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To achieve security in wireless sensor networks, it is important to be able to encrypt and authenticate messages
sent between sensor nodes. Before doing so, keys for performing encryption and authentication must be agreed
upon by the communicating parties. Due to resource constraints, however, achieving key agreement in wireless
sensor networks is non-trivial. Many key agreement schemes used in general networks, such as Diffie-Hellman
and other public-key based schemes, are not suitable for wireless sensor networks due to the limited computational
abilities of the sensor nodes. Pre-distribution of secret keys for all pairs of nodes is not viable due to the large
amount of memory this requires when the network size is large.

In this paper, we provide a framework in which to study the security of key pre-distribution schemes, propose a
new key pre-distribution scheme which substantially improves the resilience of the network compared to previous
schemes, and give an in-depth analysis of our scheme in terms of network resilience and associated overhead. Our
scheme exhibits a nice threshold property: when the number of compromised nodes is less than the threshold, the
probability that communications between any additional nodes are compromised is close to zero. This desirable
property lowers the initial payoff of smaller-scale networkbreaches to an adversary, and makes it necessary for
the adversary to attack a large fraction of the network before it can achieve any significant gain.
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1. INTRODUCTION

Recent advances in electronic and computer technologies have paved the way for the pro-
liferation of wireless sensor networks (WSNs). Sensor networks usually consist of a large
number of ultra-small autonomous devices. Each device, called a sensor node, is battery
powered and equipped with integrated sensors, data processing capabilities, and short-
range radio communications. In typical application scenarios, sensor nodes are spread ran-
domly over the terrain under scrutiny and collect sensor data. Examples of sensor network
projects include SmartDust [Kahn et al. 1999] and WINS.1

Sensor networks are being deployed for a wide variety of applications [Akyildiz et al.
2002], including military sensing and tracking, environment monitoring, patient monitor-
ing and tracking, smart environments, etc. When sensor networks are deployed in a hostile
environment, security becomes extremely important as these networks are prone to differ-
ent types of malicious attacks. For example, an adversary can easily listen to the traffic,
impersonate one of the network nodes, or intentionally provide misleading information to
other nodes. To provide security, communication should be encrypted and authenticated.
The open problem is how to bootstrap secure communications between sensor nodes, i.e.,
how to set up secret keys between communicating nodes.

This problem is known as thekey agreementproblem. Although the problem has been
widely studied in general network environments, many schemes targeted at such environ-
ments are inapplicable to sensor networks due to the unique features of the latter. In partic-
ular, key agreement schemes for WSNs must satisfy the following requirements: (1)Low
energy consumption: because sensor nodes are powered by batteries with limitedpower, a
key agreement scheme should have low communication and computation costs. (2)Low
cost: because sensor nodes are expected to be inexpensive, the associated hardware costs
should be low. (3)Low memory usage: because sensor nodes have very limited memory,
the memory requirements of the scheme should be low. (4)Lack of trusted infrastructure:
sensor nodes are usually unattended and lack protection; therefore, none of the nodes (ex-
cept possibly for a limited number of base stations) should be considered “trusted”. (5)Re-
silient against node capture: theresilienceof the scheme should be high, where resilience
refers to the percentage of communication links — not involving compromised nodes —
which remain secure following compromise of a group of nodes. A scheme is “perfectly
resilient” if the compromise of any node (or any group of nodes) does not compromise the
security of any communication channels between non-compromised nodes.

Three types of key agreement schemes have been studied in general network environ-
ments: trusted-server schemes, public-key schemes, and key pre-distribution schemes.
Trusted-serverschemes depend on a trusted server for key agreement betweennodes; an
example is Kerberos [Neuman and Tso 1994]. This type of scheme is not suitable for
sensor networks because one cannot generally assume that any trusted infrastructure is
in place. Even if some base stations are available, relying on them for key agreement
is inefficient because of the communication costs involved.Public-keyschemes depend
on asymmetric cryptography and typically assume some sort of public-key infrastructure
which may not be present. Furthermore, the limited computational and energy resources of
sensor nodes make it infeasible to use public-key algorithms in WSNs. A third approach
to establish keys is viapre-distribution, where (secret) key information is distributed to all

1Wireless Integrated Network Sensors, University of California. See: http://www.janet.ucla.edu/WINS.
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sensor nodes prior to deployment. Such schemes seem most appropriate for WSNs, and it
is this type of scheme we consider here.

