
Proofs of Storage from Homomorphic Identification Protocols

Giuseppe Ateniese
The Johns Hopkins University

ateniese@cs.jhu.edu

Seny Kamara∗

Microsoft Research
senyk@microsoft.com

Jonathan Katz†

University of Maryland
jkatz@cs.umd.edu

Abstract

Proofs of storage (PoS) are interactive protocols allowing a client to verify that a server faith-
fully stores a file. Previous work has shown that proofs of storage can be constructed from any
homomorphic linear authenticator (HLA). The latter, roughly speaking, are signature/message
authentication schemes where ‘tags’ on multiple messages can be homomorphically combined to
yield a ‘tag’ on any linear combination of these messages.

We provide a framework for building public-key HLAs from any identification protocol sat-
isfying certain homomorphic properties. We then show how to turn any public-key HLA into
a publicly-verifiable PoS with communication complexity independent of the file length and
supporting an unbounded number of verifications. We illustrate the use of our transformations
by applying them to a variant of an identification protocol by Shoup, thus obtaining the first
unbounded-use PoS based on factoring (in the random oracle model).

1 Introduction

Advances in networking technology and the rapid accumulation of information have fueled a trend
toward outsourcing data management to external service providers (“servers”). By doing so, or-
ganizations can concentrate on their core tasks rather than incurring the substantial hardware,
software and personnel costs involved in maintaining data “in house”.

Outsourcing storage prompts a number of interesting challenges. One problem is to verify that
the server continually and faithfully stores the entire file ~f entrusted to it by the client. The server
is untrusted in terms of both security and reliability: it might maliciously or accidentally erase
the data or place it onto temporarily unavailable storage media. This could occur for numerous
reasons including cost-savings or external pressures (e.g., government censure). The server might
also accidentally erase some data and choose not to notify the client. Exacerbating the problem
(and precluding näıve approaches) are factors such as limited bandwidth between the client and
server, as well as the client’s limited resources. See [1, 11] for a more thorough discussion.

If we allow communication complexity linear in ~f , there is a simple mechanism allowing the
client to verify that the server stores ~f at any given time: When the client uploads ~f , the client
locally stores a hash of ~f ; to verify, the server simply sends all of ~f and the client checks that this
hashes to the correct value. For our purposes, we are interested in solutions with communication
complexity that is much smaller than (and, ideally, independent of) the file size.
∗Portions of this work done while at Johns Hopkins.
†Portions of this work done while at IBM. Research supported by NSF grant #0426683.

1

Ateniese et al. [1] and Juels and Kaliski [11] independently introduced approaches to this prob-
lem having sub-linear communication complexity. (Earlier work by Naor and Rothblum [13] is
related, but considers a somewhat weaker adversarial model.) Ateniese et al. also distinguish be-
tween the case of private verifiability, where only the original client (or anyone with whom that
client shares a key) can verify the server’s storage, and public verifiability, where anyone know-
ing the client’s public key can perform verification. Extensions and improvements were given by
Shacham and Waters [14], Dodis, Vadhan, and Wichs [5], and Bowers, Juels, and Oprea [4]. We
refer to [5] for a more detailed comparison among the existing schemes.

Here, we are interested in publicly-verifiable schemes that can be used for an unbounded number
of verifications. A useful tool for this, implicit in [1] and further studied in [14, 5], is a homomor-
phic linear authenticator (HLA), which can be defined in either the private- or public-key setting.
Roughly speaking, this primitive allows a client to ‘tag’ each block fi of a file ~f = f1| · · · |fn in such
a way that for any vector ~c the server can homomorphically construct a (short) tag authenticating
the value

∑
ci · fi.

Two recent works have considered the dynamic setting, where the remotely-stored data can be
updated [2, 6]. We do not address this problem here.

1.1 Our Contributions

The main contribution of this paper is to show a general mechanism (in the random oracle model)
for constructing publicly-key HLAs from any identification protocol that is suitably homomorphic.
The RSA-based HLA used by Ateniese et al. [1] (see also [14, Appendix E]) can be viewed as an
instance of our mechanism applied to the Guillou-Quisquater [10] identification protocol; similarly,
the Shacham-Waters scheme [14] can be seen as being derived from an underlying identification
protocol in bilinear groups. By applying our transformation to a variant of Shoup’s identification
scheme based on factoring [15], we obtain the first publicly-verifiable HLA based on factoring (in
the random oracle model).

We also show a generic transformation from any HLA to a publicly-verifiable proof of storage
with communication complexity independent of the file size. This transformation is in the standard
model, and answers an open question from [14]. An analogous transformation with similar prop-
erties was shown (independently) by Dodis et al. [5] in the setting of simpler private verifiability;
our technique is different from theirs and is of independent interest.

