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Abstract

Mutual authentication and authenticated key exchange are fundamental techniques
for enabling secure communication over public, insecure networks. It is well-known how
to design secure protocols for achieving these goals when parties share high-entropy
cryptographic keys in advance of the authentication stage. Unfortunately, it is much
more common for users to share weak, low-entropy passwords which furthermore may be
chosen from a known space of possibilities (say, a dictionary of English words). In this
case, the problem becomes much more difficult as one must ensure that protocols are
immune to off-line dictionary attacks in which an adversary exhaustively enumerates
all possible passwords in an attempt to determine the correct one.

We propose a 3-round protocol for password-only authenticated key exchange, and
provide a rigorous proof of security for our protocol based on the decisional Diffie-
Hellman assumption. The protocol assumes only public parameters — i.e., a “common
reference string” — which can be “hard-coded” into an implementation of the protocol;
in particular, and in contrast to some previous work, our protocol does not require
either party to generate and share a public key in addition to sharing a password.
The protocol is also remarkably efficient, requiring computation only (roughly) 4 times
greater than “classical” Diffie-Hellman key exchange which provides no authentication
at all. Ours is the first protocol for password-only authentication which is both practical
and provably-secure using standard cryptographic assumptions.

1 Introduction

Protocols for mutual authentication of two parties and generation of a cryptographically-
strong shared key between them (authenticated key exchange) are fundamental primitives
for achieving secure communication over public, insecure networks. Indeed, protocols for
mutual authentication are necessary because one needs to know “with whom one is commu-
nicating”, while key-exchange protocols are required because private-key encryption schemes
and message authentication codes rely on shared cryptographic keys which must be refreshed
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periodically. Higher-level protocols are frequently developed and analyzed assuming the ex-
istence of “secure channels” between all parties, yet this assumption cannot be realized
without a secure mechanism for implementing such channels using previously-shared infor-
mation.

The importance of secure key exchange was recognized as early as the seminal work of
Diffie and Hellman [19], which shows how two parties can share a cryptographically-strong
key that remains hidden from any passive eavesdropper. The Diffie-Hellman protocol,
however, does not provide any form of authentication (i.e., a guarantee that the intended
partners are sharing the key with each other), and in particular it does not protect against
an active adversary who may inject messages, impersonate one (or both) of the parties, or
otherwise control the communication in the network. Achieving any form of authentication
inherently requires some information to be shared between the communicating parties in ad-
vance of the authentication stage. Historically, authentication protocols were designed under
the assumption that the shared information takes the form of high-entropy cryptographic
keys: either a secret key which can be used for symmetric-key encryption or message au-
thentication, or public keys (exchanged by the parties, while the corresponding private keys
are kept secret) which can be used for public-key encryption or digital signatures. Extensive
attention has been given to the problem of designing two-party authentication and authen-
ticated key-exchange protocols under such assumptions, and a number of provably-secure
protocols relying on shared cryptographic keys are known (see, e.g., [8, 20, 4, 1, 46, 14, 15]).

It is important to recognize that protocols which assume cryptographically-strong pre-
shared information simply do not apply — or are trivially seen to be insecure — when the
parties share a “short”, low-entropy password instead. As one trivial example to indicate the
difficulties that arise, consider the simple (unidirectional) authentication protocol in which
one party sends a random nonce r and the other party replies with y = H(pw, r), where pw
represents the shared password and H is a cryptographic hash function. While this protocol
can be proven secure (if H is modeled as a random oracle) when pw has high entropy, it is
completely insecure when the entropy of pw is small. Indeed, in the latter case a passive
adversary who obtains a single transcript (r, y) can recover the password by mounting an
off-line dictionary attack, trying all values of pw′ until one satisfying y = H(pw′, r) is found.
Other näıve attempts at “bootstrapping” a cryptographic key from a weak password can
also be shown to be insecure; as an example, using pw as a “seed” to generate a public
key VK for a secure signature scheme also enables an off-line dictionary attack if VK is
sent in the clear, or even if a signature is sent in the clear (as an adversary can enumerate
all potential public keys and then attempt to verify the signature with respect to each of
them). Note also that “scrambling” pw by, say, hashing it will also be of no help, as the
entropy of the output of the hash cannot be greater than the entropy of its input.

The above represents a serious problem in practice, as it is well-known that most users
choose passwords poorly [43, 38, 48, 51], and that compromise of even a single user’s account
can lead to compromise of an entire network. Unfortunately, it has proven difficult to design
password-based protocols offering rigorous security guarantees (see [37, Chap. 12]), and
there is a long history of protocols for this domain being proposed and subsequently broken
(cf. the attacks shown in [6, 45, 41]). Theoretical progress toward developing provably-
secure solutions for the password-based setting has been slow, with the first formal models
and proofs of security appearing only recently (see below). The problem is difficult in part
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because, as we have mentioned above, it requires “bootstrapping” from a weak shared secret
to a strong one; furthermore, due to the strong adversarial model considered (cf. Sections 2.1
and 2.2), it is not even a priori clear that a solution is possible.

Initial consideration of password-based authentication assumed a “hybrid” model in
which the client stores the server’s public key in addition to sharing a password with
the server. In this setting, Gong, Lomas, Needham, and Saltzer [39, 27] were the first
to present authentication protocols with heuristic resistance to off-line dictionary attacks.
Formal definitions and rigorous proofs of security in this setting were first given by Halevi
and Krawczyk [29]; see also [9].

The above-described “hybrid” setting suffers from the disadvantage that the client must
store the server’s public key (and if the client will need to authenticate to multiple servers,
the client must store multiple public keys); in some sense, this obviates the reason for
considering password-based protocols in the first place: namely, that human users cannot
remember or securely store long, high-entropy keys. This drawback has motivated research
on password-only protocols in which the client needs to remember only a (short) password.
Bellovin and Merritt [6] were the first to consider this, more challenging, setting: they
show a number of attacks that can arise, and introduce a set of protocols for so-called
“encrypted key exchange” (EKE) that have formed the basis for much future work in this
area [7, 28, 49, 30, 31, 40, 50]. Each of the works just mentioned, however, provides only
heuristic and informal security arguments for the protocols they propose; in fact, attacks
against many of these protocols have been shown [45, 41], emphasizing the need for rigorous
proofs of security in a formal, well-defined model.

Formal models of security for the password-only setting were given independently by
Bellare, Pointcheval, and Rogaway [2] (building on [4, 5, 40]) and Boyko, MacKenzie, Patel,
and Swaminathan [41, 11, 10] (building on [1, 46]). Bellare et al. [2] also present a proof of
security for the two-flow protocol at the “core” of Diffie-Hellman-based EKE [6] in the ideal
cipher model,1 while Boyko et al. [41, 11] introduce new RSA- and Diffie-Hellman-based
protocols, and prove their security in the random oracle model.2 Subsequently, Goldre-
ich and Lindell [25] introduced a different model of security for this setting and showed
the first protocol for password-only key exchange which is provably secure under standard
cryptographic assumptions (and no ideal ciphers/random oracles); their protocol does not
require any additional setup beyond the passwords shared by the parties. This work is
remarkable in that it shows that password-based authentication is possible under very weak
assumptions. On the other hand, their protocol does not lead to a practical solution as
it requires techniques from generic two-party secure computation (making their protocol
computationally inefficient) and concurrent zero-knowledge (making the round-complexity
of their protocol prohibitive). Thus, their protocol should best be viewed as a feasibility
result which does not settle the question of whether an efficient and practical solution is
possible. Note that efficiency is particularly important in this setting, which is motivated by
inherently practical considerations: i.e., human users’ inability to remember long keys. We

1The ideal cipher model assumes a public “oracle” which implements a random keyed, invertible permu-
tation; in practice, this oracle is instantiated with a block cipher. See further discussion in Section 1.1.

2The random oracle model [3] assumes a public “oracle” which implements a random function; in practice,
this oracle is instantiated with a cryptographic hash function. (Note that the ideal cipher model implies the
random oracle model, while the converse is not known.) See further discussion in Section 1.1.

3



also remark that the Goldreich-Lindell protocol, unlike the protocol presented here, does
not tolerate concurrent executions of the protocol by the same party.

1.1 Our Contributions

As the above discussion indicates, previously-suggested protocols for password-only key ex-
change can be classified as either (1) having no rigorous proof of security; (2) having a
rigorous proof of security based on standard cryptographic assumptions, but impractical;
or (3) having a rigorous proof of security in an idealized model (such as the ideal cipher
or random oracle models). We have already discussed why proofs of security are crucial in
this setting, and why developing practical solutions to the problem of password-only key
exchange is of great importance. As for the third class of solutions, it is widely recognized
in the cryptographic community (see, e.g., [3, 12]) that proofs of security in the various ide-
alized models discussed earlier are useful as a “sanity check” insofar as they lend a measure
of confidence to protocols whose security would otherwise only be heuristic; however, they
do not provide an “iron-clad” guarantee of security in the real world. As an example [12],
encryption and signature schemes are known which can be proven secure in these idealized
models but for which any instantiation of the scheme in the real world (where, e.g., the
random oracle is instantiated by a cryptographic hash function) is insecure. Thus, proofs
of security in idealized models are at best unsatisfying, and at worst dangerous.

We present here the first protocol for password-only key exchange which is both prac-
tical and provably-secure under standard cryptographic assumptions (in particular, without
assuming any idealized model). Security is proven in the model of Bellare et al. [2] based
on the decisional Diffie-Hellman assumption [19], a well-studied cryptographic assumption
used in constructing and analyzing previous protocols for authenticated key-exchange (in
the password-based setting and otherwise). Our protocol is remarkably efficient even when
compared to the original key-exchange protocol of Diffie and Hellman — which, as we
have noted, provides no authentication at all: our protocol uses only three rounds of com-
munication, and requires computation only (roughly) four times greater than the original
Diffie-Hellman scheme.

Our protocol assumes public parameters available to all parties in the network. These
parameters are assumed to be generated in a trusted manner by, say, the same entity who
writes the software implementing the protocol. (Note that this entity is anyway being
trusted to implement the protocol correctly, and not to embed any malware or covert
channels into the implementation.) The assumption of public parameters is significantly
weaker — in both a theoretical and practical sense — than the “hybrid” model discussed
earlier in which clients are required to store a public key for each server with whom they
wish to communicate or, alternatively, to store the public key of a certificate authority
(CA) who certifies servers’ public keys. Advantages of using public parameters as opposed
to public keys include:

• The parameters required by our protocol can be generated in such a way that there
is no “trapdoor” information associated with them. This, in turn, implies that there
is no “master” secret key whose compromise would render the entire system insecure.

• Avoiding the use of public keys avoids the need to handle revocation, and also elimi-
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nates the need to transmit certificates and verify certificate chains.

• Once the public parameters are established, any client and server who share a password
can use the protocol without having to first obtain a certificate from a CA.

As an additional contribution, we propose a formal definition of forward secrecy for
password-only key-exchange protocols which we believe simplifies and unifies previous def-
initional work in this area. Roughly speaking, forward secrecy guarantees that a protocol
remains secure even against an adversary who may obtain some clients’ passwords and who
may also change the passwords stored at various servers. It also guarantees protection
against malicious clients (who may choose “bad” passwords in an attempt to learn other
users’ passwords). As an indication of what can go wrong in this stronger adversarial model,
we show that a seemingly-innocuous change to our protocol allows for an explicit attack
by such an adversary. We then prove, however, that our protocol as specified does indeed
achieve forward secrecy.

1.2 Subsequent Progress

Due in large part to the practical significance and importance of password-based authentica-
tion, active research continues in this area. We only highlight those results most related to
what is shown here. Perhaps most interesting in this regard is the work of Gennaro and Lin-
dell [24], who make explicit the intuition underlying the core ideas of our construction and
also present and prove secure an abstraction (as well as a generalization) of the framework
we use; a nice consequence is that they obtain as corollaries of their work efficient protocols
based on alternative number-theoretic assumptions. Nguyen and Vadhan [44] show a sim-
pler version of the Goldreich-Lindell protocol which achieves a weaker level of security than
that considered in either [25] or here. Though their protocol is somewhat more efficient
than that of [25], it relies on generic two-party secure computation and is therefore still not
efficient enough to be used in practice. Jiang and Gong [32] show an efficient protocol for
password-based key exchange based on the decisional Diffie-Hellman assumption; the main
advantage of their protocol in comparison to the one presented here is that their protocol
achieves explicit mutual authentication in three rounds (whereas the protocol shown here
would require an additional, fourth round). In [13], a stronger definition of security for
password-based key exchange is proposed; a protocol satisfying that stronger definition,
building on the work here and in [24], is shown there as well. The above (in addition to [25]
and the present work) are — to the best of our knowledge — the only schemes currently
known with proofs of security under standard cryptographic assumptions.

More efficient variants of our protocol are suggested in [13, 34]. Threshold variants of
our protocol (in which the password is shared across multiple servers to defend against
server compromise) have also been suggested [21, 34].

2 Definitions and Preliminaries

We begin with an informal overview of the model of security used here, intended primarily
for those unfamiliar with this area. Section 2.2 contains a formal specification of the security
model, following [2]. In Section 2.3 we propose an extension to the basic security model
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which enables a rigorous definition of forward secrecy [20] in the password-only setting.
Finally, Section 2.4 reviews a number of cryptographic components used by our protocol.

2.1 Informal Overview of the Adversarial Model

In our setting two parties within a larger network who share a weak (low-entropy) password
wish to authenticate each other and generate a cryptographically-strong session key to secure
their future communication. They wish to do so in the presence of a powerful adversary
who controls all communication in the network; this adversary may view, tamper with,
deliver out-of-order, or refuse to deliver messages sent by the honest parties. The adversary
may also initiate concurrent (arbitrarily-interleaved) executions of the protocol between the
honest parties; during these executions, the adversary may attempt to impersonate one (or
both) of the parties or may simply eavesdrop on honest executions of the protocol. The
adversary may also expose multiple previous session keys in a way we describe below. The
adversary succeeds (informally) if it can distinguish any session key generated by an honest
party from a randomly-chosen session key.3

The description above corresponds to the “basic” adversarial model formalized in Sec-
tion 2.2. We may additionally consider an adversary who can corrupt parties and thereby
either (1) obtain a client’s password, or (2) modify the client’s password stored on a server.
We consider this type of adversary when defining “forward secrecy” in Section 2.3.