If it is known which nodes will be in the same neighborhood before deployment, pair-
wise keys can be established between these nodes (and only these nodes)a priori. How-
ever, most sensor network deployments are random; thus, such ana priori knowledge about
the topology of the network does not exist. A number of key pre-distribution schemes do
not rely on prior knowledge of the network topology. A naive solution is to let all nodes
store an identicalmastersecret key. Any pair of nodes can use this master secret key to
securely establish a new pairwise key. However, this schemedoes not exhibit desirable net-
work resilience: if a single node is compromised, the security of the entire sensor network
is compromised. Some existing studies suggest storing the master key in tamper-resistant
hardware to reduce the risk, but this increases the cost and energy consumption of each
sensor. Furthermore, tamper-resistant hardware might notalways be safe [Anderson and
Kuhn 1996].

At the other extreme, one might consider a key pre-distribution scheme in which each
sensor storesN − 1 keys (whereN is the number of nodes in the network), each of which
is known to only one other sensor node. This scheme guarantees perfect resilience be-
cause compromised nodes do not leak information about keys shared between two non-
compromised nodes. Unfortunately, this scheme is impractical for sensors with an ex-
tremely limited amount of memory becauseN can be very large. Moreover, this scheme
does not easily allow new nodes to be added to a pre-existing sensor network because the
existing nodes will not have the new nodes’ keys.

Recently, two random key pre-distribution schemes suited for sensor networks have been
proposed. The first [Eschenauer and Gligor 2002] may be summarized as follows: before
deployment, each sensor node receives a random subset of keys from a large key pool;
to agree on a key for communication, two nodes find a common key(if any) within their
subsets and use that key as their shared secret key. Now, the existence of a shared key
between a particular pair of nodes is not certain but is instead guaranteed onlyprobabilisti-
cally (this probability can be tuned by adjusting the parameters of the scheme). Eschenauer
and Gligor note that this is not an insurmountable problem aslong as any two nodes can
securely communicate via a sequence of secure links; see Sections 4 and 7 for further
discussion.

A generalization of this is the “q-composite” scheme [Chan et al. 2003] which improves
the resilience of the network (for the same amount of key storage) and requires an attacker
to compromise many more nodes in order to compromise additional communication links.
The difference between this scheme and the previous one is that theq-composite scheme
requires two nodes to findq (with q > 1) keys in common before deriving a shared key
and establishing a secure communication link. It is shown that, by increasing the value of
q, network resilience against node capture is improved for certain ranges of other parame-
ters [Chan et al. 2003].

1.1 Main Contributions

The primary contribution of this work is a new key pre-distribution scheme which offers
improved network resilience (for the same storage constraints) compared to the existing
schemes mentioned above. The scheme requires more computation than previous schemes,
but we show that this extra computation is smaller compared to that required by public-key
schemes. We provide a thorough theoretical analysis of the security of our scheme, as well
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as its associated overhead. A high-level overview of this scheme, and a discussion of its
advantages, appear below. As a part of our analysis of the security of this scheme, we also
introduce a rigorousframework(i.e., formal definitions of security) appropriate for analyz-
ing key pre-distribution schemes for wireless sensor networks. Somewhat surprisingly, we
find that prior definitions of security for key pre-distribution schemes are insufficient for
typical applications; thus, we believe our framework is of independent interest and should
prove useful for further work in this area.

Our key pre-distribution scheme combines the key pre-distribution scheme of Blom [Blom
1985] (see also [Blundo et al. 1993]) with the random key pre-distribution methods dis-
cussed previously. (We review this scheme in detail in Section 3.) Blom’s scheme allows
anypair of nodes to compute a secret shared key. Compared to the “trivial” scheme men-
tioned earlier (in which each node stores(N−1) keys), Blom’s scheme only requires nodes
to storeλ + 1 keys, whereλ ≪ N . The tradeoff is that, unlike the(N − 1)-pairwise-key
scheme, Blom’s scheme is no longer perfectly resilient against node capture. Instead, it
has the followingλ-secure property: as long as an adversary compromises no more than
λ nodes, communication links between all non-compromised nodes remain secure. How-
ever, once an adversary compromises more thanλ nodes, all keys in the entire network are
compromised.