Combining our results, we obtain a publicly-verifiable proof of storage based on the factoring
assumption in the random oracle model. In our PoS, the communication complexity and the size of
the client’s state are independent1 of the file size, and the server’s storage is a constant multiple of
the file size. In the PoS we describe, the computation of both the client and the server is linear in
the file size, but notice that public-key HLAs can be layered on top of erasure codes (as in [14, 4])
or used in conjunction with a probabilistic approach for multiple audits (as in [1]) to obtain better
performance while retaining public verifiability.

2 Definitions

We write x← X to represent an element x being sampled uniformly at random from a set X. The
output y of a randomized algorithm A running on input x is denoted by x← A(x). We sometimes

1The communication complexity for a file of size n is O(log n + k), and as in [5] we assume k � log n.

2

write y := A(x; r) to denote the (deterministic) result of running A on input x and random coins r.
We use boldface to denote vectors. Given a vector ~v we let vi denote its ith component.

Throughout, k ∈ N denotes the security parameter. A function ν : N → R is negligible if for
every polynomial p(·) and large enough k, we have ν(k) < 1/p(k).

2.1 Homomorphic Linear Authenticators

Homomorphic linear authenticators (HLAs) were introduced by Ateniese et al. [1] as a building block
for constructing communication-efficient proofs of storage; they were further studied in [14, 5]. At
a high level, HLAs are used as follows: viewing the file ~f as an n-dimensional vector, the client
begins by tagging each element of ~f and then sending both ~f and the vector of tags ~t to the server.
To verify that the server is storing the entire file, the client sends a random challenge vector ~c and
the server returns µ =

∑
i ci · fi along with a tag τ , computed using ~f,~t, and ~c, which is supposed

to authenticate this value.
HLAs can be defined both in the private and public-key settings. We give a definition for

public-key HLAs and refer the reader to [5] for a formalization of private-key HLAs.

Definition 2.1 (Homomorphic linear authenticator). A public-key homomorphic linear authenticator
is a tuple of four ppt algorithms (Gen,Tag,Auth,Vrfy) such that:

(pk, sk) ← Gen(1k) is a probabilistic algorithm used to set up the scheme. It takes as input the
security parameter and outputs a public and private key pair (pk, sk). We assume pk defines
a k-bit prime p and a positive integer B.

(~t, st) ← Tagsk(~f) is a probabilistic algorithm that is run by the client in order to tag a file. It
takes as input a secret key sk and a file ~f ∈ [B]n, and outputs a vector of tags ~t and state
information st.

τ := Authpk(~f,~t,~c) is a deterministic algorithm that is run by the server to generate a tag. It
takes as input a public key pk, a file ~f ∈ [B]n, a tag vector ~t, and a challenge vector ~c ∈ Znp ;
it outputs a tag τ .

b := Vrfypk(st, µ,~c, τ): is a deterministic algorithm that is used to verify a tag. It takes as input
a public key pk, state information st, an element µ ∈ N, a challenge vector ~c ∈ Znp , and a
tag τ . It outputs a bit, where ‘1’ indicates acceptance and ‘0’ indicates rejection.

For correctness, we require that for all k ∈ N, all (pk, sk) output by Gen(1k), all ~f ∈ [B]n, all (~t, st)
output by Tagsk(~f), and all ~c ∈ Znp , it holds that

Vrfypk

(
st,
∑
i

cifi, ~c, Authpk(~f,~t,~c)

)
= 1.

We remark that in certain schemes correctness (and security) may hold even when Vrfy is given
only

∑
i cifi mod p (assuming B < p). In such cases the communication from the server to the

client can be further reduced.
Informally an HLA is secure if, for a given file ~f and challenge vector ~c, no adversary can output

a valid authenticator for an element µ′ 6=
∑

i cifi.

3

Definition 2.2 (Unforgeability for public-key HLAs). Let Λ = (Gen, Tag, Auth, Vrfy) be a public-
key HLA and A be an adversary, and consider the following experiment:

1. The challenger computes (pk, sk)← Gen(1k), where pk defines p and B.

2. Given pk and oracle access to Tagsk(·), adversary A outputs a file ~f ∈ [B]n.

3. The challenger tags the file by computing (~t, st)← Tagsk(~f).

4. Given ~t and st, the adversary A outputs a challenge vector ~c ∈ Znp , an element µ′ ∈ Z, and a
tag τ ′.

5. The adversary succeeds if µ′ 6=
∑

i cifi and Vrfypk(st, µ′,~c, τ ′) = 1.

Λ is unforgeable if the success probability of every ppt adversary A in the above experiment is
negligible.

The distinctions between the case of public verifiability (as defined above) and private verifia-
bility (as defined in [5]) are that, in the former setting (1) verification does not require the original
secret key sk but only the state st and the original public key; (2) unforgeability holds even against
an adversary who knows the public information pk and st. Our definition is also stronger than the
one given in [5] in that we initially give the adversary access to a tagging oracle.

