basically all purported security properties of decen-
tralized cryptocurrencies can be broken if mining coalitions
with significant mining power misbehave (and in some cases
it may be in their best interest to misbehave [17]). Further, our
multi-tier reward system design (see Section VIII-B) achieves
the best of both worlds, (i.e., ensuring low variance for solo
mining as well as discouraging mining coalitions).

“Can miners still use smart contracts or legal contracts to
enforce mining coalitions in spite of the nonoutsourceable
puzzles?” Our definition of nonoutsourceable puzzles prevents
the enforcement of contractual mechanisms including smart
contracts or legal contracts. An enforcement mechanism, such
as seizing collateral deposits or legal prosecution, is only ef-
fective if it can be applied with few false positives. The worker
can steal the puzzle solutions without being held accountable,
since the zero-knowledge spending option ensures the worker
can spend stolen coins without revealing any evidence that can
later be used to implicate it.

“What about collecting statistical evidence cheating work-
ers?” Suppose a pool operator monitors the puzzle production
rate of a worker over time, to detect if the worker is potentially
cheating. One enforcement mechanism might be for the pool
to require that a worker submit a deposit to join, such that in
case the worker is not producing solutions at the expected rate,
the deposit can be confiscated and redistributed.

As mentioned earlier in Section VIII-B, our puzzle defini-
tion is by nature a one-shot game. Although our nonoutsource-
able puzzle alone does not prevent the collection of statistical
evidence, in Section VIII-B, we argued that by combining our
puzzle with a multi-tier reward system, we effectively make it
highly costly or unreliable to accumulate statistical evidence
over time. In particular, a worker can opt to steal only the
“jackpot prize” (which happens only infrequently but offers
a large reward), while behaving honestly when it finds a
“consolation prize” which is of much smaller amount but paid
off at a frequent interval. Such an attack cannot be reliably
detected within a reasonable of timeframe (e.g., several years).

“Can coalitions be prevented by other, simpler solutions
that do not require zero knowledge proofs?” The Bitcoin
community has put forth two main alternative approaches
to ours. First, we could promote the use of P2Ppool and
other forms of “responsible” mining, so that users can join
pools without ceding full control of their resources to a
central authority. This has been unsuccessful so far. At the
time of writing, P2Pool accounts for less than 2% of the
total hashpower; and while some pools support a protocol
(called “getblocktemplate”) that allows pool members to see
the contents of the blocks they are asigned to work on (and,
hence, could leave if they detect the pool is applying some
disagreeable policy), the top six pools (which account for
more than two thirds of the total hashpower) do not. A second
approach is to monitor large pools and apply social pressure to
limit their size. However, pools have been accused of hiding
their bandwidth to avoid backlash. In any case, we make
an analogy to coercion-resistance in electronic voting (see
Section X): although social deterrents to undesired beahvior
may in some cases be effective, greater confidence can be
derived from a technical and economic deterrent.

“It’s too late to change Bitcoin; and regardless, large
miners wouldn’t support this change.” While we have de-
scribed our design as a proposed modification to Bitcoin, this is
primarily for ease of presentation; our design is also applicable
as the basis for a new cryptocurrency, or as a modification
to any of the hundreds of Bitcoin-like “altcoins” [6] which
compete with Bitcoin (though, at the time of writing, Bitcoin
remains far-and-away the most popular). Indeed altcoins have
already begun to experiment with (weak) nonoutsourceable
puzzles.

It seems unlikely our proposed design will soon be adopted
by Bitcoin. Due to the coordination involved and the risk of
splintering the network, there is (understandably) considerable
political resistance within the Bitcoin community to adopting
“hard fork” protocol changes, except in extreme cases [6].
However, such changes have occurred in the past, and could
occcur again. Though miners are influential and it would be
unwise to adopt a new policy that causes them to leave,
they aren’t unilaterally responsible for Bitcoin governance [6];
instead stakeholders include payment processors and services,
operators of “full nodes” that may not mine, and devel-
opers of popular clients. Additionally, as we mentioned in
Section VII-C and explain in detail in our extended online
paper, our nonoutsourceable puzzle constructions can be made
backward compatible with existing Bitcoin mining equipment,
lessening the impact on established miners [16]. Finally, even
if our design is not adopted, the mere public knowledge of a
viable coalition-resistant design alternative that the community
could adopt — if necessary — may already serve as a deterrent
against large coalitions.

X. RELATED WORK

Computational puzzles. Moderately hard computational puz-
zles, often referred to as “proofs of work,” were originally pro-
posed for the purpose of combating email spam [15] (though
this application is nowadays generally considered impracti-
cal [24]). Most work on computational puzzles has focused
instead on “client puzzles,” which can be used to prevent



denial-of-service attacks [22]. Recently, several attempts have
been made to provide formal security definitions for client
puzzles [12], [20], [42].