A notion of security in the password-based setting must be defined carefully. Since,
by their nature, passwords are chosen from a small space of possibilities, an adversary can
always try each possible password one-by-one in an on-line impersonation attack; once the
correct password is found, the adversary can clearly succeed in impersonating either party.
With this in mind, we say a password-only protocol is secure (informally) if an exhaustive,
on-line guessing attack of this sort is the best an adversary can do (cf. Definition 1, below). In
particular, a secure protocol is resistant to off-line attacks in which an adversary passively
monitors executions of the protocol and attempts to determine the correct password by
examining the transcripts of these executions. A protocol satisfying our definition of security
is also resilient to other types of attacks: for example, the definition rules out “man-in-the-
middle” attacks in which an adversary shares a (separate) key with each party although the
parties believe they have shared a (single) key with each other.

From a practical point of view, on-line attacks are the hardest for an adversary to mount,
and they are also the easiest to detect. Furthermore, on-line attacks may be limited by,
for example, shutting down a user’s account after a certain number of failed authentication
attempts. It is therefore realistic to assume that the number of on-line attacks an adver-
sary is able to execute is severely limited, while other attacks (e.g., eavesdropping, off-line
password guessing) are not. In any case, as noted above, any password-based protocol can
ultimately be broken by an on-line attack and so the present definition is the best one can
hope for in the password-based setting.

3The adversary does not succeed by simply “disrupting” the protocol and preventing the parties from
agreeing on a shared key; in our model such an attack is impossible to prevent, as the adversary can simply
block all communication between the honest parties. Note also that we are primarily concerned with the
setting of implicit authentication; see Section 2.2.1 for a discussion of explicit authentication.
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2.2 Definition of Security for Password-Based AKE

We essentially follow the definition of Bellare, Pointcheval, and Rogaway [2], which is based
on prior work by Bellare and Rogaway in the non-password setting [4, 5].

Participants, passwords, and initialization. We assume a fixed set4 of protocol par-
ticipants (also called principals or users) each of which is either a client C ∈ Client or a
server S ∈ Server, where Client and Server are disjoint. Each C ∈ Client is assumed to have
a password pwC , while each S ∈ Server is assumed to have a vector PWS = 〈pwS,C〉C∈Client

which contains the passwords of each of the clients. (The assumption that every client
shares a password with every server is made merely for convenience. One could just as well
assume that arbitrary pairs of users share passwords.)

Prior to any execution of the protocol we assume that an initialization phase occurs
during which public parameters (if any) are established and passwords pwC are chosen for
each client C. Recall that pwC is assumed to be a low-entropy secret; therefore, we assume
that pwC (for each client C) is chosen independently and uniformly at random5 from a
“dictionary” D of size N , where N is a fixed constant which is independent of the security
parameter. The correct passwords are then stored at each server so that pwS,C = pwC for
all C ∈ Client and S ∈ Server.

In general, it is possible for additional information to be generated during this initializa-
tion phase. For example, in the “hybrid” model [29, 9] public/secret key pairs are generated
for each server and the secret key is given as input to the appropriate server, while the pub-
lic key is provided to all participants (and is also given to the adversary). For the protocol
presented here, we require only the weaker requirement of a single set of public parameters
which are provided to each party and also to the adversary.

Execution of the protocol. In the real world, a protocol determines how principals
behave in response to input from their environment. In the formal model, these inputs are
provided by the adversary. Each principal is assumed to be able to execute the protocol
multiple times (possibly concurrently) with different partners; this is modeled by allowing
each principal to have an unlimited number of instances [5, 2] with which to execute the
protocol. We denote instance i of user U as Πi

U . A given instance may be used only once.
The adversary is given oracle access to these different instances; furthermore, each instance
maintains (local) state which is updated during the course of the experiment. In particular,
each instance Πi

U has associated with it the following variables, initialized as null or false
(as appropriate) during the initialization phase:

• sidi
U , pidi

U , and ski
U are variables containing the session id, partner id, and session

key for an instance, respectively. Computation of the session key is, of course, the
ultimate goal of the protocol. The session id is simply a way to keep track of the

4This is for simplicity only, and one could augment the model to allow the adversary to dynamically add
new users (and choose their names) during the course of the experiment. By examining the proof, it is easy
to see that our protocol remains secure in such a scenario.

5The assumption of independent, uniform passwords from a constant-size dictionary is made for simplicity
only, and our proof of security extends easily to handle other cases such as dictionaries whose size depends
on the security parameter, non-uniform distributions on passwords, or different distributions for different
clients (of course, Definition 1 must be suitably modified in each case). See Section 2.2.1. An even more
general model for password selection is considered in [13].
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different executions of a particular user U ; without loss of generality, we simply let
this be the (ordered) concatenation of all messages sent and received by instance Πi

U .
The partner id denotes the identity of the user with whom Πi

U believes it is interacting.
(Note that pidi

U can never equal U .)

• acci
U and termi

U are boolean variables denoting whether a given instance has accepted
or terminated, respectively. Termination means that a given instance is done send-
ing and receiving messages; acceptance indicates successful termination, where the
semantics of “success” depend on the protocol. In our case, acceptance implies that
the instance believes it has established a session key with its intended partner; thus,
when an instance Πi

U accepts, sidi
U , pidi

U , and ski
U are no longer null.

• statei
U records any state necessary for execution of the protocol by Πi

U .

• usedi
U is a boolean variable denoting whether an instance has begun executing the

protocol; this is a formalism which will ensure that each instance is used only once.

As highlighted earlier, the adversary is assumed to have complete control over all com-
munication in the network and the adversary’s interaction with the principals (more specif-
ically, with the various instances) is modeled via access to oracles which we describe now.
The state of an instance may be updated during an oracle call, and the oracle’s output may
depend upon the state of the relevant instance. The oracle types are:

• Send(U, i,M) — This sends message M to instance Πi
U . Assuming termi

U = false,
this instance runs according to the protocol specification, updating state as appro-
priate. The output of Πi

U (i.e., the message sent by the instance) is given to the
adversary, who also receives the updated values of sidi

U , pidi
U , acci

U , and termi
U .

• Execute(C, i, S, j) — If Πi
C and Πj

S have not yet been used (where C ∈ Client and
S ∈ Server), this oracle executes the protocol between these instances and outputs
the transcript of this execution. This oracle call represents passive eavesdropping of
a protocol execution. In addition to the transcript, the adversary receives the values
of sid, pid, acc, and term, for both instances, at each step of protocol execution.

• Reveal(U, i) — This outputs the current value of session key ski
U . This oracle call

models possible leakage of session keys due to, for example, improper erasure of session
keys after use, compromise of a host computer, or cryptanalysis.

• Test(U, i) — This oracle does not model any real-world capability of the adversary,
but is instead used to define security. A random bit b is generated; if b = 1 the
adversary is given ski

U , and if b = 0 the adversary is given a random session key. The
adversary is allowed only a single Test query, at any time during its execution.

Partnering. Let C ∈ Client and S ∈ Server. We say that instances Πi
C and Πj

S are
partnered if: (1) sidi

C = sidj
S 6= null; and (2) pidi

C = S and pidj
S = C. The notion of

partnering will be fundamental in defining both correctness and security.
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Correctness. To be viable, a key-exchange protocol must satisfy the following notion of
correctness: if Πi

C and Πj
S are partnered then acci

C = accj
S = true and ski

C = skj
S (i.e.,

they both accept and conclude with the same session key).

Advantage of the adversary. Informally, the adversary succeeds if it can guess the bit
b used by the Test oracle. Before formally defining the adversary’s success, we must first
define a notion of freshness. An instance Πi

U is fresh unless one of the following is true at the
conclusion of the experiment: (1) at some point, the adversary queried Reveal(U, i); or (2) at
some point, the adversary queried Reveal(U ′, j), where Πj

U ′ and Πi
U are partnered. We will

allow the adversary to succeed only if its Test query is made to a fresh instance. Note that
this is necessary for any reasonable definition of security; otherwise, the adversary could
always succeed by, e.g., submitting a Test query for an instance for which it had already
submitted a Reveal query.

We say an adversary A succeeds if it makes a single query Test(U, i) to a fresh instance
Πi

U , with acci
U = true at the time of this query, and outputs a single bit b′ with b′ = b

(recall that b is the bit chosen by the Test oracle). We denote this event by Succ. The
advantage of adversary A in attacking protocol P is then given by:

AdvA,P (k) def= 2 · Pr[Succ]− 1,

where the probability is taken over the random coins used by the adversary and the random
coins used during the course of the experiment (including the initialization phase).

It remains to define what we mean by a secure protocol. Note that a probabilistic
polynomial-time (ppt) adversary can always succeed by trying all passwords one-by-one in
an on-line impersonation attack; this is possible since the size of the password dictionary is
constant. Informally, a protocol is secure if this is the best an adversary can do. Formally,
an instance Πi

U represents an on-line attack if both the following are true at the time of
the Test query: (1) at some point, the adversary queried Send(U, i, ∗); and (2) at some
point, the adversary queried Reveal(U, i) or Test(U, i). In particular, instances with which
the adversary interacts via Execute queries are not counted as on-line attacks. The number
of on-line attacks represents a bound on the number of passwords the adversary could have
tested in an on-line fashion. This motivates the following definition:

Definition 1 Protocol P is a secure protocol for password-only authenticated key-exchange
if, for all dictionary sizes N and for all ppt adversaries A making at most Q(k) on-line
attacks, there exists a negligible function ε(·) such that:

AdvA,P (k) ≤ Q(k)/N + ε(k).

♦
The above definition ensures that the adversary can (essentially) do no better than guess
a single password during each on-line attack. Calls to the Execute oracle, which are not
included in Q(k), are of no help to the adversary in breaking the security of the protocol;
this means that passive eavesdropping and off-line dictionary attacks are of no use.

We remark that some definitions of security (e.g., [2, 25, 44]) allow the adversary to
guess more than one password per on-line attempt. We believe the strengthening given
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by the above definition (in which the adversary can guess only a single password per on-
line attempt) is important. The space of possible passwords is assumed small to begin
with, so any degradation in security should be avoided if possible. This is not to say that
protocols not meeting the above definition are fundamentally “insecure”; however, before
using such a protocol one must then be aware of the constant implicit in the proof of
security. Interestingly, for at least one protocol [50] an explicit attack is known which
allows an adversary to guess two passwords per on-line attack.

2.2.1 Extensions of the Definition

We briefly discuss two extensions of the previous definition.

More general password distributions. As noted in footnote 5, it is possible to consider
more general classes of password distributions. For example, instead of assuming that
passwords are chosen uniformly from a fixed dictionary D, we may instead take D to be
a probabilistic polynomial-time algorithm that, on input 1k, outputs a password pw. This
allows both for non-uniform distributions, as well as a dependence on the security parameter.
For a set S, let weightD(1k)(S) def= Pr[D(1k) ∈ S] and define

best-guessD(1k)(Q) def= max
S : |S|=Q

{weightD(1k)(S)}.

Then Definition 2.2 would be modified, in the obvious way, to require that

AdvA,P (k) ≤ best-guessD(1k)(Q(k)) + ε(k).

It can be easily verified that the proof of security we give for our protocol extends to the
case where passwords are chosen as above. We remark that that requirement that passwords
are generated by a polynomial-time algorithm D seems necessary for our proof, but it is not
necessary for best-guessD(1k)(·) to be efficiently computable.

Explicit mutual authentication. The definitions we have given are intended only for
protocols achieving implicit, rather than explicit, authentication. (Indeed, the protocol we
present here achieves only implicit authentication.) If an honest party S interacts with
some party U (who is either the intended partner C or an adversarial impersonator) then,
very roughly speaking, S implicitly authenticates C if the session key sk that is generated
by S is known to U if and only if U = C. In contrast, S explicitly authenticates C if the
output (sk, acc) of S is such that sk is known to U and acc = 1 if and only if U = C.

Turning this around, this means that in the case of protocols for explicit authentication
an adversary successfully attacks the protocol if it can either determine the session key held
by some instance, or if it can cause an instance to output acc = true even though that
instance is not partnered with any other instance. A subtlety here is that partnering must
be redefined so that instances are considered partnered if their session id’s match except
possibly for the final message; otherwise it would be trivial for an adversary to succeed by
simply forwarding all messages of the protocol except the last between two honest parties.
(See [4, 2] for further discussion.) We also now say that an instance Πi

U represents an on-line
attack if the adversary ever queried Send(U, i, ∗) (i.e., without requiring the adversary to
also make a Reveal of Test query for this instance).
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Using pseudorandom functions in a fairly standard manner, it is easy to add explicit
authentication to any protocol achieving implicit authentication [2].

2.3 Forward Secrecy

The security definition of the previous section does not offer protection against an adversary
who may compromise, say, a server and thereby either (1) obtain the password of a particular
client, or (2) modify the value of a particular client’s password stored by the server. Building
on the framework of [2], we provide a definition of forward secrecy which addresses these
concerns. (Note that forward secrecy [20] classically refers to ensuring security in case
long-term secret information — e.g., passwords — are exposed. Following [2], however,
we additionally allow the adversary to modify long-term secret information.) A number of
definitions of forward secrecy in the password-only setting have been proposed (for example,
four different notions of forward secrecy are mentioned in [2] alone); we believe our definition
here simplifies and unifies previous definitional work.

To define forward secrecy, we must modify the basic model of the previous section in two
orthogonal ways. First, we augment the adversarial model by introducing a new Corrupt
oracle to which the adversary will be given access (actually, we will introduce two types of
Corrupt oracles); this will allow us to model the adversarial actions listed above. Second,
we modify the definition of security to obtain a meaningful definition (for example, once an
adversary obtains a client’s password it can trivially impersonate that client regardless of
what protocol is used; this must be reflected somehow in the security definition). Actually,
we will only modify our definition of freshness; the rest of the definition will remain the
same. We now discuss each of these changes in turn.