2.2 Homomorphic Identification Protocols

An identification protocol allows a prover P in possession of a secret key sk to prove its identity
to a verifier V that possesses the corresponding public key pk. We consider 3-move identification
protocols where the prover generates the first message α using the public key pk and randomness r;
the verifier sends a random challenge β; and the prover then computes a response γ using (pk, sk),
the randomness r, and the verifier’s challenge β. Given the transcript of the protocol, the verifier
decides whether to accept or not.

Definition 2.3 (Identification protocol). An identification protocol is a three-move protocol between
a ppt prover P and a ppt verifier V. The protocol consists of four polynomial-time algorithms
(Setup,Comm,Resp,Vrfy) such that:

(pk, sk) ← Setup(1k) is a probabilistic algorithm that takes as input the security parameter and
outputs a public and private key pair (pk, sk).

α ← Comm(pk; r) is a probabilistic algorithm run by the prover P to generate the first message.
It takes as input the public key and random coins r, and outputs an initial message α. We
stress that there is no need for sk.

γ ← Resp(pk, sk, r, β) is a probabilistic algorithm that is run by the prover P to generate the third
message. It takes as input the public key pk, the secret key sk, a random string r, and a
challenge β (from some associated challenge space), and outputs a response γ.

b := Vrfy(pk, α, β, γ) is a deterministic algorithm run by the verifier V to decide whether to accept
the interaction. It takes as input the public key pk, an initial message α, a challenge β, and
a response γ. It outputs a bit b, where ‘1’ indicates acceptance and ‘0’ indicates rejection.

4

For correctness, we require that for all k ∈ N, all (pk, sk) output by Setup(1k), all random coins r,
and all β in the appropriate challenge space, it holds that

Vrfy
(
pk,Comm(pk; r), β,Resp(pk, sk, r, β)

)
= 1.

An identification protocol is homomorphic if the verification of several transcripts of the protocol
can be “batched”:

Definition 2.4 (Homomorphic identification protocol). An identification protocol Σ = (Setup,Comm,
Resp,Vrfy) is homomorphic if there exist efficient functions Combine1,Combine3 such that:

Completeness: For all (pk, sk) output by Setup(1k) and all ~c ∈ Zn
2k , if transcripts {(αi, βi, γi)}1≤i≤n

are such that Vrfy(pk, αi, βi, γi) = 1 for all i, then:

Vrfy

(
pk, Combine1(~c, ~α),

∑
i

ciβi, Combine3(~c,~γ)

)
= 1.

Unforgeability: Consider the following experiment involving an adversary A:

1. The challenger computes (pk, sk)← Setup(1k) and gives pk to A.

2. The following is repeated a polynomial number of times:

• A outputs β′ in the challenge space. The challenger chooses random r, computes
γ := Resp(pk, sk, r, β′), and gives (r, γ) to A.

3. The adversary outputs a n-vector of challenges ~β. Then for each i the challenger chooses
ri at random, sets αi := Comm(pk; ri) and γi := Resp(pk, sk, ri, βi), and gives (~r,~γ) to A.

4. A outputs a triple (~c, µ′, γ′), where ~c ∈ Zn
2k . The adversary succeeds if (1) µ′ 6=

∑
i ciβi

and (2) Vrfy(pk,Combine1(~c, ~α), µ′, γ′) = 1.

2.3 Proofs of Storage

Definition 2.5 (Proof of storage). A (publicly-verifiable) proof of storage is a tuple of five ppt
algorithms (Gen,Encode,Prove,Vrfy) such that:

(pk, sk) ← Gen(1k) is a probabilistic algorithm that is run by the client to set up the scheme. It
takes as input a security parameter, and outputs a public and private key pair (pk, sk). We
assume pk defines a k-bit prime p and a positive integer B.

(~f ′, st)← Encodesk(~f) is a probabilistic algorithm that is run by the client in order to encode the
file. It takes as input the secret key sk, and a file ~f ∈ [B]n. It outputs an encoded file ~f ′ and
state information st.

π := Prove(pk, ~f ′,~c) is a deterministic algorithm that takes as input the public key pk, an encoded
file ~f ′, and a challenge ~c ∈ Znp . It outputs a proof π.

b := Vrfy(pk, st,~c, π): is a deterministic algorithm that takes as input the public key pk, the state
st, a challenge ~c ∈ Znp , and a proof π. It outputs a bit, where ‘1’ indicates acceptance and ‘0’
indicates rejection.

5

We require that for all k ∈ N, all (pk, sk) output by Gen(1k), all ~f ∈ [B]n, all (~f ′, st) output by
Encodesk(~f), and all ~c ∈ Znp , it holds that

Vrfy
(
pk, st,~c,Prove(pk, ~f ′,~c)

)
= 1.

Note that the above defines a publicly-verifiable PoS since the original secret key sk is not
needed in order to perform verification.