The thresholdλ can be treated as a security parameter in that selection of a largerλ
leads to greater resilience. This threshold property of Blom’s scheme is a desirable feature
because one can setλ such that an adversary needs to attack a significant fractionof the
network in order to achieve any payoff. However, increasingλ also increases the amount
of memory required to store key information. The goal of our scheme is to increase the
network’s resilience against node capture in a probabilistic sense (and not in a perfect
sense, as in Blom’s scheme) without using too much additional memory.

Roughly speaking, Blom’s scheme uses asinglekey space to ensure that any pair of
nodes can compute a shared key. Motivated by the random key pre-distribution schemes
described previously [Eschenauer and Gligor 2002; Chan et al. 2003], we propose a new
scheme usingmultiple key spaces. That is, we first constructω spaces using Blom’s
scheme, and then have each sensor node carry key informationfrom τ (with 2 ≤ τ < ω)
randomly selected key spaces. Now (from the properties of the underlying Blom scheme),
if two nodes carry key information from a common space they can compute a shared key.
Of course, unlike Blom’s scheme it is no longer certain that two nodes can generate a pair-
wise key; instead (as in previous random key pre-distribution schemes), we have only a
probabilistic guarantee that this will occur. Our analysisshows that using the same amount
of memory (and for the same probability of deriving a shared key), our new scheme is
substantially more resilient than previous probabilistickey pre-distribution schemes.

The remainder of this paper is organized as follows. Section2 describes our proposed
framework for analyzing the security of key pre-distribution schemes in terms of their
effectiveness in establishing “secure (cryptographic) channels”. We also show a simple
method to convert any secure key pre-distribution scheme into a scheme for establishing
such channels. Section 3 reviews Blom’s key pre-distribution scheme which will be used
as a building block of our main scheme, which is described in Section 4. Section 5 rig-
orously quantifies the resilience of our scheme against nodecapture, and compares our
scheme with existing key pre-distribution schemes. Section 6 presents the communica-
tion and computational overheads of our scheme, and Section7 describes some further
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improvements of our scheme. We conclude in Section 8.

1.2 Other Related Work

The Eschenauer-Gligor scheme [Eschenauer and Gligor 2002]and the Chan-Perrig-Song
scheme [Chan et al. 2003] have been reviewed earlier in this section. Detailed comparisons
with these two schemes are given in Section 5.

Blundo, et al. proposed several schemes allowing any group of n parties to compute
a common key which is perfectly secret with respect to any coalition of t other par-
ties [Blundo et al. 1993]. Whenn = 2, their scheme is essentially equivalent to Blom’s
scheme (cf. [Blundo et al. 1993]). Although both Blom’s scheme (for n = 2) and the
main scheme of Blundo, et al. (for arbitraryn) match the known lower bound [Blundo
et al. 1993] in terms of their memory usage for any desired resiliencet, we stress that this
lower bound holdsonly when (1)all groups of sizen are required to be able to compute a
shared key and (2) the network isperfectlyresilient to at mostt captured nodes. By relax-
ing these requirements (slightly) and considering theirprobabilisticanalogues, we obtain
more memory-efficient schemes.

Perrig, et al. proposed SPINS [Perrig et al. 2001], a security architecture in which each
sensor node shares a secret key with a base station. In this scheme, two sensor nodes cannot
directly establish a secret key; however, they can set up a shared key using the base station
as a trusted third party. The scheme described in this work does not rely on any trusted
parties after nodes have been deployed.

A similar approach to the one described in this paper was independently developed
by [Liu and Ning 2003], which was published at the same time asthe conference ver-
sion of this paper [Du et al. 2003]. Liu and Ning’s approach isbased on Blundo’s (2-party)
scheme, rather than on Blom’s scheme as done here. Thus, Liu and Ning’s scheme is es-
sentially equivalent to the one shown here. However, as compared to [Liu and Ning 2003],
this paper provides a more thorough analysis of both the security and the communica-
tion overhead; we also introduce a rigorous framework (i.e., formal definitions of security)
appropriate for analyzing key pre-distribution schemes for wireless sensor networks.