The corruption model. We introduce two new oracles to model the two types of attacks
listed above. Oracle Corrupt1 models the adversary’s ability to learn clients’ passwords:
formally, Corrupt1(C) returns pwC for C ∈ Client.6 Oracle Corrupt2 models the adversary’s
ability to modify passwords stored on a server: formally, Corrupt2(S,C, pw) (for S ∈ Server
and C ∈ Client) sets pwS,C := pw. We emphasize that the adversary can install different
passwords on different servers for the same client. In the definition of [2], an adversary
who installs a password pwS,C also learns the “actual” password pwC ; we make no such
assumption here (instead, the adversary must make an explicit Corrupt1 query to obtain
this password). In the case of a poorly-administered server, it may be easy to modify clients’
passwords without learning their “actual” passwords. The oracle query Corrupt2(S,C ′, pw)
also models the case of a corrupt client C ′ who selects his own password pw in an arbitrary
manner, and then stores it on server S.

“Freshness”. Introduction of the Corrupt oracles necessitates new definitions of partnering,
freshness, and on-line attacks. Let C ∈ Client and S ∈ Server. We now say that instances
Πi

C and Πj
S are partnered if: (1) sidi

C = sidj
S 6= null; (2) pidi

C = S and pidj
S = C; and

(3) pwC = pwS,C at the time these instances were activated. (This last requirement is
now necessary since an adversary can cause pwC 6= pwS,C using a Corrupt2 query.) We

6Note that it does not matter here whether the adversary obtains the password by corrupting a server
and learning a client’s password stored thereon, or whether the adversary obtains the password directly from
the client using, e.g., social engineering.
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say that an instance Πi
U (with pidi

U = U ′) is fresh unless one of the following is true at
the conclusion of the experiment: (1) at some point, the adversary queried Reveal(U, i) or
Reveal(U ′, j) where Πj

U ′ and Πi
U are partnered; (2) the adversary queried Corrupt1(U) before

a query Send(U, i, ∗); or (3) the adversary queried Corrupt1(U ′) or Corrupt2(U,U ′, ∗) before
a query Send(U, i, ∗). The second and third conditions reflect the fact that if an adversary
learns the password of some client C, then it can trivially impersonate any server to C, or
C to any server; the third condition also reflects the fact that once the adversary sets the
value of pwS,C to some known value, it can then impersonate C to S. Finally, we define
on-line attack as follows:

• An instance Πi
C with C ∈ Client represents an on-line attack if (1) the adversary

queried Send(C, i, ∗) before it queried Corrupt1(C); and (2) the adversary subsequently
queried Reveal(C, i), Test(C, i), or Corrupt1(C).

• An instance Πi
S with S ∈ Server and pidi

S = C represents an on-line attack if (1) the
adversary queried Send(S, i, ∗) before it queried Corrupt1(C) or Corrupt2(S, C); and
(2) the adversary subsequently queried Reveal(S, i), Test(S, i), or Corrupt1(C).

Although the above definition is slightly cumbersome, it exactly matches the intuitive notion
of what an on-line attack is: the number of on-line attacks exactly represents the maximum
number of “password guesses” the adversary can make, and we do not count as on-line
attacks scenarios in which the adversary already “knows” the password being used by an
instance (e.g., in case the adversary had already queried Corrupt1(C) before it makes a
query Send(C, i)).

Having defined partnering, freshness, and on-line attacks, the remainder of the security
definition is exactly as in the basic case. That is:

• An adversary A succeeds (denoted by Succ) if it makes a single query Test(U, i) to a
fresh instance Πi

U , with acci
U = true at the time of this query, and outputs a single

bit b′ with b′ = b.

• The advantage of adversary A in attacking protocol P is defined as

AdvA,P (k) def= 2 · Pr[Succ]− 1.

• Let P be a protocol for password-only authenticated key-exchange that is secure in
the basic sense of Definition 2.2. We say P achieves forward secrecy if for all dictionary
sizes N and all ppt adversaries A making at most Q(k) on-line attacks there exists a
negligible function ε(·) such that:

AdvA,P (k) ≤ Q(k)/N + ε(k).

We stress that although the above is syntactically equivalent to the basic definition given
earlier, the differences are that A now has access to the two Corrupt oracles, and the notions
of “freshness” and “on-line attacks” are modified appropriately.
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2.4 Cryptographic Building Blocks

We briefly review the decisional Diffie-Hellman assumption (which underlies the security of
our scheme), as well as some cryptographic building blocks used to construct our protocol.

The decisional Diffie-Hellman (DDH) assumption [19]. Let G be an efficient algo-
rithm which, on input 1k, outputs a description of a cyclic (multiplicative) group G of prime
order q where furthermore |q| = k. We associate G with a description of this group, and
assume for simplicity that q is implicit in G. Additionally, we assume that group operations
(namely, multiplication, membership testing, and finding a generator) in groups output by
G(1k) can be done in (expected) polynomial-time in k. Exponentiation and selecting a ran-
dom group element can then also be done in polynomial time. We defer a concrete example
of a candidate algorithm G to the end of this section.

We define Ḡ def= G \ {1}; since the order of G is prime, Ḡ is exactly the set of generators
of G. Given a generator g ∈ Ḡ, a random group element can be selected by choosing x ∈ Zq

uniformly at random and computing gx. If, instead, x is chosen uniformly at random from
Z∗q we obtain a random generator. Given a group G as above, we define the set of Diffie-
Hellman tuples as all tuples of the form (g, h, ga, ha) ∈ Ḡ4 where g and h are generators and
a ∈ Z∗q . We define the set of random tuples as all tuples of the form (g, h, ga, hb) ∈ Ḡ4 where
g and h are generators, a, b ∈ Z∗q , and furthermore a 6= b. Informally, the DDH problem
for a group G is to distinguish Diffie-Hellman tuples from random tuples, and the DDH
problem is “hard” in G if no poly-time algorithm can solve the DDH problem in this group
with probability much better than 1/2 (i.e., guessing at random). To be more formal, we
must in fact talk about the hardness of the DDH problem in groups output by G. This
leads to the following definition.

Definition 2 Given G as above, and for any algorithm D, define

RandD,G(k) def=

Pr
[
G← G(1k); g, h ← Ḡ; a ← Z∗q ; b ← Z∗q \ {a} : D(G, g, h, ga, hb) = 1

]

and
DHD,G(k) def= Pr

[
G← G(1k); g, h ← Ḡ; a ← Z∗q : D(G, g, h, ga, ha) = 1

]
.

We say the DDH problem is hard for G if |DHD,G(k)− RandD,G(k)| is negligible for all ppt
algorithms D. The DDH assumption is that there exists a G for which the DDH problem
is hard. If G is a group output by some G for which the DDH problem is hard, we will
sometimes (informally) say the DDH problem is hard in G. ♦

A standard example of an algorithm G for which the DDH problem is believed to be
hard is the following: on input 1k choose primes p, q such that p = 2q + 1 and |q| = k; let
G be the subgroup of quadratic residues in Z∗p. Note that G has order q, as desired. Of
course, other choices for G are also possible.

One-time signature schemes. We provide a self-contained definition (following [26]) of
the type of signature scheme required by our protocol.

Definition 3 A signature scheme Σ is a triple of ppt algorithms (Gen, Sign, Vrfy) such that:
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• The key generation algorithm Gen takes as input a security parameter 1k and returns
verification key VK and signing key SK.

• The signing algorithm Sign takes as input a signing key SK and a message m, and
returns a signature Sig. We denote this by Sig ← SignSK(m).

• The verification algorithm Vrfy is a deterministic algorithm that takes as input a verifi-
cation key VK, a message m, and a signature Sig and returns a single bit. We denote
this by b = VrfyVK(m, Sig).

We require that for all k, all (VK, SK) output by Gen(1k), all m, and all Sig output by
SignSK(m), we have VrfyVK(m,Sig) = 1. ♦
The following definition describes the level of security which the signature scheme used in
our protocol must satisfy. The required level of security is relatively weak; thus, signature
schemes meeting this level of security are not only easy to construct, but can also be more
efficient than typical signature schemes used in practice (which usually satisfy the stronger
security notion introduced by [26]).

Definition 4 Σ = (Gen,Sign, Vrfy) is a secure one-time signature scheme if the following is
negligible for all ppt algorithms F :

Pr[(VK, SK) ← Gen(1k); (m,Sig) ← FSignSK(·)(1k, VK) : VrfyVK(m, Sig) = 1],

where F makes only a single query to SignSK(·) and we require that Sig was not previously
output by SignSK(·) on input m. ♦
The above definition corresponds to what is sometimes termed a “strong” signature scheme,
in that it is also infeasible for the adversary to output a different (valid) signature corre-
sponding to the same message m that it submitted to its signing oracle.

A secure (strong) one-time signature scheme may be constructed based on any one-way
function, and hence may be based on the DDH assumption (which implies the discrete
logarithm assumption and thus a one-way function).

Collision-resistant hashing. Informally, a function H is collision-resistant if it is infeasi-
ble to find any x 6= x′ for which H(x) = H(x′). Formally, let CRHF be an efficient algorithm
which, on input 1k, outputs a description of an efficient hash function H mapping {0, 1}∗
to {0, 1}k. We say that CRHF is a collision-resistant hash family if the following is negligible
for all ppt algorithms A:

Pr[H ← CRHF(1k); (x, x′) ← A(1k,H) : x 6= x′ ∧H(x) = H(x′)].

For our application, we will actually require that the H output by CRHF map strings to
Zq for some given q of length k. However, it is easy to modify any collision-resistant hash
family as described above to obtain one satisfying this requirement.

A collision-resistant hash family may be constructed based on the DDH assumption (in
fact, the weaker discrete logarithm assumption suffices) [17].

Cramer-Shoup encryption using labels. The Cramer-Shoup public-key encryption
scheme [16] was the first known example of a practical encryption scheme with a rigorous
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proof of security against chosen-ciphertext attacks under standard cryptographic assump-
tions. Our protocol relies on a modification of the Cramer-Shoup scheme, described here
for convenience. For completeness, we also provide a definition of security against chosen-
ciphertext attacks incorporating the notion of labels (see [47]). We rely on this definition
in the proof of security for our protocol.

Before continuing, we emphasize that our protocol does not use the (modified) Cramer-
Shoup scheme for encryption per se. Indeed, in our application no party publishes a public
key or holds any secret key associated with the scheme, and “decryption” is never performed
during execution of our protocol. Our proof of security, however, does rely on the fact that
decryption is possible. Gennaro and Lindell [24] have since shown that this feature is not
essential, and that non-malleable commitment [22] suffices.7 We first define the semantics
of public-key encryption with labels.

Definition 5 A public-key encryption scheme (supporting labels) is a tuple of ppt algorithms
(KeyGen, E ,D) such that:

• The key generation algorithm KeyGen takes as input a security parameter 1k and returns
a public key pk and a secret key sk.

• The encryption algorithm E takes as input a public key pk, a label label, and a
message m. It returns a ciphertext C. We write this as C ← Epk(label,m).

• The decryption algorithm D takes as input a secret key sk, a label label, and a
ciphertext C. It returns a message m or a distinguished symbol ⊥. We write this as
m = Dsk(label, C).

We require that for all k, all pk, sk output by KeyGen(1k), any label, all m in the (implicit)
message space, and any C output by Epk(label,m) we have Dsk(label, C) = m. ♦
Our definition of security against chosen-ciphertext attacks is equivalent to the standard
definition except for our inclusion of labels, which follows [47]. In the following, we define
a left-or-right encryption oracle Epk,b(·, ·, ·) (where b ∈ {0, 1}) as follows:

Epk,b(label,m0,m1)
def= Epk(label,mb).

Definition 6 A public-key encryption scheme (KeyGen, E ,D) is secure against adaptive
chosen-ciphertext attacks if the following is negligible for all ppt algorithms A:

∣∣∣2 · Pr[(pk, sk) ← KeyGen(1k); b ← {0, 1} : AEpk,b(·,·,·),Dsk(·,·)(1k, pk) = b]− 1
∣∣∣ ,

where A’s queries are restricted as follows: if A makes a query Epk,b(label,m0,m1) then
m0,m1 must be in the (implicit) message space with |m0| = |m1|; furthermore, if A receives
ciphertext C in response to this query, then A cannot later query Dsk(label, C). ♦

We now describe our modification of the Cramer-Shoup encryption scheme [16]. On
input 1k, the key generation algorithm KeyGen first runs G(1k) to generate a group G (as

7Security of the Cramer-Shoup scheme against adaptive chosen-ciphertext attacks implies that it is a
non-malleable commitment scheme in the common reference string model [18].
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described earlier in the context of the DDH assumption); it also selects random generators
g1, g2 ← Ḡ. Next, it selects three pairs (z1, z2), (x1, x2), (y1, y2) at random from the set
{(a, b) ∈ Zq × Zq | ga

1gb
2 6= 1}, and sets h = gz1

1 gz2
2 , c = gx1

1 gx2
2 , and d = gy1

1 gy2
2 . Finally,

it runs CRHF(1k) to generate a hash function H, where CRHF is a collision-resistant hash
family as described above. The public key consists of G, g1, g2, h, c, d,H; the secret key is
z1, z2, x1, x2, y1, y2; and the message space is G.

To encrypt a message m ∈ G using label label, the sender chooses a random r ∈ Zq and
computes u1 = gr

1, u2 = gr
2, and e = hrm. It then sets α = H(label|u1|u2|e) and outputs

the ciphertext 〈u1|u2|e|(cdα)r〉. To decrypt a ciphertext 〈u1|u2|e|v〉 using label label, the
receiver first verifies that all components of the ciphertext lie in G. If not, it outputs ⊥;
otherwise, it then computes α = H(label|u1|u2|e) and checks whether ux1+αy1

1 ux2+αy2
2

?= v.
If not, the decryption algorithm outputs ⊥; otherwise, it outputs m = e/uz1

1 uz2
2 . It is not

hard to see that decryption (of honestly-generated ciphertexts) always succeeds.
The following theorem follows immediately from the results of [16] (see [33]):

Theorem 1 Assuming (1) the DDH problem is hard for G and (2) CRHF is a collision-
resistant hash family, the above scheme is secure against adaptive chosen-ciphertext attacks.

3 A Provably-Secure Protocol for Password-Only AKE

3.1 Description of the Protocol

A high-level depiction of the protocol is given in Figure 1, and a more detailed description
follows. A completely formal specification of the protocol appears in Section 3.2, where we
give a proof of security for the protocol in the “basic” adversarial model of Section 2.2. In
Section 3.3 we show that the protocol does not achieve forward secrecy if it is modified in
a seemingly-innocuous way (this is meant to motivate our definition of forward secrecy, as
well as to illustrate the importance of rigorous proofs of security). Then, we prove that the
protocol as formally defined does achieve forward secrecy.