Security of a PoS, roughly speaking, guarantees that if the verifier accepts then the prover
indeed has (sufficient information to recover) the entire original file ~f . As noted in [1, 11, 14, 5],
soundness can be formalized using the notion of a knowledge extractor [7, 3]. As in [5], we phrase
our definition using the paradigm of “witness-extended emulation” [12].

Definition 2.6 (Security for a publicly-verifiable PoS). Let Π = (Gen, Encode, Prove, Vrfy) be a
publicly-verifiable PoS. Π is secure if there is an expected polynomial-time knowledge extractor K
such that, for any ppt adversary A we have:

1. The distributions{
(pk, sk)← Gen(1k); (~f, stA)← AEncodesk(·)(pk);

(~f ′, st)← Encodesk(~f);~c← Znp
: (~c, A(stA, ~f ′, st,~c))

}

and {
(pk, sk)← Gen(1k); (~f, stA)← AEncodesk(·)(pk);

(~f ′, st)← Encodesk(~f)
: KA(stA, ~f

′,st,·)
1 (pk, st)

}
are identical. (Above, K1 denotes the first output of K.)

2. The following is negligible:

Pr


(pk, sk)← Gen(1k);

(~f, stA)← AEncodesk(·)(pk);
(~f ′, st)← Encodesk(~f);

((~c, π), ~f∗)← KA(stA, ~f
′,st,·)(pk, st)

: Vrfy(pk, st,~c, π) = 1
∧

~f∗ 6= ~f

 .

3 From Homomorphic Identification Protocols to HLAs

We now show how to transform any homomorphic identification protocol Σ = (Setup,Comm,Resp,Vrfy)
into a public-key HLA. The basic idea is to use the file blocks f1, . . . , fn as the “challenges” in n
parallel invocations of the identification protocol. Thus, a very basic PoS would be as follows:

• The client computes (pk, sk)← Gen(1k).

• For each block fi of the file, the client computes αi, γi such that (αi, fi, γi) is an accepting
transcript in the underlying identification scheme.

• The client sends to the server the file ~f = f1| · · · |fn and the tags γ1, . . . , γn; the client stores
α1, . . . , αn as its own local state.

6

To verify that the server stores the ith block of the file, the client requests the server to send (fi, γi);
the client can authenticate this response by checking that (αi, fi, γi) is an accepting transcript.

There are several drawbacks to the above approach. First, the client’s state is linear in the file
size.2 This is easy to remedy by having the client generate each αi using a pseudorandom function
(if private verifiability suffices) or a random oracle (if public verifiability is desired, as here). A more
serious problem is that a server can easily “cheat” without being caught “too often” by throwing
away blocks of the file. If the server deletes, say, 1 block from the file then it is only caught with
probability 1/n. This can be addressed, to some extent, by having the client request many blocks
but then the communication complexity increases.

Instead, we rely on the homomorphic property of the identification scheme to “batch” the
authentication of multiple blocks. Specifically, the client will send a random integer vector ~c and
the server will respond with µ′ :=

∑
i cifi and γ′ := Combine3(~c,~γ); This response can be verified

by checking whether
Vrfy(pk,Combine1(~c, ~α), µ′, γ′) ?= 1.

(See Figure 1.) Although the client-to-server communication is large, the server-to-client commu-
nication is essentially independent of the file size (cf. footnote 1). We reduce the client-to-server
communication when we construct a PoS in the next section.

Let Σ = (Setup,Comm,Resp,Vrfy) be a homomorphic identification protocol and let H be a function.
Construct a public-key HLA Λ = (Gen,Tag,Auth,Vrfy) as follows:

• Gen(1k): Compute (pk, sk)← Σ.Setup(1k). Let B be such that [B] is in the challenge space of Σ,
and choose a k-bit prime p. Output the public key (pk, p,B) and secret key sk.

• Tagsk(~f), where ~f = f1| · · · |fn, and fi ∈ [B] for all i:

1. Choose st← {0, 1}k.

2. For 1 ≤ i ≤ n:

a. Set ri := H(st; i) and αi := Σ.Comm(pk; ri).
b. Compute γi := Σ.Resp(pk, sk, ri, fi).

3. Output ~t := (γ1, . . . , γn) and st.

• Authpk(~f,~t,~c): Compute and output τ ← Σ.Combine3(~c,~t).

• Vrfypk(st, µ,~c, τ):

1. for 1 ≤ i ≤ n, set ri := H(st; i) and αi := Σ.Comm(pk; ri).

2. Output Σ.Vrfy(pk,Combine1(~c, ~α), µ, τ).

Figure 1: Transforming a homomorphic identification protocol into a HLA.

Theorem 3.1. If Σ is an unforgeable homomorphic identification protocol, then Λ as in Figure 1
is an unforgeable public-key HLA if H is modeled as a random oracle.