2. A SECURITY FRAMEWORK FOR KEY PRE-DISTRIBUTION SCHEMES

Before describing our primary scheme in detail, we first propose a framework in which
to analyze the security of key pre-distribution schemes in general. Our starting point is
the following simple observation: the goal of a key pre-distribution scheme is not simply
to distribute keys, but rather to distribute keyswhich can then be used to secure network
communication. While the former is necessary for the latter, it is decidedlynot suffi-
cient. In particular, we show below that although previous schemes ensure that the key
Kij established by some pair of nodesi andj remains unknown to an adversary (with high
probability, for some fraction of compromised nodes), these schemes donot necessarily
guarantee security if this keyKij is then used to, e.g., authenticate the communication
between these nodes. This emphasizes the importance of precise definitions of security, as
well as rigorous proofs in some well-defined model.

We develop our framework as follows: We first define key pre-distribution schemes,
and then describe for such schemes a “basic” level of security. This definition captures
the idea that an adversary should (except with low probability) be unable to determine
the key shared by some pair of users, and roughly correspondsto the level of security
considered by Eschenauer-Gligor and all subsequent work inthis area. We then define a
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stronger notion which more accurately represents the levelof security expected from key
pre-distribution schemes when used in practice. For simplicity, we focus on the case of
message authentication; our results easily extend to otherexamples such as symmetric-key
encryption. Our definition in this case (informally) requires that an adversary be unable to
insert a bogus message which is accepted as legitimate by oneof the nodes (except with low
probability). Schemes meeting this, more stringent, notion of security are said to achieve
cryptographic key distribution. We then show that a scheme meeting the “basic” notion of
security is not necessarily a secure cryptographic key distribution scheme. On a positive
note, we show a simple way to convert any scheme achieving the“basic” level of security
to one whichis a secure cryptographic key distribution scheme. Our definitions, as well
as our results, are described here in a relatively informal fashion. Yet, it is straightforward
for the interested reader to derive formal definitions and statements of our results from the
discussion below.

We begin with a discussion of key pre-distribution schemes.We view such schemes
as being composed of algorithms for key generation, key distribution, and key derivation.
In the randomizedkey generationphase, some master secret informationS is established.
Given S and a node identityi, a deterministickey distributionalgorithm generates in-
formationki which will be stored by nodei. Finally, during thekey derivationphase,
two distinct nodesi andj holding ki andkj , respectively, execute an algorithmDerive
and output a shared keyKij ∈ {0, 1}ℓ or ⊥ if no such key can be established. (The
key derivation stage is assumed to be deterministic, but it may potentially require inter-
action between nodesi andj.) Execution of this algorithm by nodei (holding informa-
tion ki) is denoted asDerive(ki, i, j); we always require the basic correctness condition
Derive(ki, i, j) = Derive(kj , j, i). Note that a pair of nodesi, j is not guaranteed to be
able to establish a shared keyKij 6=⊥. For any distincti, j, we assume that the prob-
ability (over choice of master keyS) that i and j can establish a shared key (i.e., that
Derive(ki, i, j) 6=⊥) is equal to some fixed parameterp, and we refer to thisp as the
connectivity probabilityof the scheme.

A “basic” level of security is defined via the following game:First run an instance of
the key pre-distribution scheme. An adversary is givenI = {(i1, ki1), . . . , (it, k

it)} for
t randomly-selected nodes{i1, . . . , it} (this I represents what the adversary learns af-
ter compromisingt randomly-selected nodes). The adversary must then output(i, j,K),
wherei, j, 6∈ I andK ∈ {0, 1}ℓ represents its “guess” for the keyKij . We say the ad-
versarysucceedsif its guess is correct, and denote its probability of success (conditioned
on the master secret informationS and the informationI which is available to the adver-
sary) asPr[Succ | S, I]. We say a key pre-distribution scheme is(t, ǫ, δ)-secure if for any
adversary we have:

PrS,I [Pr[Succ | S, I] ≤ ǫ] ≥ 1 − δ.

We remark that in analyzing the security of our scheme in Section 5.1, we setǫ = 2−ℓ

(essentially the best possible, since the keyspace is{0, 1}ℓ) and then derive appropriate
relations betweent andδ.