The protocol as described here is different from what appears in previous versions of this
work [33, 35, 36], as we have introduced small modifications in order to simplify the proof of
security (the proofs of security given previously [33, 35, 36] are correct). These modifications
do not significantly affect the efficiency of the protocol, nor do they necessitate additional
assumptions: our proof still requires only the decisional Diffie-Hellman assumption. We
point out in particular one modification: we now assume that H is collision resistant,
whereas in [33, 35, 36] (and also in [24]) it was only assumed that H is universal one-way.
The protocol shown here uses H to hash different information than in [33, 35, 36], and this
change seems to require collision resistance of H. We have introduced this change because
it substantially simplifies the proof of security without having any significant drawbacks:
collision-resistant hash functions can be constructed based on the decisional Diffie-Hellman
assumption that we already require, and in practice one would likely use a cryptographic
hash function such as SHA-1 which is assumed to be collision resistant anyway.

Initialization. For a given security parameter k, the public parameters will contain a group
G (written multiplicatively) having prime order q with |q| = k; we assume the hardness of
the DDH problem in G, and one suggestion for G is given in Section 2.4. Additionally, the
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Public: G; g1, g2, h, c, d ∈ Ḡ; H : {0, 1}∗ → Zq

Client Server

(VK, SK) ← Gen(1k)
r1 ← Zq

A := gr1
1 ; B := gr1

2

C := hr1 · pwC

α := H(PIDs |VK|A|B|C)
D := (cdα)r1 Client | VK | A | B | C | D-

x2, y2, z2, w2, r2 ← Zq

α′ := H(PIDs |VK|A|B|C)
E := gx2

1 gy2
2 hz2(cdα′)w2

F := gr2
1 ; G := gr2

2

I := hr2 · pwC

β := H(msg1|Server |E|F |G|I)
J := (cdβ)r2Server | E | F | G | I | J¾

x1, y1, z1, w1 ← Zq

β′ := H(msg1|Server |E|F |G|I)
K := gx1

1 gy1
2 hz1(cdβ′)w1

Sig ← SignSK(msg1|msg2|K) K | Sig -

I ′ := I/pwC

skC := Er1F x1Gy1(I ′)z1Jw1

if VrfyVK(msg1|msg2|K, Sig)
C ′ := C/pwC

skS := Ax2By2(C ′)z2Dw2Kr2

else skS := null

Figure 1: A protocol for password-only authenticated key-exchange. The client name is
Client, the server name is Server, and we let PIDs := “Client |Server”. The first and second
messages of the protocol are called msg1 and msg2, respectively.

parameters include random generators g1, g2, h, c, d ∈ Ḡ and a hash function H : {0, 1}∗ →
Zq chosen at random from a collision-resistant hash family.

As part of the initialization, a password pwC is chosen randomly for each client C, and
pwC is stored by each server (cf. Section 2.2). We assume that all passwords lie in G or can
be mapped in a one-to-one fashion to G; this is typically easy: for example, if passwords
are represented as integers less than q then the password pw can be mapped to gpw

1 ∈ G.
For ease of exposition, we will simply assume that passwords lie in the set {g1

1, . . . , g
N
1 }

where N represents the size of the dictionary from which passwords are chosen. (We also
implicitly assume that N < q, which will certainly be true in practice.)

Protocol execution. When a client Client ∈ Client with password pwC wants to connect
to a server Server ∈ Server, the client computes a Cramer-Shoup “encryption” of pwC,
as described in Section 2.4, using a particular value for the label. In more detail, let
PIDs denote the string “Client |Server”. The client begins by running a key-generation
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algorithm for a one-time signature scheme, giving VK and SK. The client chooses random
r1 ∈ Zq and computes A = gr1

1 , B = gr1
2 , and C = hr1 · pwC. The client then computes

α = H(PIDs |VK|A|B|C) and sets D = (cdα)r1 . The client sends

msg1
def= 〈Client|VK|A|B|C|D〉

to the server as the first message of the protocol. Note that this corresponds roughly to an
“encryption” of pwC using the label PIDs |VK.

Upon receiving the message msg1 (as above), the server computes a Cramer-Shoup
“encryption” of pwC (where pwC is the password corresponding to the client named in the
incoming message) using a particular value for the label. In more detail, the server first
chooses random x2, y2, z2, w2 ∈ Zq, computes α′ = H(PIDs |VK|A|B|C), and sets E =
gx2
1 gy2

2 hz2(cdα′)w2 . Additionally, a random r2 ∈ Zq is chosen and the server computes F =
gr2
1 , G = gr2

2 , and I = hr2 · pwC. The server then computes β = H(msg1|Server |E|F |G|I)
and sets J = (cdβ)r2 . The server sends

msg2
def= 〈Server|E|F |G|I|J〉

to the client as the second message of the protocol. Note that this process corresponds
roughly to an “encryption” of pwC using the label msg1|Server |E.

Upon receiving the message msg2, the client chooses random x1, y1, z1, w1 ∈ Zq, com-
putes β′ = H(msg1|Server |E|F |G|I), and sets K = gx1

1 gy1
2 hz1(cdβ′)w1 . The client then signs

msg1|msg2|K using the secret key SK that it generated in the first step of the protocol. The
value K and the resulting signature are sent as the final message of the protocol. At this
point, the client accepts and determines the session key by first computing I ′ = I/pwC and
then setting skC = Er1F x1Gy1(I ′)z1Jw1 .

Upon receiving the message K|Sig, the server checks that Sig is a valid signature of
msg1|msg2|K under VK. If so, the server accepts and determines the session key by first
computing C ′ = C/pwS,C and then setting skS = Ax2By2(C ′)z2Dw2Kr2 . Otherwise, the
server terminates without accepting and the session key remains null.

Although omitted in the above description, we assume that the client and server always
check that incoming messages are well-formed. In particular, when the server receives the
first message it verifies that Client ∈ Client and that A,B, C, D ∈ G (recall that membership
in G can be efficiently verified). When the client receives the second message, it verifies
that the server name included in the message is indeed the name of the server to whom the
client desired to connect, and that E, F, G, I, J ∈ G. Finally, when the server receives the
last message it verifies that K ∈ G in addition to verifying correctness of the signature. If
an ill-formed message is ever received, the receiving party terminates immediately without
accepting and the session key remains null. For further details, see the formal description
of the protocol in Figures 3–4, below.

Correctness. In an honest execution of the protocol, the client and the server calculate
identical session keys. To see this, first note that in an honest execution we have α = α′,
β = β′, and the same password pwC is used by both parties. We thus have

Er1 = (gx2
1 gy2

2 hz2(cdα)w2)r1

= (gr1
1 )x2(gr1

2 )y2(hr1)z2((cdα)r1)w2

= Ax2By2(C ′)z2Dw2
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and

Kr2 = (gx1
1 gy1

2 hz1(cdβ)w1)r2

= (gr2
1 )x1(gr2

2 )y1(hr2)z1((cdβ)r2)w1

= F x1Gy1(I ′)z1Jw1 .

Therefore:
skC = Er1(F x1Gy1(I ′)z1Jw1) = (Ax2By2(C ′)z2Dw2)Kr2 = skS

and the session keys are equal.

Achieving explicit authentication. As described, the protocol does not achieve ex-
plicit mutual authentication (that is, a party does not know whether its intended partner
has successfully computed a matching session key). However, it is easy to add explicit
authentication to the protocol using standard techniques; see, e.g., [2].

Efficiency considerations. Some remarks about the computational efficiency of the above
scheme are in order. First, efficiency of the signature computation can be improved using an
on-line/off-line signature scheme [23], where the off-line computation is done while the client
is waiting for the server to respond. Also, the data being signed (namely, msg1|msg2|K)
could clearly be hashed using H before signature computation. By swapping the roles of the
client and server (so that the server sends the first message in Figure 1), the server can use
long-term public-/private-keys (for a signature scheme which is existentially unforgeable
under adaptive chosen-message attacks [26]) and thereby avoid having to run the key-
generation algorithm each time the protocol is executed. We stress that in this case we do
not require that the client store the server’s long-term public key; instead, the public key
is included in the first message from the server but the protocol will be secure even if an
active adversary replaces this key with one of his own choosing.

Algorithms for simultaneous multiple exponentiation [42, Chapter 14] can be used to
speed up the computation in the protocol. If this is done, the computation for each user is
(roughly) equivalent to 7–8 exponentiations in G; this may be compared to the 2 exponen-
tiations per user required in standard Diffie-Hellman key exchange [19], which provides no
authentication at all.

Further efficiency improvements (that introduce modifications to the protocol) are dis-
cussed in [34]; we refer the reader there for additional discussion.

3.2 Proof of Security

We first provide a formal specification of the protocol by specifying the initialization phase
and the oracles to which the adversary has access. During the initialization phase for
security parameter k (cf. Figure 2), algorithm Initialize first runs an algorithm G to generate
a group G of prime order q with |q| = k. Next, generators g1, g2, h, c, d ∈ Ḡ are selected
at random, and a hash function H is chosen from a collision-resistant hash family CRHF.
Furthermore, the sets Client and Server are determined using some (arbitrary) algorithm
UserGen. Passwords for each client are chosen at random as discussed in the previous
section; the passwords for each client are then stored at each server.

A formal specification of the Execute, Reveal, and Test oracles appears in Figure 3. The
description of the Execute oracle matches the high-level protocol description of Figure 1,
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but additional details (for example, the updating of state information) are included. We
let statusiU denote the vector of values 〈sidi

U , pidi
U , acci

U , termi
U 〉 associated with instance

Πi
U . A formal specification of the Send oracle appears in Figure 4. Although the model

technically has only one type of Send oracle (see Section 2.2), the adversary’s queries to this
oracle can be viewed as queries to four different oracles Send0, . . . ,Send3 representing the
four different types of messages which may be sent as part of the protocol (this includes the
three message types shown in Figure 1 as well as an “initiate” message). The third argument
to each oracle is denoted by msg-in. In the proof that follows, we will also sometimes refer
to msg1, msg2, msg3, where these refer to messages having the correct format for rounds 1,
2, and 3, respectively. We will also use these to denote messages input to the Send1, Send2,
or Send3 oracles, respectively, or output by the Send0, Send1, or Send2 oracles, respectively.

Theorem 2 Assuming (1) the DDH problem is hard for G; (2) (Gen, Sign, Vrfy) is a secure
one-time signature scheme; and (3) CRHF is a collision-resistant hash family, the protocol
of Figure 1 is a secure protocol for password-only authenticated key exchange.

Since one-time signature schemes as well as collision-resistant hash functions may be con-
structed based on the DDH assumption (cf. Section 2.4), we have the following corollary.

Corollary 1 Under the DDH assumption, there exists a secure protocol for password-only
authenticated key exchange.

Before giving the formal details, we describe the high-level structure of the proof of Theo-
rem 2. Let P0 denote the “real-world” experiment where an adversary attacks the actual
protocol. We introduce a sequence of transformations to this experiment, and bound the
effect of each transformation on the adversary’s advantage. We then bound the adversary’s
advantage in the final experiment; this yields a bound on the adversary’s advantage when
attacking the original protocol.

In experiment P2 (obtained by a sequence of modifications to P0), all session keys
computed in response to an Execute query are chosen uniformly at random and the password
is not used at all; Send queries are treated exactly as in P0. It is not too difficult to see that
the adversary’s advantage cannot change significantly in moving from P0 to P2, since the
“core” of an honest execution of the protocol is based on the Diffie-Hellman key-exchange
protocol (and Execute queries correspond to passive eavesdropping on a protocol execution),
and the password is anyway “encrypted” using Cramer-Shoup encryption.

In experiment P3, we (informally) consider the adversary to have succeeded as soon as
it interacts with a client or server using the “correct” value of the password. (Thus, the
adversary may now succeed even without guessing the correct value of b.) This can only
increase the advantage of the adversary.

Experiment P5 (preceded by an intermediate experiment P4 for technical reasons) is
really the crux of the proof. Roughly speaking, we now define the experiment so that when-
ever the adversary interacts with a server using an incorrect value of the password the server
chooses a session key uniformly at random. We then prove that this has no effect on the
adversary’s advantage, in an information-theoretic sense; expressed differently, this means
that the session key computed by a server in experiment P3 when the adversary interacts
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Initialize(1k) —
G← G(1k)
g1, g2, h, c, d ← Ḡ
H ← CRHF(1k)
(Client,Server) ← UserGen(1k)
for each C ∈ Client

pw′C ← {1, . . . , N}
pwC := g

pw′C
1

for each S ∈ Server
pwS,C := pwC

return Client, Server,G, g1, g2, h, c, d, H

Figure 2: Specification of protocol initialization.