Proof. Correctness is easy to verify, and so we consider security. Let A be a ppt adversary attacking
Λ. We construct an adversary A′ attacking Σ as follows:

2In some cases linear state may be acceptable, as long as the state is a constant fraction shorter than the file
itself. When using certain homomorphic identification schemes, including the one discussed in Section 5, this indeed
can be achieved.

7

1. A′ is given a public key pk, generates B and p in the obvious way, and runs A(pk, p,B).

2. When A requests Tagsk(~f) for ~f = f1| · · · |fn, then (for i = 1 to n) A′ queries fi to its own
oracle and receives in return (ri, γi). Then A′ chooses random st ∈ {0, 1}k, sets answers to
the random oracle appropriately, and gives (γ1, . . . , γn) and st to A.

3. Eventually, A outputs a file ~f . Following this, A′ outputs the vector of n challenges ~f =
f1| · · · |fn, and receives in return (~r,~γ). Then A′ chooses random st ∈ {0, 1}k, sets3 answers
to the random oracle appropriately, and gives (~γ, st) to A.

4. When A finally outputs ~c, µ′, τ ′, then A′ outputs these same values.

It is easy to see that A succeeds in attacking Λ exactly when A′ succeeds in attacking Σ.

4 From HLAs to Efficient Proofs of Storage

In this section we show how to use any HLA to construct a PoS having communication complexity
independent of the file size. Our transformation is in the standard model.

It is immediate how an HLA can be used to construct a PoS with communication complexity
linear in the file size: When storing a file ~f , the client computes tags on all the file blocks and
gives to the server the vector of tags ~t (along with ~f itself). To verify, the client chooses a random
~c ∈ Znp and sends it to the server; the server responds with

∑
i cifi and Authpk(~f,~t,~c) (which is

authenticated by the client in the obvious way). If authentication tags output by Auth have length
O(k), then the server-to-client communication for an n-block file is bounded by

O(k) + log

(∑
i

cifi

)
≤ O(k) + log n · p ·B = O(k) + log n.

For typical values of k, n, this means that the server-to-client communication is (essentially) inde-
pendent of the file size.

To reduce the client-to-server communication, we use a pseudorandom function F : the client
sends a key K ∈ {0, 1}k, and the server then derives the challenge vector ~c by setting ci := FK(i)
for all i. (See Figure 2.) This approach is, perhaps, quite “natural” 4 , but it turns out to be highly
non-trivial to prove that it is sound. (This difficulty was mentioned in [14, 5].) The issue is that
since the key K is public, we cannot reduce to the security of the pseudorandom function in the
usual way. Instead we must use a more careful analysis.

Theorem 4.1. Let Λ be an unforgeable public-key HLA, and let F be a pseudorandom function
secure against non-uniform polynomial-time adversaries. Then Π as in Figure 2 is a secure publicly-
verifiable PoS.

Proof. Correctness of the construction is easily verified, and so we turn to proving security. We
describe a knowledge extractor K that runs in expected polynomial-time and satisfies Definition 2.6.
Recall that K is given pk, st as input and has oracle access to A(stA, ~f ′, st, ·), which we abbreviate
as A(·). Define ~c(K) = (FK(1), . . . , FK(n)). The high-level structure of K is as follows:

3We assume for simplicity that no st ∈ {0, 1}k is chosen twice throughout the experiment, since this occurs with
only negligible probability.

4A similar approach, based on pseudorandom generators, was proposed in [9] in the context of verifiable shuffles.

8

Let Λ = (Gen,Tag,Auth,Vrfy) be a public-key HLA, and let F be a pseudorandom function. Construct
a publicly-verifiable PoS Π = (Gen, Encode, Prove,Vrfy) as follows:

• Gen(1k): Compute and output (pk, sk)← Λ.Gen(1k). Let p be the prime implicit in pk.

• Encodesk(~f): Compute (~t, st)← Λ.Tagsk(~f), and output ~f ′ = (~f,~t) and st.

• Prove(pk, ~f ′,K), where K ∈ {0, 1}k:

1. Parse ~f ′ as (~f,~t).

2. For 1 ≤ i ≤ n let ci := FK(i), where ci is viewed as an element of Zp.

3. Compute τ ← Λ.Authpk(~f,~t,~c) and µ :=
∑
i cifi.

4. Output π := (µ, τ).

• Vrfy(pk, st,K, π):

1. Parse π as (µ, τ).

2. For 1 ≤ i ≤ n, let ci := FK(i).

3. Output b := Λ.Vrfypk(st, µ,~c, τ).

Figure 2: Transforming an HLA into a PoS.

1. K chooses random K ← {0, 1}k and runs A(K) to obtain a proof π. If Vrfy(pk, st,K, π) = 0
then K outputs ((K,π),⊥) and stops. Otherwise, its first output will still be (K,π) but it
attempts to recover the original file as described next.

2. K repeatedly rewinds A and sends it different challenges until A responds correctly to a
total of n challenges K1, . . . ,Kn such that ~c(K1), . . . ,~c(Kn) are linearly independent (over
Q). Given n successful responses to these n challenges, K reconstructs a candidate file ~f , and
outputs it.