Before introducing a notion of security which is more along the lines of what is de-
sired in practice, we augment a key pre-distribution schemewith an additionalmessage
authenticationalgorithmMac andmessage verificationalgorithmVrfy. Now, once nodes
i, j establish a shared keyKij 6=⊥, nodei can authenticate its communication to node
j as follows (j can authenticate its communication toi similarly): before sending mes-
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sagem, nodei computestag = MacKij
(m) and sendstag along withm; upon receiving

(m, tag), nodej acceptsm only if VrfyKij
(m, tag) = 1. For completeness, we define

Mac⊥(m) =⊥ for all m, andVrfy
⊥

(m, tag) = 0 for all m, tag.
We now define cryptographic key distribution via the following game: First run an in-

stance of the key pre-distribution scheme, and giveI = {(i1, ki1), . . . , (it, k
it)} to an

adversary as before. Additionally, the adversary can repeatedly make an unbounded num-
ber of message authentication requests of the formMac(i′, j′,m), with the effect that node
i′ authenticates messagem for nodej′ (using keyKi′j′ ) and returns the resultingtag
to the adversary. Finally, the adversary outputs(i, j,m∗, tag∗) and we say the adversary
succeedsif: (1) VrfyKij

(m∗, tag∗) = 1 (in particular, this will requireKij 6=⊥), and

(2) the adversary had never requestedMac(i, j,m∗) or Mac(j, i,m∗). That is, success
corresponds to the adversary’s ability to “insert” a bogus messagem∗ which is accepted as
valid by one ofi, j even though neither node authenticated this message. (Thisdefinition
is a straightforward “lifting” of the standard notion of security for message authentication
[Bellare et al. 2000] to the multi-party setting.) As above,let Pr[Succ | S, I] denote the
adversary’s probability of success conditioned on the values ofS andI. Fixing2 some time
boundT , we say a scheme is a(t, ǫ, δ)-securecryptographic key distribution schemeif, for
any adversary running in timeT we have

PrS,I [Pr[Succ | S, I] ≤ ǫ] ≥ 1 − δ.

Note that we must now limit the computational abilities of the adversary since secure mes-
sage authentication for an unbounded number of messages is impossible otherwise.

It is instructive to note that a key pre-distribution schemesecure in the basic sense need
not be a cryptographic key distribution scheme. For example, consider a scheme in which
Kij is equal toKi′j′ (for some(i′, j′) 6= (i, j)) with some high (i.e., non-negligible) prob-
ability; this is true for both the Eschenauer-Gligor and Chan-Perrig-Song schemes. Now,
even if an adversary does not compromiseanynodes, and even if it cannot guessKij (and
hence the scheme remains secure in the basic sense), the scheme is not a secure crypto-
graphic key distribution scheme. In particular, an adversary can take messages that were
authenticated byi′ and intended forj′, and send these messages toj while claiming they
originated fromi; with high probability (namely, wheneverKi′j′ = Kij), the adversary’s
insertion goes undetected.

This problem of “repeated keys” has been noticed (although informally) in previous
work. However, we stress that subtle problems may arise evenwhen the probability of
“repeated keys” is small. Whenever the keys used by differentpairs of parties are notin-
dependent(in an information-theoretic sense), a formal proof that the scheme meets the
requirements of a cryptographic key distribution scheme will not be possible. In fact, de-
pendence between keys generated by the various pairs of parties reflects a serious potential
vulnerability, as this leaves open the possibility ofrelated-key attackson the message au-
thentication code or the lower-level primitives (e.g., block ciphers) from which the MAC
is constructed. The possibility of such related-key attacks also rules out the easy “fix” in
which nodes pre-pend the identities of the sender/receiverto any authenticated messages;
although this prevents the “repeated-key “ attack discussed earlier, it does nothing to pro-
tect against related-key attacks.