Execute(Client, i,Server, j) —
if

(
Client /∈ Client or Server /∈ Server or usedi

Client or usedj
Server

)

return ⊥
usedi

Client := true; usedj
Server := true

PIDs := Client |Server ; (VK, SK) ← Gen(1k)
x1, x2, y1, y2, z1, z2, w1, w2, r1, r2 ← Zq

A := gr1
1 ; B := gr1

2 ; C := hr1 · pwClient; α := H(PIDs |VK|A|B|C)
D := (cdα)r1 ; msg1 := 〈Client|VK|A|B|C|D〉
statusi

Client,1 := 〈null,Server, false, false〉

F := gr2
1 ; G := gr2

2 ; I := hr2 · pwServer,Client ; E := gx2
1 gy2

2 hz2(cdα)w2

β := H(msg1|Server|E|F |G|I); J := (cdβ)r2

msg2 := 〈Server|E|F |G|I|J〉
statusj

Server,1 := 〈null,Client, false, false〉

K := gx1
1 gy1

2 hz1(cdβ)w1 ; Sig ← SignSK(msg1|msg2|K)
msg3 := 〈K|Sig〉

sidi
Client := sidj

Server := 〈msg1|msg2|msg3〉
pidi

Client := Server; pidj
Server := Client

acci
Client := termi

Client := accj
Server := termj

Server := true
ski

Client := Er1F x1Gy1(I/pwClient)z1Jw1

skj
Server := Ax2By2(C/pwServer,Client)z2Dw2Kr2

return msg1,msg2, msg3,
statusi

Client,1, statusj
Server,1, statusi

Client, statusj
Server

Reveal(U, i) —
return ski

U

Test(U, i) —
b ← {0, 1}; sk′ ← G
if b = 0 return sk′ else return ski

U

Figure 3: Specification of the Execute, Reveal, and Test oracles.
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Send0(Client, i,Server) —
if

(
Client /∈ Client or Server /∈ Server or usedi

Client

)
return ⊥

usedi
Client := true; PIDs := Client |Server; (VK, SK) ← Gen(1k); r ← Zq

A := gr
1; B := gr

2; C := hr · pwClient; α := H(PIDs|VK|A|B|C)
D := (cdα)r; msg-out := 〈Client |VK|A|B|C|D〉
statusi

Client := 〈null,Server, false, false〉
statei

Client := 〈SK, r,msg-out〉
return msg-out, statusi

Client

Send1(Server, j, 〈Client |VK|A|B|C|D〉) —
if

(
Server /∈ Server or usedj

Server

)
return ⊥

usedj
Server := true; PIDs := Client |Server

if A, B,C, D /∈ G or Client /∈ Client
statusj

Server := 〈null,null, false,true〉; return statusj
Server

x, y, z, w, r ← Zq; α := H(PIDs|VK|A|B|C)
F := gr

1; G := gr
2; I := hr · pwServer,Client ; E := gx

1gy
2hz(cdα)w

β := H(msg-in |Server|E|F |G|I); J := (cdβ)r; msg-out := 〈Server|E|F |G|I|J〉
statusj

Server := 〈null,Client, false, false〉
statej

Server := 〈msg-in, x, y, z, w, r,msg-out, pwServer,Client〉
return msg-out, statusj

Server

Send2(Client, i, 〈Server|E|F |G|I|J〉) —
if

(
Client /∈ Client or ¬usedi

Client or termi
Client

)
return ⊥

if Server 6= pidi
Client or E,F, G, I, J /∈ G

statusi
Client := 〈null,null, false,true〉; return statusi

Client

〈SK, r, first-msg-out〉 := statei
Client

x, y, z, w ← Zq; β := H(first-msg-out|Server|E|F |G|I)
K := gx

1gy
2hz(cdβ)w; Sig ← SignSK(first-msg-out|msg-in|K);

msg-out := 〈K|Sig〉
sidi

Client := 〈first-msg-out|msg-in|msg-out〉
acci

Client := termi
Client := true

ski
Client := ErF xGy(I/pwClient)zJw

return msg-out, statusi
Client

Send3(Server, j, 〈K|Sig〉) —
if

(
Server /∈ Server or ¬usedj

Server or termj
Server

)
return ⊥

〈first-msg-in, x, y, z, w, r, first-msg-out, pw〉 := statej
Server

〈Client|VK|A|B|C|D〉 := first-msg-in
if K /∈ G or VrfyVK(first-msg-in|first-msg-out|K, Sig) 6= 1

statusj
Server := 〈null,null, false,true〉; return statusj

Server

sidj
Server := 〈first-msg-in |first-msg-out|msg-in〉

accj
Server := termj

Server := true

skj
Server := AxBy(C/pw)zDwKr

return statusj
Server

Figure 4: Specification of the Send oracle (msg-in denotes the third argument to the oracle).
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with a server using an incorrect value of the password is already uniformly distributed from
the point of view of the adversary,

In experiment P6, we now have the server compute the first message of the protocol (in
response to a Send query) independently of the actual password. Relying on the security
of the Cramer-Shoup encryption scheme, we show that this cannot significantly affect the
adversary’s advantage.

Experiments P7 and P8 are analogous to experiments P5 and P6, but focusing on client-
instances rather than server-instances.

In experiment P8, we notice that the adversary’s view is independent of any actual
passwords except for the fact that the adversary succeeds (as per the modification introduced
in experiment P3) as soon as it interacts with a party using a “correct” password; this
event therefore occurs with probability at most Q(k)/N . Furthermore, if this event does
not happen then the bit b is information-theoretically hidden from the adversary (since all
session keys are chosen uniformly at random), and so the adversary succeeds with probability
exactly half. The overall probability that the adversary succeeds in experiment P8 is thus
at most

Q(k)/N + 1
2 · (1− Q(k)

N ).

The analysis of the above sequence of experiments shows that the adversary’s success prob-
ability in the original experiment is at most negligibly greater than this.

We now give the formal details.

Proof Throughout the proof, we will refer to the formal specification of the protocol as it
appears in Figures 2–4. We remark that it is always the case that pwServer,Client = pwClient

for all Client ∈ Client and Server ∈ Server; furthermore, during execution of the Send3 oracle
it is always the case that pw = pwClient. (This will not necessarily be true when considering
forward secrecy; see the following section.) Given an adversary A, we imagine a simulator
that runs the protocol for A. More precisely, the simulator begins by running algorithm
Initialize(1k) (which includes choosing passwords for clients) and giving the public output
of the algorithm to A. When A queries an oracle, the simulator responds by executing the
appropriate algorithm as in Figures 3 and 4; the simulator also records all state information
defined during the course of the experiment. In particular, when the adversary queries the
Test oracle, the simulator chooses (and records) the random bit b. When the adversary
completes its execution and outputs a bit b′, the simulator can tell whether the adversary
succeeds by checking whether (1) a single Test query was made, for some instance Πi

U ; (2)
acci

U was true at the time of the Test query; (3) instance Πi
U is fresh; and (4) b′ = b. Success

of the adversary is denoted by event Succ.
For any experiment P we define AdvA,P (k) def= 2 ·PrA,P [Succ]−1, where PrA,P [·] denotes

the probability of an event when the simulator interacts with the adversary A in accordance
with experiment P . We refer to the real execution of the experiment, as described above,
as P0. We will introduce a sequence of transformations to the original experiment and
bound the effect of each transformation on the adversary’s advantage. We then bound
the adversary’s advantage in the final experiment; this immediately yields a bound on the
adversary’s advantage in the original experiment.

We begin with some terminology that will be used throughout the proof. A given msg1

is called oracle-generated if it was output by the simulator in response to some oracle query
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(whether a Send0 or Execute query). This message is said to be adversarially-generated
otherwise. These notions are defined analogously for a given msg2. A verification key
contained in an oracle-generated msg1 is called an oracle-generated verification key.

Experiment P ′
0: In experiment P ′

0, the simulator interacts with the adversary as before
except that the adversary does not succeed, and the experiment is aborted, if any of the
following occur:

1. At any point, an oracle-generated verification key is used more than once. In partic-
ular, the experiment is aborted if an oracle-generated msg1 is ever repeated.

2. At any point during the experiment, an oracle-generated msg2 is repeated.

3. At any point, the adversary forges a new, valid message/signature pair with respect
to any oracle-generated verification key.

4. At any point during the experiment, a collision occurs in the hash function H (regard-
less of whether this is due to a direct action of the adversary, or whether this occurs
during the course of the simulator’s response to an oracle query).

It is immediate that event 2 occurs with negligible probability. It is also straightforward
to show that events 1, 3, and 4 occur with negligible probability assuming the security of
(Gen,Sign,Vrfy) as a one-time signature scheme and the security of CRHF as a collision-
resistant hash family. For completeness, we briefly sketch the proof that events 1 and 3
occur with only negligible probability (based on security of (Gen, Sign, Vrfy)); the proof that
event 4 occurs with negligible probability (when CRHF is collision-resistant) is even easier.

Consider the following adversary F who is given verification key VK generated by Gen
and access to a signing oracle. Let p(k) be a polynomial upper bound on the number of
oracle queries made by A. This adversary F chooses a random value i ← {1, . . . , p(k)} and
then simulates experiment P0 for A in the natural way: the entire experiment is simulated
by F internally except for the following:

• The ith oracle query of A that involves running Gen (note this may be either an
Execute query or a Send0 query) is answered using verification key VK.

• If/when a signature is needed for the instance corresponding to the oracle query just
described, F obtains this signature from its oracle.

It is easy to see that this results in a perfect simulation of P0 for A.
We claim that if either of events 1 or 3 occur then F can forge a signature with noticeable

probability. If event 1 occurs then with probability at least 2/p(k) it is the verification key
VK that is used more than once. In this case F has generated (on its own) a secret key
corresponding to VK and so can forge a signature on any message of its choice. If event 3
occurs then with probability at least 1/p(k) adversary A has forged a signature with respect
to VK, in which case F can output this as its own forgery. But if (Gen, Sign, Vrfy) is a
secure one-time signature scheme then F cannot output a forgery except with negligible
probability. This completes the proof that events 1 or 3 occur with negligible probability.

Putting everything together, we see that
∣∣∣AdvA,P0(k)− AdvA,P ′0(k)

∣∣∣ is negligible.
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Experiment P1: In experiment P1, the simulator interacts with the adversary as in P ′
0

except that the adversary’s queries to the Execute oracle are handled differently: for each
Execute query the values C and I are computed as C := hr1 ·gN+1

1 and I := hr2 ·gN+1
1 ; note

that gN+1
1 is not a valid password. Furthermore, the session keys are computed as

ski
Client := skj

Server := Ax2By2(C/pwClient)z2Dw2F x1Gy1(I/pwClient)z1Jw1 . (1)

The following bounds the effect this transformation can have on the adversary’s advantage.

Claim 1 Under the DDH assumption, |AdvA,P ′0(k)− AdvA,P1(k)| is negligible.

The proof of the claim relies on the semantic security of the (modified) Cramer-Shoup
encryption scheme (which is implied by its security against chosen-ciphertext attacks).8

We show that the simulator can use A as a subroutine to distinguish encryptions of the
correct client passwords from encryptions of gN+1

1 . The simulator is given a public key
pk = 〈G, g1, g2, h, c, d, H〉 for an instance of the Cramer-Shoup scheme and may repeatedly
query an encryption oracle Epk,b̃(·, ·, ·) where b̃ is a randomly-chosen bit (unknown to the
simulator). The advantage of the simulator in attacking the encryption scheme is the
absolute value of the difference between the probability the simulator outputs 1 when b̃ = 1
and the probability the simulator outputs 1 when b̃ = 0.

The simulator begins by running the following modified initialization protocol:

Initialize′(1k,G, g1, g2, h, c, d,H) —
(Client, Server) ← UserGen(1k)
for each C ∈ Client

pw′C ← {1, . . . , N}
pwC := g

pw′C
1

for each S ∈ Server
pwS,C := pwC

return Client, Server,G, g1, g2, h, c, d,H

The simulator responds to Send, Reveal, and Test queries as in experiments P ′
0 and P1.

However, it responds to Execute queries as shown in Figure 5. In words: each time the
simulator responds to an Execute query it constructs the values A,B, C, D and F,G, I, J
using its encryption oracle by querying this oracle using the appropriate label, and the
correct password and gN+1

1 as its two “messages”. When A terminates, the simulator
outputs 1 if and only if A succeeds.

It is quite easy to see that when b̃ = 0 the actions of the Execute oracle are exactly
as in experiment P ′

0, while if b̃ = 1 the actions of the Execute oracle are exactly as in
experiment P1. (In comparing Figures 3 and 5, it will be helpful to recall that when
responding to an Execute query, pwClient is always equal to pwServer,Client and furthermore
ski

Client is always equal to skj
Server.) In particular, when b̃ = 0 then C = hr1 · pwClient and

I = hr2 · pwClient (for r1 = logg1
A and r2 = logg1

F unknown to the simulator), while if
b̃ = 1 then C = hr1 · gN+1

1 and I = hr2 · gN+1
1 . One can also verify that when b̃ = 0 the

8Earlier versions of this work [33] show how to obtain a tighter concrete security reduction in this step
by relying directly on the DDH assumption. We have chosen to present a simpler proof here.
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Execute(Client, i,Server, j) —
if

(
Client /∈ Client or Server /∈ Server or usedi

Client or usedj
Server

)

return ⊥
usedi

Client := true; usedj
Server := true

PIDs := Client |Server ; (VK, SK) ← Gen(1k)
x1, x2, y1, y2, z1, z2, w1, w2 ← Zq

label1 := PIDs |VK; 〈A|B|C|D〉 ← Epk,b̃(label1, pwClient, gN+1
1 )

msg1 := 〈Client |VK|A|B|C|D〉
statusi

Client,1 := 〈null,Server, false, false〉

α := H(PIDs |VK|A|B|C); E := gx2
1 gy2

2 hz2(cdα)w2

label2 := msg1|Server |E; 〈F |G|I|J〉 ← Epk,b̃(label2, pwClient, gN+1
1 )

msg2 := 〈Server |E|F |G|I|J〉
statusj

Server,1 := 〈null,Client, false, false〉

β := H(msg1|Server |E|F |G|I)
K := gx1

1 gy1
2 hz1(cdβ)w1 ; Sig ← SignSK(msg1|msg2|K);

msg3 := 〈K|Sig〉

sidi
Client := sidj

Server := 〈msg1|msg2|msg3〉
pidi

Client := Server; pidj
Server := Client

acci
Client := termi

Client := accj
Server := termj

Server := true

ski
Client := skj

Server := Ax2By2(C/pwClient)z2Dw2F x1Gy1(I/pwClient)z1Jw1

return msg1,msg2, msg3,
statusi

Client,1, statusj
Server,1, statusi

Client, statusj
Server

Figure 5: The modified Execute oracle for the proof of Claim 1.

session keys are computed as in experiment P ′
0, while if b̃ = 1 the session keys are computed

as in experiment P1.
The simulator’s advantage in attacking the Cramer-Shoup scheme is therefore

∣∣∣PrA,P ′0 [Succ]− PrA,P1 [Succ]
∣∣∣.

The claim follows since this is negligible under the DDH assumption.

Experiment P2: In experiment P2, the simulator interacts with the adversary as in P1

except that during queries Execute(Client, i,Server, j) the session key ski
Client is chosen

uniformly at random from G; session key skj
Server is set equal to ski

Client.

Claim 2 AdvA,P1(k) = AdvA,P2(k).