The above neglects some technical details that we now formalize. If A(K) outputs a proof π = (µ, τ)
for which Vrfypk(st, µ,~c(K), τ) = 1, then we say that K is a good challenge. K implements step 2,
above, as follows:

1. Initialize sets GoodK := Good~c := ∅. Keep track of the total number of calls to A, and halt
execution with output fail if 2k calls are made.

2. Estimate the probability p̃∗ with which a random key K is good by running A with a random
challenge until some fixed polynomial number q = q(k) successful verifications occur. By
appropriate choice of q, it is possible to ensure that the estimate p̃∗ is within a factor of 2 of
the true probability with all but negligible probability 2−k

2
.

3. For j = 1 to n do:

• Repeatedly sample Kj uniformly, querying A on each one, until a good Kj with ~c(Kj) 6∈
span(Good~c) is found. If found, then add Kj to GoodK and add ~cj = ~c(Kj) to Good~c,
and go to the next value of j. If no such Kj is found in at most k2/p̃∗ tries, then output
fail and halt.

9

4. Let GoodK = {K1, . . . ,Kn} and Good~c = {~c1, . . . ,~cn}, where ~cj = ~c(Kj), and let πj = (µj , τj)
be the output of A(Kj). Set up the system of linear equations {

∑
i cj,i · fi = µj}1≤j≤n in the

unknowns ~f = (f1, . . . , fn). Solve for ~f (over the integers) and output it.

We refer to the above as the extraction subroutine.
To complete the proof, we need to show three things. First, that K runs in expected polynomial

time for any A. Second, that if A successfully convinces a verifier in the PoS protocol with
sufficiently high probability, then the extraction procedure will successfully complete (specifically,
step 3 will be successful) with overwhelming probability. Third, that with overwhelming probability
the file ~f output by the extraction procedure is indeed equal to the true file ~f . The first and third
of these items are essentially standard. The second step would be relatively straightforward if the
challenge in the PoS protocol were a random vector ~c; what makes it more complicated is that the
challenge is a PRF key K that is expanded to a vector ~c = ~c(K).

Fixing stA, ~f ′, and st, we let p∗ denote the probability that a random challenge K is good; i.e.,
this is the probability with which A(stA, ~f ′, st, ·) responds correctly to the verifier’s challenge (we
assume stA includes A’s coins).

Claim 1. K runs in expected polynomial time.

Proof. If p∗ = 0 then it is clear that K runs in expected polynomial time. So assume p∗ > 0.
We must then analyze the expected running time of the extraction procedure, following [8, 12].
Steps 1 and 4 take strict polynomial time. The expected running time of step 2 is exactly (some
polynomial times) q(k)/p∗. As for step 3, there are two cases: If p̃∗ ≤ p∗/2, then the only thing we
can claim is that the running time is bounded by (some polynomial times) 2k, due to the counter
being maintained in step 1. But the probability that p̃∗ ≤ p∗/2 is at most 2−k

2
. On the other

hand, if p̃∗ > p∗/2 then the expected running time of step 4 is at most (some polynomial times)
n · k2/p̃∗ < 2nk2/p∗.
K only runs the extraction procedure with probability p∗. Thus, the overall expected running

time of K is upper-bounded by

p∗ ·
(

poly(k) + poly(k) · q(k)/p∗ + poly(k) · 2k · 2−k2
+ poly(k) · 2nk2/p∗

)
,

which is polynomial.

Claim 2. There exists a negligible function ε(·) such that if p∗ > ε(k) then the probability (condi-
tioned on the extraction procedure being run) that the extraction procedure outputs fail is negligible.

Observe this implies that

Pr


(pk, sk)← Gen(1k);

(~f, stA)← AEncodesk(·)(pk);
(~f ′, st)← Encodesk(~f);

((~c, π), ~f∗)← KA(stA, ~f
′,st,·)(pk, st)

: Vrfy(pk, st,~c, π) = 1
∧

~f∗ = fail


is negligible.

Proof. We view the ~cj = ~c(Kj) as vectors over Zp, and use the fact that integer vectors ~c1, . . . ,~c`,
with entries in the range {0, . . . , p − 1}, are linearly dependent over Q only if they are linearly

10

dependent over Zp; thus, an upper bound on the probability of the latter implies an upper bound
on the probability of the former.

Define
ε′(k) = maxL

{
Pr[K ← {0, 1}k : ~c(K) ∈ L]

}
,

where the maximum is taken over all (n− 1)-dimensional subspaces L ⊂ Znp . It is not hard to see
that if F is a non-uniformly secure PRF then ε′(k)−1/p is negligible. Since 1/p is negligible, we see
that ε′ is negligible too. Take ε = 2ε′. We show that if p∗ > ε then, conditioned on the extraction
procedure being run, the probability that it outputs fail is negligible.