Theoretical and economic understanding of Bitcoin. Al-
though a purely digital currency has been long sought by
researchers [10], [11], [13], Bitcoin’s key insight is to frame the
problem as a consensus protocol and to provide an incentive for
users to participate. Although Bitcoin’s security has initially
been proven (informally) in the “honest majority” model [18],
[30], [32], this assumption is unsatisfying since it says nothing
about whether the incentive scheme indeed leads to an honest
majority. An economic analysis of Bitcoin by Kroll et al. [23]
showed that honest participation in Bitcoin may be incentive
compatible under assumptions such as a homogeneous popu-
lation of miners and a limited strategy space. More recently,
Eyal and Sirer [17] showed that with a more realistic strategy
space, when a single player (or coalition) comprises more than
a third of the network’s overall strength, the protocol is not
incentive compatible (and in fact the threshold is typically
much less than one-third, depending on other factors involving
network topology). This result underscores the importance of
discouraging the formation of Bitcoin mining coalitions.

Decentralized Mining Pools. While most mining pools (in-
cluding the largest) are operated by a central administrator,
P2Pool [44] is a successful protocol for decentralized mining
pools that achieve the desired effect (lower payout variance
for participants) that does not require an administrator. It is
possible that engineering efforts to improve P2Pool’s perfor-
mance and usability and public awareness campaigns may steer
more users to P2Pool rather than centralized mining pools (at
the time of writing8, P2Pool accounts for only 1% of the
total mining capacity while the two largest pools together
account for 49%). However, as P2Pool inherently requires
more overhead than a centralized pool, we believe it is wiser
to directly discourage coalitions through the built-in reward
mechanism.

Altcoins. Numerous attempts have been made to tweak the
incentive structure by modifying Bitcoin’s underlying puz-
zle. The most popular alternative, Litecoin9 uses an scrypt-
based [37] puzzle intended to promote the use of general
purpose equipment (especially CPUs or GPUs) rather than spe-
cialized equipment (e.g., Bitcoin mining ASICs). Another oft-
cited goal is to make the puzzle-solving computation have an
intrinsically useful side effect (this is discussed, for example,
in [23]). To our knowledge, we are the first to suggest deterring
mining coalitions as a design goal.

Zerocoin [27], Zerocash [3], and PinocchioCoin [14] focus
on making Bitcoin transactions anonymous by introducing a
public cryptographic accumulator for mixing coins. Spending
a coin involves producing a zero-knowledge proof that a coin
has not yet been spent. Although our zero-knowledge proof
construction may bear superficial resemblance to this approach,
our work addresses a completely different problem.

8According to https://blockchain.info/pools retrieved on August 1, 2014
9https://litecoin.org/

Coercion-resistance in Electronic Voting. The approach we
take is inspired by notions of coercion-resistance in electronic
voting. Vote buying (as well as other forms of coercion) is
illegal in all US state and federal elections [21]. While the
threat of legal prosecution already poses a deterrent against
such behavior, electronic voting schemes have been designed
to provide technical countermeasures as well [5], [33]. In short,
such schemes ensure that voters are unable to obtain any
receipt which could demonstrate how they voted to a coercive
attacker. We draw an analogy between vote buying and what
we call outsourcing schemes; analogous to receipt-freeness, the
(strongly) nonoutsourceable property prevents a worker from
proving to a pool operator how its hashpower is used.

Most Closely Related Work. In Permacoin [28], Miller et
al. proposed a Bitcoin-like system that achieves decentral-
ized data storage as a useful side effect of mining. As part
of their development, they implicitly developed a weakly
nonoutsourceable puzzle that deters consolidation of storage
capacity. Our Merkle-tree-based weakly nonoutsourceable puz-
zle construction is directly inspired by the construction in
Permacoin. However, Permacoin does not make any attempt
to formalize the notion of (weakly) nonoutsourceable puzzles,
nor to consider the goal of deterring outsourcing outside the
context of archival storage. Our paper provides the first formal
treatment of nonoutsourceable puzzles. Additionally, we intro-
duce a new notion of strongly nonoutsourceable puzzles, which
repairs a critical flaw in Permacoin (namely, that weakly
nonoutsourceable puzzles provide no deterrence against hosted
mining providers with valuable reputations, or against pools
who collect collateral deposits from their members).

In independent work, Eyal and Sirer [16] developed a
technique for combining a weakly nonoutsourceable puzzle
with an arbitrary scratch-off puzzle, resulting in a puzzle that
retains the best properties of the constituents; this can be
used, for example, to create a nonoutsourceable puzzle that is
backward-compatible with existing Bitcoin mining equipment.
We discuss applications of this technique in the full online
version of our paper.

XI. CONCLUSION

The prevalence of Bitcoin mining coalitions (including
both mining pools and hosted mining services), which lead to
consolidation of power and increased systemic risk to the net-
work, are a result of a built-in design limitation of the Bitcoin
puzzle itself – specifically, that it admits an effective coalition
enforcement mechanism. To address this, we have proposed
formal definitions of nonoutsourceable puzzles for which no
such enforcement mechanism exists. We have contributed two
constructions: a weak nonoutsourceable puzzle provable in the
random oracle model, and a generic transformation from any
weak nonoutsourceable puzzle to a strong one. The former
may already be a sufficient deterrent against mining pools,
while the latter thwarts both hosted mining and mining pools.
We have implemented both of our techniques and provide
performance evaluation results showing these add only a
tolerable overhead to the cost of Bitcoin blockchain validation.
Overall, we are optimistic that our approach, combined with
suitable modifications to the reward structure, could be used
to guarantee that participation as an independent individual is
the most effective mining strategy.

https://blockchain.info/pools
https://litecoin.org/
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