We will show that the distribution on the view of the adversary is identical in experiments P1

and P2. For any particular Execute query made by the adversary in experiment P1, we may
write C = hr′1 · pwClient with r′1 6= r1 (recall from Figure 3 that r1

def= logg1
A = logg2

B).
Now, for any µ, ν ∈ G and fixing the random choices for the remainder of experiment P1, the
probability over choice of x2, y2, z2, w2 that E = µ and ski

Client = ν is exactly the probability

26



that

logg1
µ = x2 + y2 · logg1

g2 + z2 · logg1
h + w2 · logg1

(cdα) (2)

and

logg1
ν − logg1

(F x1Gy1(I/pwClient)z1Jw1) =
x2 · r1 + y2 · r1 logg1

g2 + z2 · r′1 logg1
h + w2 · r1 logg1

(cdα), (3)

where we use the fact that g1 is a generator. Viewing Equations (2) and (3) as equations over
Zq in the variables x2, y2, z2, w2, we see that they are linearly independent and not identically
zero since r′1 6= r1 (here, we use the fact that h is a generator and hence logg1

h 6= 0). Thus,
the desired probability is 1/q2. In other words, the value of ski

Client is independent of the
value of E and hence independent of the remainder of experiment P1. Thus, the adversary’s
view in experiment P1 is distributed identically to the adversary’s view in experiment P2.
The claim follows.

In experiment P2, the adversary’s probability of correctly guessing the bit b used by the
Test oracle is exactly 1/2 if the Test query is made to a fresh instance that was activated
using an Execute query. This is so because session keys for such instances in P2 are chosen
at random from G, and hence there is no way to distinguish whether the Test oracle outputs
a random session key or the “actual” session key (which is just a random element, anyway).
Hence the remainder of the proof concentrates on instances that are invoked via Send queries
(which is the more difficult case to consider).

Experiment P3: In experiment P3, the simulator first runs the following modified initial-
ization procedure and stores the values κ, χ1, χ2, ξ1, ξ2 for future use.

Initialize(1k) —
G← G(1k); g1, g2 ← Ḡ
κ ← Z∗q
(χ1, χ2), (ξ1, ξ2) ← {(x, y) ∈ Zq × Zq | gx

1gy
2 6= 1}

h := gκ
1 ; c := gχ1

1 gχ2
2 ; d := gξ1

1 gξ2
2

H ← CRHF(1k)
(Client, Server) ← UserGen(1k)
for each C ∈ Client

pw′C ← {1, . . . , N}
pwC := g

pw′C
1

for each S ∈ Server
pwS,C := pwC

return Client, Server,G, g1, g2, h, c, d, H

The simulator’s handling of Send oracle queries in P3 will also change, but before describ-
ing this we introduce some terminology. For a query Send1(Server, j, msg1) where msg1 is
adversarially-generated, let msg1 = 〈Client|VK|A|B|C|D〉 and α = H(PIDs |VK|A|B|C). If
either Aχ1+αξ1Bχ2+αξ2 6= D or C/pwClient 6= Aκ, then msg1 is said to be invalid. Other-
wise, msg1 is said to be valid. Similarly, for a query Send2(Client, i, msg2) where msg2 is
adversarially-generated, let msg2 = 〈Server|E|F |G|I|J〉 and β be as defined in Figure 4. If
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either Fχ1+βξ1Gχ2+βξ2 6= J or I/pwClient 6= F κ then msg2 is said to be invalid. Otherwise,
msg2 is said to be valid. Informally, valid messages are encryptions of the correct password
while invalid messages are not. Note that the simulator can efficiently determine whether
any given adversarially-generated message is valid because it knows κ, χ1, χ2, ξ1, ξ2.

Given this terminology, we continue with our description of experiment P3. When the
adversary makes oracle query Send2(Client, i, msg2), the simulator examines msg2. If msg2

is adversarially-generated and valid, the query is answered as in P2 except that ski
Client

is assigned9 the special value ∇. In any other case (i.e., msg2 is oracle-generated, or
adversarially-generated but invalid), the query is answered exactly as in experiment P2.

When the adversary makes oracle query Send3(Server, j,msg3), the simulator examines
msg1 = first-msg-in for instance Πj

Server.
10 If msg1 is adversarially-generated and valid, the

query is answered as in experiment P2 except that skj
Server is assigned the special value ∇.

In any other case (i.e., msg1 is oracle-generated, or adversarially-generated but invalid), the
query is answered exactly as in experiment P2.

Finally, the definition of the adversary’s success in P3 is changed. If the adversary ever
queries Reveal(U, i) or Test(U, i) where ski

U = ∇, the simulator halts and the adversary
succeeds. Otherwise, the adversary’s success is determined as in experiment P2.

Claim 3 AdvA,P2(k) ≤ AdvA,P3(k).

The distribution of the public parameters is identical in experiments P2 and P3. Further-
more, the distributions on the adversary’s view in experiments P2 and P3 are identical up to
the point when the adversary queries Reveal(U, i) or Test(U, i) with ski

U = ∇; if such a query
is never made, the distributions on the view are identical. Since the adversary succeeds if
such a query ever occurs, the claim follows.

Experiment P4: In experiment P4, we again modify the simulator’s response to a Send3

query. Upon receiving query Send3(Server, j, 〈K|Sig〉), the simulator examines msg1 =
first-msg-in for instance Πj

Server. If msg1 is oracle-generated and a value is to be assigned
to skj

Server, the simulator finds the unique pair Client, i such that sidi
Client = sidj

Server (we
comment on the existence of a unique such pair below) and sets skj

Server := ski
Client. In any

other case, the query is answered as in experiment P3.
That there exists a unique pair Client, i with sidi

Client = sidj
Server in the situation above

follows from the fact that, assuming skj
Server is to be assigned a value — and so in particular

the simulation is not aborted — the following hold: (1) there is a unique pair Client, i such
that instance Πi

Client uses VK, where VK is the verification key contained in msg1 (this is
a consequence of msg1 being oracle-generated, and the fact that the simulator aborts if
an oracle-generated verification key is ever used twice); furthermore, (2) this pair satisfies
sidi

Client = sidj
Server (this is a consequence of the fact that the simulator aborts if a signature

forgery occurs).
Since sidj

Server = sidi
Client implies skj

Server = ski
Client in P3, the following is immediate:

9Here and in the remainder of the proof, it is understood that when we say a certain variable is assigned
some value this is conditioned on that variable being assigned a value at all (and, e.g., the oracle query does
not return ⊥ for some other reason, nor is the experiment aborted).

10If the adversary had not previously made a Send1 query for this instance, the simulator simply responds
with ⊥ as in previous experiments. We will not explicitly mention this in the rest of the proof.
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Claim 4 AdvA,P4(k) = AdvA,P3(k).

Experiment P5: In experiment P5, we again modify the simulator’s response to a Send3

query. Upon receiving query Send3(Server, j, 〈K|Sig〉), the simulator examines msg1 =
first-msg-in for the same instance Πj

Server. If msg1 is adversarially-generated and invalid,
the session key skj

Server is assigned a value randomly chosen from G. In all other cases, the
query is answered as in experiment P4.

Claim 5 AdvA,P5(k) = AdvA,P4(k).

We prove the claim by showing that the distributions on the adversary’s view in the
two experiments are identical. For a given query Send3(Server, j, 〈K|Sig〉) where msg1 =
first-msg-in = 〈Client|VK|A|B|C|D〉 is adversarially-generated and invalid, let msg2 =
first-msg-out = 〈Server|E|F |G|I|J〉 and α = H(PIDs |VK|A|B|C). Since msg1 is invalid,
either Aχ1+αξ1Bχ2+αξ2 6= D or else C/pwClient 6= Aκ (or possibly both). For any µ, ν ∈ G
and fixing the randomness used in the rest of experiment P4, the probability over choice of
x, y, z, w that E = µ and skj

Server = ν is exactly the probability that

logg1
µ = x + y · logg1

g2 + z · logg1
h + w · logg1

(cdα) (4)

and

logg1
ν − r logg1

K = x · logg1
A + y · logg1

B + z · logg1
(C/pwClient) + w · logg1

D, (5)

using the fact that g1 is a generator. Now consider two cases depending on the value
of logg1

A. If logg1
A = 0, then since msg1 is invalid at least one of the values logg1

B,
logg1

(C/pwClient), or logg1
D is not equal to 0. One can then immediately verify that

Equations (4) and (5), viewed as equations over Zq in the variables x, y, z, w, are linearly
independent and not identically zero. If logg1

A 6= 0, it can be similarly verified that
Equations (4) and (5) are linearly independent and not identically zero. In either case,
then, the desired probability is 1/q2. Thus, the value of skj

Server is independent of the value
of E and hence independent of the remainder of the experiment.

Before describing the next experiment, let us first summarize where things stand in
experiment P5. In responding to a query Send3(S, j, msg3) in that experiment, the simulator
does not need to use the value r (stored as part of the internal state for instance Πj

S) to
compute the value of the session key. In particular, if msg1 was the initial message sent to
this instance the simulator proceeds as follows:

• If msg1 is adversarially-generated and valid, skj
S is set equal to ∇ as described in

experiment P3.

• If msg1 is oracle-generated, skj
S is set equal to the session key for the partnered client

instance as described in experiment P4.

• If msg1 is adversarially-generated and invalid, skj
S is chosen at random as described

in experiment P5.
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We will rely on the above when we prove the subsequent claim.

Experiment P6: In experiment P6, we modify the simulator’s response to Send1 queries.
Now, I is computed as hrgN+1

1 , where the dictionary of legal passwords is {1, . . . , N}; note
that gN+1

1 is not a valid password since N < q.

Claim 6 Under the DDH assumption, |AdvA,P5(k)− AdvA,P6(k)| is negligible.

A proof of the claim relies on the security of the (modified) Cramer-Shoup encryption scheme
against adaptive chosen-ciphertext attacks; cf. Section 2.4. We show that the simulator can
use A as a subroutine in order to distinguish encryptions of the correct client password(s)
from encryptions of gN+1

1 . The simulator is given a public key pk = 〈G, g1, g2, h, c, d, H〉 for
an instance of the Cramer-Shoup encryption scheme and may repeatedly query an encryp-
tion oracle Epk,b̃(·, ·, ·) where b̃ is a randomly-chosen bit (unknown to the simulator). The
simulator may also repeatedly query a decryption oracle Dsk(·, ·) subject to the restriction
stated in Definition 6. By definition, the advantage of the simulator in attacking the en-
cryption scheme is the absolute value of the difference between the probability the simulator
outputs 1 when b̃ = 1 and the probability the simulator outputs 1 when b̃ = 0.

The simulator begins by running the following modified initialization protocol:

Initialize′(1k,G, g1, g2, h, c, d,H) —
(Client, Server) ← UserGen(1k)
for each C ∈ Client

pw′C ← {1, . . . , N}
pwC := g

pw′C
1

for each S ∈ Server
pwS,C := pwC

return Client, Server,G, g1, g2, h, c, d,H

The simulator responds to Send0, Execute, Reveal, and Test oracle queries as in experi-
ments P5 and P6. The simulator responds to Send1, Send2, and Send3 queries as shown in
Figure 6. In words:

• In responding to a Send1 query the simulator no longer computes the values F, G, I, J
on its own. Instead, it queries its encryption oracle using (1) the appropriate label, and
(2) the correct password and gN+1

1 as its two “messages.” It then uses the ciphertext
〈F |G|I|J〉 returned by this oracle to construct msg-out.

• In responding to a Send3 query, the simulator first checks whether msg1 = first-msg-in
is oracle- or adversarially-generated. If msg1 is oracle-generated, the session key is
computed by finding the partnered client instance (as discussed above). If msg1 is
adversarially-generated, the simulator determines whether msg1 is valid or invalid
using its decryption oracle and then sets the session key appropriately.

• In responding to a Send2 query, the simulator uses its decryption oracle (as needed)
to determine whether an adversarially-generated incoming message is valid or invalid.

Note that the simulator never need submit to its decryption oracle an “illegal” query (i.e., a
ciphertext that it previously received from its encryption oracle) since the simulator never
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Send1(Server, j, 〈Client|VK|A|B|C|D〉) —
if

(
Server /∈ Server or usedj

Server

)
return ⊥

usedj
Server := true; PIDs := Client |Server

if A,B,C, D /∈ G or Client /∈ Client
statusj

Server := 〈null,null, false,true〉; return statusj
Server

x, y, z, w ← Zq; α := H(PIDs |VK|A|B|C)
E := gx

1gy
2hz(cdα)w ; label := msg-in|Server|E

〈F |G|I|J〉 ← Epk,b̃(label, pwServer,Client, g
N+1
1 )

msg-out := 〈Server |E|F |G|I|J〉
statusj

Server := 〈null,Client, false, false〉
statej

Server := 〈msg-in, x, y, z, w, msg-out, pwServer,Client〉
return msg-out, statusj

Server

Send2(Client, i, 〈Server|E|F |G|I|J〉) —
if

(
Client /∈ Client or ¬usedi

Client or termi
Client

)
return ⊥

if Server 6= pidi
Client or E,F, G, I, J /∈ G

statusi
Client := 〈null,null, false,true〉; return statusi

Client

〈SK, r, first-msg-out〉 := statei
Client

x, y, z, w ← Zq; β := H(first-msg-out|Server|E|F |G|I)
K := gx

1gy
2hz(cdβ)w; Sig ← SignSK(first-msg-out|msg-in|K);

msg-out := 〈K|Sig〉
sidi

Client := 〈first-msg-out|msg-in|msg-out〉
acci

Client := termi
Client := true

label := first-msg-out|Server|E
if msg-in is adversarially-generated and Dsk(label, 〈F |G|I|J〉) = pwClient

ski
Client := ∇

else
ski

Client := ErF xGy(I/pwClient)zJw

return msg-out, statusi
Client

Send3(Server, j, 〈K|Sig〉) —
if

(
Server /∈ Server or ¬usedj

Server or termj
Server

)
return ⊥

〈first-msg-in, x, y, z, w, first-msg-out, pw〉 := statej
Server

〈Client|VK|A|B|C|D〉 := first-msg-in
if K /∈ G or VrfyVK(first-msg-in|first-msg-out|K, Sig) 6= 1

statusj
Server := 〈null,null, false,true〉; return statusj

Server

sidj
Server := 〈first-msg-in|first-msg-out|msg-in〉

accj
Server := termj

Server := true
if first-msg-in is oracle-generated

find the unique i such that sidi
Client = sidj

Server

skj
Server := ski

Client

else
label := Client|Server|VK
pw′ := Dsk(label, 〈A|B|C|D〉)
if pw′ = pw then skj

Server := ∇
if pw′ 6= pw then skj

Server ← G
return statusj

Server

Figure 6: The modified Send oracles for the proof of Claim 6.
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needs to check whether oracle-generated messages are valid or invalid. Finally, the simulator
outputs 1 if and only if A succeeds.