First, observe that the probability that K times out by virtue of running for 2k steps is negligible
(this follows from the fact that the expected running time of K is polynomial). Next, fix any j
and consider step 3. The number of challenges that are good is exactly p∗ · 2k, and the number
of challenges Kj for which ~c(Kj) lies in span(Good~c) (which has dimension at most n − 1) is at
most ε′ · 2k < p∗ · 2k/2. Thus, the probability that a random Kj is both good and does not lie in
span(Good~c) is at least p∗/2. If p̃∗ is within a factor of 2 of p∗, which occurs with all but negligible
probability, then K finds such a Kj within k2/p̃∗ steps with all but negligible probability; a union
bound over all values of j ∈ [n] then shows that it fails in some iteration with only negligible
probability. This completes the proof.

Finally, we show that the probability that the extraction procedure outputs an incorrect file
is negligible. In conjunction with the previous claims, this completes the proof that K satisfies
Definition 2.6.

Claim 3. For any ppt adversary A, the following is negligible:

Pr


(pk, sk)← Gen(1k);

(~f, stA)← AEncodesk(·)(pk);
(~f ′, st)← Encodesk(~f);

((~c, π), ~f∗)← KA(stA, ~f
′,st,·)(pk, st)

:
Vrfy(pk, st,~c, π) = 1∧ ~f∗ 6∈ {fail, ~f}

 .
Proof. The event in question can only occur if, at the end of the extraction procedure, there exists
~c ∈ Good~c, with ~c = ~c(K), for which A(K) outputs (µ, τ) such that Vrfy(pk, st,K, (µ, τ)) = 1 yet
µ 6=

∑
i cifi. But this exactly means that A has violated the assumed unforgeability of Λ. Since

K runs in expected polynomial-time, it follows by a standard argument that this occurs with only
negligible probability.

This concludes the proof of Theorem 4.1.

5 A Concrete Instantiation Based on Factoring

In this section we describe a homomorphic variant of the identification protocol of Shoup [15],
whose security is based on the hardness of factoring. Together with the transformations described
in the previous sections, this yields a factoring-based PoS in the random oracle model.

Protocol ΣShoup, described in Figure 3, relies on a Blum modulus generator GenBlum that takes
as input a security parameter 1k and outputs a tuple (N, p, q) such that N = p · q where p and q
are k-bit primes with p = q = 3 mod 4. We denote by QRN the set of quadratic residues modulo
N , and by J +1

N the elements of Z∗N with Jacobi symbol +1. We use the following standard facts

11

Define homomorphic identification protocol ΣShoup as follows:

• Setup(1k): Generate (N, p, q) ← GenBlum(1k). Choose y ← QRN , and output pk := (N, y) and
sk := (p, q).

• Comm(pk; r): View r as an element of J +1
N and output α := r.

• Resp(pk, sk, r, β): Let β ∈ Z2k (which defines the challenge space). Output γ, a random 23kth
root of ±r · yβ mod N (where the sign is chosen to ensure that a square root exists).

• Vrfy(pk, α, β, γ): Output 1 iff γ23k ?= ±α · yβ mod N and β < 23k.

Combine1 and Combine3 are defined as follows:

• Let ~c ∈ Zn2k and ~α ∈ ZnN . Then Combine1(~c, ~α) =
∏n
i=1 α

ci
i mod N .

• Let ~c ∈ Zn2k and ~γ ∈ ZnN . Then Combine3(~c,~γ) =
∏n
i=1 γ

ci
i mod N .

Figure 3: A homomorphic identification protocol based on factoring.

regarding Blum integers: (1) given x ∈ Z∗N it can be efficiently decided whether x ∈ J +1
N ; (2) if

x ∈ J +1
N , then exactly one of x or −x is in QRN ; (3) every x ∈ QRN has four square roots, exactly

one of which is itself in QRN .
Correctness of ΣShoup as a stand-alone identification protocol is immediate. Let us verify that it

is homomorphic. Fix public key (N, y), challenge vector ~c ∈ Zn
2k , and {(αi, βi, γi)}1≤i≤n such that

γ23k

i = ±αi · yβi mod N for all i. Then

Combine3(~c,~γ)2
3k

=

(
n∏
i=1

γcii

)23k

mod N

=
n∏
i=1

(
γ23k

i

)ci
mod N

=
n∏
i=1

(
±αi · yβi

)ci
mod N

= ±
n∏
i=1

αcii · y
βici mod N

= ±Combine1(~c, ~α) · y
P

i ciβi mod N,

and furthermore
∑

i ciβi < n · 2k · 2k < 23k.

Theorem 5.1. ΣShoup is an unforgeable homomorphic identification protocol if the factoring as-
sumption holds with respect to GenBlum.

Proof. The high-level ideas are similar to those in [15], though the proof here is a bit simpler.
Given a ppt adversary A attacking ΣShoup, we construct a ppt algorithm B computing square roots
modulo N output by GenBlum. This implies factorization of N in the standard way. Algorithm B
works as follows:

• B is given a Blum modulus N and a random y ∈ QRN . It runs A on the public key
pk = (N, y).

12

• When A outputs β′ ∈ Z2k , then B chooses random γ ∈ ZN and b ∈ {0, 1}, and sets r := α :=
(−1)b · γ23k

/yβ mod N . It then gives (r, γ) to A.

• When A outputs an n-vector of challenges ~β, then for each i algorithm B computes (ri, γi)
as in the previous step. It gives (~r,~γ) to A.

• If A outputs (~c, µ′, γ′) with Vrfy(pk,Combine1(~c, ~α), µ′, γ′) = 1 but µ′ 6=
∑

i ciβi, then B
computes a square root of y as described below.

Note that the simulation provided for A by B is perfect, and so A succeeds in the above with the
same probability with which it succeeds in attacking the real-world protocol ΣShoup.

To complete the proof, we describe the final step in more detail. Define

α∗ = Combine1(~c, ~α), γ∗ = Combine3(~c,~γ), µ =
∑
i

ciβi.

If Vrfy(pk, α∗, µ′, γ′) = 1 but µ′ 6= µ, then (γ′)2
3k

= ±α∗ · yµ′ mod N ; furthermore, B also knows
that (γ∗)2

3k

= ±α∗ · yµ mod N . Assume without loss of generality that µ > µ′. Since y ∈ QRN
this implies (

γ′/γ∗
)23k

= yµ−µ
′

mod N (1)

with µ, µ′ < 23k (and so µ− µ′ < 23k). Write µ− µ′ = f · 2t for t < 3k and f odd. Since squaring
is a permutation of QRN , Equation (1) implies(

γ′/γ∗
)23k−t

= yf mod N.

Using the extended Euclidean algorithm, B computes integers A,B such that Af + B23k−t = 1.
Then (((

γ′/γ∗
)A
yB
)23k−t−1

)2

=
((
γ′/γ∗

)A
yB
)23k−t

= yAfyB23k−t
= y,

and so B can compute a square root of y. Since B computes a square root whenever A succeeds,
the success probability of A must be negligible.

Acknowledgments.

We are grateful to Gene Tsudik for his insightful comments and contributions during the early
stages of this work.

References

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Provable
data possession at untrusted stores. In ACM Conference on Computer and Communications
Security. ACM, 2007.

[2] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik. Scalable and efficient provable
data possession. In Proc. 4th Intl. Conf. on Security and Privacy in Communication Netowrks
(SecureComm ’08), pages 1–10. ACM, 2008.

13

[3] M. Bellare and O. Goldreich. On defining proofs of knowledge. In Advances in Cryptology —
Crypto ’92, volume 740 of Lecture Notes in Computer Science, pages 390–420. Springer-Verlag,
1992.

[4] K. Bowers, A. Juels, and A. Oprea. Proofs of retrievability: Theory and implementation.
Technical Report 2008/175, Cryptology ePrint Archive, 2008.

[5] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of retrievability via hardness amplification. In
Theory of Cryptography Conference, volume 5444 of Lecture Notes in Computer Science, pages
109–127. Springer, 2009.

[6] C. Erway, C. Papamanthou, A. Kupcu, and R. Tamassia. Dynamic provable data possession.
In ACM Conf. on Computer and Communications Security 2009 (to appear). Available as
Cryptology ePrint Archive, Report 2008/432.

[7] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. J. Cryptology, 1(2):77–94,
1988.

[8] O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge proof systems
for NP. J. Cryptology, 9(3):167–190, 1996.

[9] J. Groth. A verifiable secret shuffle of homomorphic encryptions. Technical Report 2005/246,
IACR ePrint Cryptography Archive, 2005.

[10] L. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to security micro-
processor minimizing both transmission and memory. In Advances in Cryptology — Eurocrypt
’88, volume 330 of Lecture Notes in Computer Science, pages 123–128. Springer, 1988.

[11] A. Juels and B. Kaliski. PORs: Proofs of retrievability for large files. In ACM Conference on
Computer and Communications Security. ACM, 2007.

[12] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation. J. Cryp-
tology, 16(3):143–184, 2003.

[13] M. Naor and G. Rothblum. The complexity of online memory checking. In IEEE Symposium
on Foundations of Computer Science, pages 573–584. IEEE Computer Society, 2005.

[14] H. Shacham and B. Waters. Compact proofs of retrievability. In Advances in Cryptology —
Asiacrypt ’08, volume 5350 of Lecture Notes in Computer Science, pages 90–107. Springer,
2008. Full version available at http://eprint.iacr.org.

[15] V. Shoup. On the security of a practical identification scheme. J. Cryptology, 12(4):247–260,
1999.

14