Examination of Figure 6 shows that the Send2 and Send3 oracles behave exactly the
same as in both experiments P5 and P6. On the other hand, when b̃ = 0 the actions of
the Send1 oracle are as in experiment P5, while if b̃ = 1 then the actions of the Send1

oracle are as in experiment P6. The simulator’s advantage in attacking the Cramer-Shoup
encryption scheme is therefore exactly |PrA,P5 [Succ]− PrA,P6 [Succ]|. The claim follows since
this advantage must be negligible under the DDH assumption, since the Cramer-Shoup
encryption scheme is secure given this assumption (cf. Section 2.4).

Experiment P7: In experiment P7, queries to the Send2 oracle are handled differently. In
response to a query Send2(Client, i, msg2), if msg2 is either oracle-generated or adversarially-
generated but invalid, the session key ski

Client is assigned a value chosen randomly from G.

Claim 7 AdvA,P7(k) = AdvA,P6(k).

We prove the claim by showing that the distributions on the adversary’s view are identical
in the two experiments. Consider a particular query Send2(Client, i, msg2) in P6. Regardless
of whether msg2 is oracle-generated or adversarially-generated but invalid, it is the case that
either Fχ1+βξ1Gχ2+βξ2 6= J or I/pwClient 6= F κ. A proof similar to that used in proving
Claim 5 then shows that ski

Client in experiment P6 is uniformly distributed in G, independent
of the rest of the experiment.

Experiment P8: In experiment P8, we modify the simulator’s response to Send0 queries.
Now, C is computed as C := hrgN+1

1 ; note that gN+1
1 is not a valid password. (This

modification parallels the change made in going from experiment P5 to experiment P6.)

Claim 8 Under the DDH assumption, |AdvA,P8(k)− AdvA,P7(k)| is negligible.

The proof exactly follows that of Claim 6. In particular, note that in responding to a query
Send2(C, i, msg2) in experiment P7, the simulator never requires the value r (stored as part
of the internal state for instance Πi

C) to compute a session key: if msg2 is oracle-generated,
the session key is assigned a randomly-chosen value; if msg2 is adversarially-generated and
invalid (which can be verified using the decryption oracle), the session key is also assigned
a randomly-chosen value; finally, if msg2 is adversarially-generated and valid (which can
again be verified using the decryption oracle), the session key is assigned ∇. Oracle queries
to Send3 can also be answered by the simulator, using its decryption oracle as necessary.
Finally, there is never a need for the simulator to make an “illegal” query its decryption
oracle. The claim follows.

The adversary’s view in experiment P8 is independent of the passwords chosen by the
simulator until one of the following occur:

• The adversary queries Reveal(Client, i) or Test(Client, i), where the adversary had
previously queried Send2(Client, i, msg2) for adversarially-generated and valid msg2.

• The adversary queries Reveal(Server, j) or Test(Server, j), where the adversary had
previously queried Send1(Server, j,msg1) for adversarially-generated and valid msg1.
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The probability that either of these events occur is at most Q(k)/N , where Q(k) is the
number of on-line attacks made by A. If neither of the above events occur, then the
adversary succeeds only if it can guess the value of b used by the Test oracle. However, if
neither of the above events occur and the adversary queries Test(U, i) where Πi

U is fresh
and acci

U = true, then ski
U is randomly-distributed in G independent of A’s view; the

probability of correctly guessing b in this case is therefore exactly 1/2.
The preceding discussion implies that

PrA,P8 [Succ] ≤ Q(k)/N + 1
2 · (1− Q(k)

N )

and thus the adversary’s advantage in experiment P8 is at most Q(k)/N . The sequence of
claims proven above show that

AdvA,P0(k) ≤ AdvA,P8(k) + ε(k)

for some negligible function ε(·) and therefore the adversary’s advantage in P0 (i.e., the
original protocol) is at most Q(k)/N plus some negligible quantity. This completes the
proof of the theorem.

3.3 Proof of Forward Secrecy

We first demonstrate a potential attack on the protocol (in the stronger adversarial model
of Section 2.3) if it is modified in a seemingly-innocuous way. Then, we show a proof that
the protocol as formally defined does indeed achieve forward secrecy.

Consider the following change to the protocol as described in the previous section: when
responding to a Send1 query, a server no longer stores pwS,C as part of its state information
(cf. Figure 4). Now, when a server responds to a Send3 query it simply sets pw = pwS,C .
In other words, instead of using the password stored as part of its (temporary, volatile)
state information, the server simply uses the value of the client’s password as stored in its
long-term memory (e.g., the password file).

We now show that this simple change introduces a vulnerability in the attack model
described in Section 2.3. Fix a client Client. The attack begins by having the adversary
impersonate Client to a server S using an arbitrary password, say pw = g1. That is, the
adversary generates VK, chooses a random r1, computes A = gr1

1 , B = gr1
2 , C = hr1 ·g1, and

D = (cdα)r1 (for α computed in the appropriate way), and sends 〈Client|VK|A|B|C|D〉 to
server S. The server will respond with a message 〈S|E|F |G|I|J〉 (which is computed using
password pwS,Client = pwClient). Next, the adversary changes the password stored at S for
Client (i.e., pwS,Client) to the value g1 using oracle call Corrupt2(S,Client, g1). Finally, the
adversary computes the final message of the protocol just as a legitimate client would by
choosing x1, y1, z1, w1, computing K = gx1

1 gy1
2 hz1(cdβ)w1 (for β computed in the appropriate

way), and sending 〈K|Sig〉. Finally, the adversary obtains skS for this instance of the server
using a Reveal query.

We claim that the adversary can now determine pwClient — the original password of the
client — and hence successfully impersonate Client to a different server S′ 6= S. To see this,
note that when S computes the session key after receiving the final message of the protocol
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it uses pwS,Client = g1 (which is, we stress, different from the password the server used to
compute the second message of the protocol). Thus,

skS = Ax2By2(C/g1)z2Dw2Kr2 = gr1x2
1 gr1y2

2 hr1z2(cdα)r1w2Kr2

= Er1Kr2

(where x2, y2, z2, w2, r2 are values used by the server which are unknown to the adversary).
Since the adversary can compute Er1 itself, the adversary can use skS to determine the
value Kr2 = skS/Er1 . Now, using exhaustive search through the password dictionary, the
adversary can identify pwClient as that unique value for which:

F x1Gy1(I/pwClient)z1Jw1 = Kr2 .

The protocol as formally specified in the previous section is not vulnerable to this attack
since it ensures that a server-instance uses the same password throughout its execution by
storing the client’s password as part of the state information for that instance. Interestingly,
this means that it is possible for two server-instances active at the same time to be using
different passwords for a given client (the password being used will be determined by the
value of pwS,C at the time the initial Send1 query for each instance was made).

We now provide a rigorous proof that the protocol as specified achieves forward secrecy.

Theorem 3 Under the same assumptions as in Theorem 2, the protocol of Figure 1 achieves
forward secrecy.

Proof A significant portion of the proof is similar to the proof of Theorem 2, and so we
will focus only on the differences here. As in the previous proof, we imagine a simulator that
runs the protocol for any adversary A (the simulator must now also simulate the Corrupt
oracles for A but this does not present any problems). When the adversary completes its
execution and outputs a bit b′, the simulator can tell whether the adversary succeeds by
checking whether (1) a single Test query was made on instance Πi

U ; (2) acci
U was true at

the time of the Test query; (3) instance Πi
U is fresh (according to the definition of freshness

appropriate for this setting; see Section 2.3); and (4) b′ = b. Success of the adversary is
denoted by event fsSucc, and for any game P we let fsAdvA,P (k) def= 2 · PrA,P [fsSucc] − 1.
We refer to the real execution of the experiment as P0.

Experiment P ′
0: We define experiment P ′

0 exactly as in the previous proof; following the
same reasoning as there, it is clear that

∣∣∣fsAdvA,P0(k)− fsAdvA,P ′0(k)
∣∣∣ is negligible.

Experiment P1: In experiment P1, the simulator interacts with the adversary as in P ′
0

except that the adversary’s queries to the Execute oracle are handled differently. In response
to the adversary’s oracle query Execute(Client, i,Server, j), the simulator checks whether
pwClient = pwServer,Client. If so, the values C, I are computed as C := hr1 · gN+1

1 and
I := hr2 · gN+1

1 (as before, the key point is that gN+1
1 is not a valid password), and the

session keys are computed as

ski
Client := skj

Server := Ax2By2(C/pwClient)z2Dw2F x1Gy1(I/pwClient)z1Jw1 .
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On the other hand, if pwClient 6= pwServer,Client then the values C, I are computed as
C := hr1 · gN+1

1 and I := hr2 · gN+2
1 , and the session keys are computed as

ski
Client := Ax2By2(C/pwClient)z2Dw2F x1Gy1(I/pwClient)z1Jw1

skj
Server := Ax2By2(C/pwServer,Client)z2Dw2F x1Gy1(I/pwServer,Client)z1Jw1 .

(We implicitly assume here that N + 2 ≤ q and so neither gN+1
1 nor gN+2

1 are valid pass-
words.) Using essentially the same proof as in Claim 1, semantic security of the (modified)
Cramer-Shoup encryption scheme implies that |fsAdvA,P ′0(k)− fsAdvA,P1(k)| is negligible.

Experiment P2: In experiment P2, the simulator interacts with the adversary as in P1

except that during queries Execute(Client, i,Server, j) the simulator proceeds as follows: if
pwClient = pwServer,Client then ski

Client is chosen uniformly at random from G and skj
Server

is set equal to ski
Client. Otherwise, both ski

Client and skj
Server are chosen independently and

uniformly from G.

Claim 9 fsAdvA,P1(k) = fsAdvA,P2(k).

The claim follows since the distribution on the view of the adversary is identical in both
experiments. The case of pwClient = pwServer,Client exactly follows the proof of Claim 2.
So, consider an invocation of the Execute oracle when pwClient 6= pwServer,Client (for brevity,
denote pwClient by pwC and pwServer,Client by pwS,C). We may write

C = hr1 · gN+1
1 = hr′1 · pwC = hr′′1 · pwS,C

for some r′1, r
′′
1 , and

I = hr2 · gN+2
1 = hr′2 · pwC = hr′′2 · pwS,C

for some r′2, r
′′
2 . Note that none of r1, r

′
1, r

′′
1 are equal, and similarly for r2, r

′
2, r

′′
2 . Further-

more, we have r′′1 − r′1 = r′′2 − r′2 but r′1 − r1 6= r′2 − r2.
Now, for any µ1, µ2, ν1, ν2 ∈ G and fixing the random choices for the remainder of

experiment P1, the probability over choice of x1, y1, z1, w1, x2, y2, z2, w2 that E = µ1, K =
µ2, ski

Client = ν1, and skj
Server = ν2 is exactly the probability that

logg1
µ1 = x2 + y2 · logg1

g2 + z2 · logg1
h + w2 · logg1

(cdα) (6)

logg1
µ2 = x1 + y1 · logg1

g2 + z1 · logg1
h + w1 · logg1

(cdβ) (7)

logg1
ν1 = x1 · r2 + y1 · r2 logg1

g2 + z1 · r′2 logg1
h + w1 · r2 logg1

(cdβ)
+x2 · r1 + y2 · r1 logg1

g2 + z2 · r′1 logg1
h + w2 · r1 logg1

(cdα) (8)

logg1
ν2 = x1 · r2 + y1 · r2 logg1

g2 + z1 · r′′2 logg1
h + w1 · r2 logg1

(cdβ)
+x2 · r1 + y2 · r1 logg1

g2 + z2 · r′′1 logg1
h + w2 · r1 logg1

(cdα). (9)

It may be verified that Equations (6)–(9) are linearly independent and not identically zero,
and so the values E, K, ski

Client, and skj
Server are independently and uniformly distributed,

independent of the rest of the experiment. The claim follows.

Before continuing, we introduce some new terminology. First, we say that instance
Πi

U is associated with U ′ if either U = U ′ or pidi
U = U ′. More interestingly, we call a
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query Send0(C, ∗, ∗) or Send2(C, ∗, ∗) corrupted if the adversary had previously queried
Corrupt1(C). Similarly, we call a query Send1(S, i, ∗) (with pidi

S = C) corrupted if the
adversary had previously queried either Corrupt1(C) or Corrupt2(S,C, ∗). We call a query
Send3(S, i, ∗) corrupted exactly when the corresponding query Send1(S, i, ∗) (i.e., the Send1

query for the same instance) is corrupted. Note that for any corrupted query Send∗(U, i, ∗)
the adversary “knows” the password being used by Πi

U at the time this query is made, and
furthermore the instance Πi

U is not fresh (as per the definition given in Section 2.3).
The experiments we now introduce exactly parallel those introduced in the previous

proof, with the main differences being that we only change the simulator’s actions in re-
sponse to non-corrupted Send queries.

Experiment P3: In experiment P3, the simulator runs the modified initialization procedure
as in the proof of Theorem 2, with the values κ, χ1, χ2, ξ1, ξ2 stored as before. In a way
analogous to (but slightly different from) the previous proof, we define a msg1 or msg2

to be oracle-generated if it is output as a result of an Execute query or in response to a
non-corrupted Send0 or Send1 query. Otherwise a message is called adversarially-generated.
We also define valid and invalid exactly as in the previous proof. We stress, however, that
to determine whether a message msg1 submitted to the Send1 oracle is valid/invalid, the
value of pwServer,Client at the time of the Send1 query is used (even if this value is changed
at some later point in the experiment via a Corrupt2 query).

We now continue with our description of experiment P3. When the adversary makes a
non-corrupted oracle query Send2(Client, i, msg2) and msg2 is adversarially-generated and
valid, the query is answered as in experiment P2 but the simulator stores ∇ as the “session
key” for this instance. In any other case (i.e., msg2 is oracle-generated, or adversarially-
generated but invalid), the query is exactly answered as in experiment P2.

When the adversary makes non-corrupted oracle query Send3(Server, j,msg3), the sim-
ulator examines msg1 = first-msg-in for instance Πj

Server. If msg1 is adversarially-generated
and valid, the query is answered as in experiment P2 but the simulator stores ∇ as the “ses-
sion key” for this instance. In any other case (i.e., msg1 is oracle-generated, or adversarially-
generated but invalid), the query is answered exactly as in experiment P2.

Finally, the definition of the adversary’s success is changed. If the adversary queries
Test(U, i) or Reveal(U, i) and ski

U = ∇, the simulator halts and the adversary succeeds. The
adversary also succeeds if it queries Corrupt1(C) and there exists any instance associated
with C which has session key ∇. Otherwise, the adversary succeeds as in experiment P2.

Since there are more ways for the adversary to succeed in P3 and the experiment is
otherwise identical to P2 from the adversary’s point of view, it follows immediately (as in
Claim 3) that fsAdvA,P2(k) ≤ fsAdvA,P3(k).

Experiment P4: In experiment P4, we again modify the simulator’s response to a non-
corrupted Send3 query. Upon receiving non-corrupted query Send3(Server, j, 〈K|Sig〉), the
simulator examines msg1 = first-msg-in for instance Πj

Server. If msg1 is oracle-generated and
a value is to be assigned to skj

Server, the simulator finds the unique pair Client, i such that
sidi

Client = sidj
Server (that a unique such pair exists follows from a similar argument as in

the previous proof) and sets skj
Server = ski

Client.
The modification described above is only made for non-corrupted Send3 queries, and so

in particular this means that the adversary did not query Corrupt2(Server,Client, ∗) before
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initializing instance Πj
Server (using a Send1 query). It follows that instances Πj

Server, Πi
Client

use the same password. But in experiment P3, we always have skj
Server = ski

Client whenever
sidj

Server = sidi
Client and instances Πj

Server, Πi
Client use the same password. We therefore

have fsAdvA,P4(k) = fsAdvA,P3(k).

Experiment P5: In experiment P5, we again modify the simulator’s response to a non-
corrupted Send3 query. Upon receiving non-corrupted query Send3(Server, j, 〈K|Sig〉), the
simulator examines msg1 = first-msg-in for instance Πj

Server. If msg1 is adversarially-
generated and invalid, the session key skj

Server is assigned a value randomly chosen from
G. In all other cases, the query is answered as in experiment P4. Exactly as in Claim 5, it
is the case that fsAdvA,P5(k) = fsAdvA,P4(k) (note in particular that the proof of Claim 5
holds even if the adversary learns the client’s password at some later point).

Experiment P6: In experiment P6, we modify the simulator’s response to non-corrupted
Send1 queries. Now, I is computed as I := hrgN+1

1 ; again, note that gN+1
1 is not a valid

password. As in the proof of Claim 6, security of the (modified) Cramer-Shoup encryption
scheme implies that |fsAdvA,P5(k)− fsAdvA,P6(k)| is negligible under the DDH assumption.

Experiment P7: In experiment P7, we will modify the simulator’s response to non-
corrupted Send2 queries. Now, in response to a non-corrupted query Send2(Client, i, msg2),
the session key ski

Client is assigned a value chosen randomly from G if either: (1) msg2

is adversarially-generated and invalid; or (2) msg2 is oracle-generated (recall that a msg2

output in response to a corrupted Send1 oracle query is not considered oracle-generated).
In any other case, the session key is assigned a value as in experiment P7. Exactly as in the
previous proof (cf. Claim 7), we have fsAdvA,P7(k) = fsAdvA,P6(k).

Experiment P8: In experiment P8, we modify the simulators response to non-corrupted
Send0 queries. Now, C is computed as C := hrgN+1

1 . As in the proof of Claim 8, security of
the (modified) Cramer-Shoup encryption scheme implies that |fsAdvA,P8(k)− fsAdvA,P7(k)|
is negligible.

In experiment P8, the adversary can succeed in one of two ways: either it correctly
guesses the value of the bit used by the Test oracle, or it succeeds as specified in exper-
iment P3 (namely, if it queries Test(U, i) or Reveal(U, i) with ski

U = ∇, or if it queries
Corrupt1(C) and there exists any instance associated with C which has session key ∇). The
probability that it succeeds in the second manner is at most Q(k)/N , where Q(k) is the
number of on-line attacks made by A (cf. the definition of on-line attacks in Section 2.3).
Otherwise, if the adversary queries Test(U, i) for a fresh instance Πi

U such that acci
U = true,

then ski
U is uniformly-distributed in G independent of the adversary’s view (since, in par-

ticular, Πi
U is fresh only if the adversary’s Send queries for this instance are non-corrupted).

As in the previous proof, it follows that fsAdvA,P8(k) ≤ Q(k)/N and so

fsAdvA,P0(k) ≤ Q(k)/N + ε(k)

for some negligible function ε(·). This concludes the proof of the theorem.

Acknowledgments. We are grateful to the reviewers for their thoughtful comments that
helped improve the presentation.

37



References

[1] M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design and
Analysis of Authentication and Key Exchange Protocols. 30th ACM Symposium on
Theory of Computing (STOC), ACM, pp. 419–428, 1998.

[2] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure
Against Dictionary Attacks. Adv. in Cryptology — Eurocrypt 2000, LNCS vol. 1807,
Springer-Verlag, pp. 139–155, 2000.

[3] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. Proc. 1st ACM Conference on Computer and Communications
Security, ACM, pp. 62–73, 1993.

[4] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. Adv. in Cryp-
tology — Crypto 1993, LNCS vol. 773, Springer-Verlag, pp. 232–249, 1994.

[5] M. Bellare and P. Rogaway. Provably-Secure Session Key Distribution: the Three Party
Case. 27th ACM Symposium on Theory of Computing (STOC), ACM, pp. 57–66, 1995.

[6] S.M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Protocols
Secure Against Dictionary Attacks. IEEE Symposium on Research in Security and
Privacy, IEEE, pp. 72–84, 1992.

[7] S.M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: a Password-
Based Protocol Secure Against Dictionary Attacks and Password File Compromise.
1st ACM Conf. on Computer and Communications Security, ACM, pp. 244–250, 1993.

[8] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung. System-
atic Design of Two-Party Authentication Protocols. IEEE Journal on Selected Areas
in Communications 11(5): 679–693, 1993.

[9] M. Boyarsky. Public-Key Cryptography and Password Protocols: The Multi-User Case.
7th Ann. Conf. on Computer and Communications Security, ACM, pp. 63–72, 1999.

[10] V. Boyko. On All-or-Nothing Transforms and Password-Authenticated Key Exchange
Protocols. PhD Thesis, MIT, 2000.

[11] V. Boyko, P. MacKenzie, and S. Patel. Provably-Secure Password-Authenticated Key
Exchange Using Diffie-Hellman. Adv. in Cryptology — Eurocrypt 2000, LNCS vol. 1807,
Springer-Verlag, pp. 156–171, 2000.

[12] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited.
J. ACM 51(4): 557–594, 2004.

[13] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Universally Composable
Password-Based Key Exchange. Adv. in Cryptology — Eurocrypt 2005, LNCS vol. 3494,
Springer-Verlag, pp. 404–421, 2005.

38



[14] R. Canetti and H. Krawczyk. Key-Exchange Protocols and Their Use for Building
Secure Channels. Adv. in Cryptology — Eurocrypt 2001, LNCS vol. 2045, Springer-
Verlag, pp. 453–474, 2001.

[15] R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and
Secure Channels. Adv. in Cryptology — Eurocrypt 2002, LNCS vol. 2332, Springer-
Verlag, pp. 337–351, 2002.

[16] R. Cramer and V. Shoup. Design and Analysis of Practical Public-Key Encryption
Schemes Secure Against Adaptive Chosen Ciphertext Attack. SIAM J. Computing
33(1): 167–226, 2003.

[17] I. Damg̊ard. Collision Free Hash Functions and Public Key Signature Schemes. Adv.
in Cryptology — Eurocrypt 1987, LNCS vol. 304, Springer-Verlag, pp. 203–216, 1988.

[18] G. Di Crescenzo, J. Katz, R. Ostrovsky, and A. Smith. Efficient and Non-Interactive
Non-Malleable Commitment. Adv. in Cryptology — Eurocrypt 2001, LNCS vol. 2045,
Springer-Verlag, pp. 40–59, 2001.

[19] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory 22(6): 644–654, 1976.

[20] W. Diffie, P. van Oorschot, and M. Wiener. Authentication and Authenticated Key
Exchanges. Designs, Codes, and Cryptography 2(2): 107–125, 1992.

[21] M. Di Raimondo and R. Gennaro. Provably Secure Threshold Password-Authenticated
Key Exchange. Adv. in Cryptology — Eurocrypt 2003, LNCS vol. 2656, Springer-Verlag,
pp. 507–523, 2003.

[22] D. Dolev, C. Dwork, and M. Naor. Nonmalleable Cryptography. SIAM Journal of
Computing 30(2): 391–437, 2000.

[23] S. Even, O. Goldreich, and S. Micali. On-Line/Off-Line Digital Signatures. J. Cryptol-
ogy 9(1): 35–67, 1996.

[24] R. Gennaro and Y. Lindell. A Framework for Password-Based Authenticated Key Ex-
change. ACM Trans. Information and System Security 9(2): 181–234, 2006.

[25] O. Goldreich and Y. Lindell. Session-Key Generation Using Human Passwords Only.
Adv. in Cryptology — Crypto 2001, LNCS vol. 2139, Springer-Verlag, pp. 408–432,
2001.

[26] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal of Computing 17(2): 281–308, 1988.

[27] L. Gong, T.M.A. Lomas, R.M. Needham, and J.H. Saltzer. Protecting Poorly-Chosen
Secrets from Guessing Attacks. IEEE J. on Selected Areas in Communications 11(5):
648–656, 1993.

[28] L. Gong. Optimal Authentication Protocols Resistant to Password Guessing Attacks.
Proc. 8th IEEE Computer Security Foundations Workshop, pp. 24–29, 1995.

39



[29] S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols. ACM
Trans. Information and System Security 2(3): 230–268, 1999.

[30] D. Jablon. Strong Password-Only Authenticated Key Exchange. ACM Computer Com-
munications Review 26(5): 5–20, 1996.

[31] D. Jablon. Extended Password Key Exchange Protocols Immune to Dictionary Attack.
Proc. of WET-ICE ’97, IEEE, pp. 248–255, 1997.

[32] S. Jiang and G. Gong. Password Based Key Exchange with Mutual Authentication.
Selected Areas in Cryptography 2004, LNCS vol. 3357, Springer-Verlag, pp. 267–279,
2004.

[33] J. Katz. Efficient Cryptographic Protocols Preventing “Man-in-the-Middle” Attacks.
PhD Thesis, Columbia University, 2002.

[34] J. Katz, P. MacKenzie, G. Taban, and V. Gligor. Two-Server Password-Only Authenti-
cated Key Exchange. Applied Cryptography and Network Security (ACNS) 2005, LNCS
vol. 3531, Springer-Verlag, pp. 1–16, 2005.

[35] J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Exchange
Using Human-Memorable Passwords. Adv. in Cryptology — Eurocrypt 2001, LNCS
vol. 2045, Springer-Verlag, pp. 475–494, 2001.

[36] J. Katz, R. Ostrovsky, and M. Yung. Forward Secrecy in Password-Only Key-Exchange
Protocols. Security in Communication Networks: SCN 2002, LNCS vol. 2576, Springer-
Verlag, pp. 29–44, 2002.

[37] C. Kaufman, R. Perlman, and M. Speciner. Network Security: Private Communication
in a Public World, second edition. Prentice Hall, 2002.

[38] D. Klein. Foiling the Cracker: Survey and Improvements of Password Security. Proc.
USENIX Security Workshop, 1990.

[39] T.M.A. Lomas, L. Gong, J.H. Saltzer, and R.M. Needham. Reducing Risks from Poorly-
Chosen Keys. ACM Operating Systems Review 23(5): 14–18, 1989.

[40] S. Lucks. Open Key Exchange: How to Defeat Dictionary Attacks Without Encrypting
Public Keys. Security Protocols Workshop ’97, LNCS 1361, Springer-Verlag, pp. 79–90,
1997.

[41] P. MacKenzie, S. Patel, and R. Swaminathan. Password-Authenticated Key Exchange
Based on RSA. Adv. in Cryptology — Asiacrypt 2000, LNCS 1976, Springer-Verlag,
pp. 599–613, 2000.

[42] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptogra-
phy. CRC Press, 1999.

[43] R. Morris and K. Thompson. Password Security: A Case History. Comm. ACM 22(11):
594–597, 1979.

40



[44] M.-H. Nguyen and S.P. Vadhan. Simpler Session-Key Generation from Short Random
Passwords. Theory of Cryptography, LNCS vol. 2951, Springer-Verlag, pp. 428–445,
2004.

[45] S. Patel. Number-Theoretic Attacks on Secure Password Schemes. Proc. IEEE Sympo-
sium on Research in Security and Privacy, IEEE, pp. 236–247, 1997.

[46] V. Shoup. On Formal Models for Secure Key Exchange. Draft, 1999. Available at
http://eprint.iacr.org/1999/012.

[47] V. Shoup. A Proposal for an ISO Standard for Public-Key Encryption, version 2.1.
Draft, 2001. Available at http://eprint.iacr.org/2001/112.

[48] E. Spafford. Observing Reusable Password Choices. Proc. USENIX Security Workshop,
1992.

[49] M. Steiner, G. Tsudik, and M. Waidner. Refinement and Extension of Encrypted Key
Exchange. ACM Operating Systems Review 29(3): 22–30, 1995.

[50] T. Wu. The Secure Remote Password Protocol. Proc. Internet Society Symp. on Net-
work and Distributed System Security, pp. 97–111, 1998.

[51] T. Wu. A Real-World Analysis of Kerberos Password Security. Proceedings of the In-
ternet Society Symp. on Network and Distributed System Security, pp. 13–22, 1999.

41