2We may also letT be a parameter of the definition, but for simplicity have not done so.
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Luckily, it is simple to derive cryptographic key distribution schemes from key pre-

distribution schemes in therandom oracle model[Bellare and Rogaway 1993]. LetKij

be the key derived by nodesi and j in some key pre-distribution scheme which is as-
sumed to be secure in the basic sense discussed above. These nodes then computeK ′

ij =
H(i, j,Kij), whereH is a hash function modeled as arandom oracle. This keyK ′

ij is
then used byi andj (as the key foranysecure MAC) to authenticate their communication
as suggested above. It can be shown that if the initial schemeis (t, ǫ, δ)-secure in the basic
sense, and if the probability of forgery for the MAC isǫ′ (for an adversary running in time
T ), then the modified scheme is a(t, qh ·ǫ+

(

n
2

)

·ǫ′, δ)-secure cryptographic key distribution
scheme, whereqh is a bound on the number of random oracle queries (i.e., hash function
evaluations) made by an adversary. The proof is straightforward, and is omitted here.

Since one may always convert any secure key pre-distribution scheme into a crypto-
graphic key distribution scheme, we will analyze the security of our proposed scheme in
the “basic” sense with the understanding that the above transformation should be applied
before the scheme is used in practice. This modular analysisof security is (we believe)
simpler, more intuitive, and less prone to error.

3. BACKGROUND: BLOM’S KEY PRE-DISTRIBUTION SCHEME

Blom proposed a key pre-distribution method that allows anypair of nodes in a network
to be able to derive a pairwise secret key [Blom 1985]. It has the property that as long
as no more thanλ nodes are compromised, all communication links of non-compromised
nodes remain secure (we refer to this as being “λ-secure”); using the terminology of the
previous section, the scheme is(λ, 2−ℓ, 0)-secure, whereℓ is the length of the shared key.
We now briefly describe Blom’s scheme (we have made some slight modifications to the
scheme in order to make it more suitable for sensor networks,but the essential features
remain unchanged).

We assume some agreed-upon(λ + 1) × N matrix G over a finite fieldGF (q), where
N is the size of the network andq > N . This matrixG is public information and may
be shared by different systems; even adversaries are assumed to knowG. During the key
generation phase the base station creates a random(λ + 1) × (λ + 1) symmetric matrix
D over GF (q), and computes anN × (λ + 1) matrix A = (D · G)T , where(D · G)T

is the transpose ofD · G. Matrix D must be kept secret, and should not be disclosed to
adversaries or to any sensor nodes (although, as will be discussed, one row of(D · G)T

will be disclosed to each sensor node). BecauseD is symmetric, it is easy to see that

A · G = (D · G)T · G = GT · DT · G = GT · D · G
= (A · G)T ;

i.e.,A · G is a symmetric matrix. If we letK = A · G, we know thatKij = Kji, where
Kij is the element in theith row andjth column ofK. The idea is to useKij (or Kji)
as the pairwise key between nodei and nodej. Fig. 1 illustrates how the pairwise key
Kij = Kji is generated. To carry out the above computation, nodesi andj should be able
to computeKij andKji, respectively. This can be easily achieved using the following key
pre-distribution scheme, fork = 1, . . . , N :

(1) store thekth row of matrixA at nodek, and
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(2) store thekth column of matrixG at nodek.3

Then, when nodesi andj need to establish pairwise key, they first exchange their columns
of G and then computeKij andKji, respectively, using their private rows ofA. BecauseG
is public information, its columns can be transmitted in plaintext. It has been shown [Blom
1985] that the above scheme isλ-secure if anyλ+1 columns ofG are linearly independent.
This λ-secure property guarantees that no coalition of up toλ nodes (not includingi and
j) have any information aboutKij or Kji.
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Fig. 1. Generating keys in Blom’s scheme.

An Example of a Matrix G

We show an example of a matrixG which can be used in the above scheme. Recall that any
λ+1 columns ofG must be linearly independent in order to achieve theλ-secure property.
Since each pairwise key is represented by an element in the finite fieldGF (q), we must set
q to be larger than the key size we desire. Thus, if 64-bit keys are desired we may choose
q as the smallest prime number larger than264 (alternately, we may chooseq = 264); note
that for all reasonable values ofN we will haveq > N as required. Lets be a primitive
element ofGF (q); that is, each nonzero element inGF (q) can be represented by some
power ofs. A feasibleG can be designed as follows [MacWilliams and Sloane 1977]:

G =















1 1 1 · · · 1
s s2 s3 · · · sN

s2 (s2)2 (s3)2 · · · (sN )2

...
...

...
. ..

...
sλ (s2)λ (s3)λ · · · (sN )λ















.

Sinces is primitive,si 6= sj if i 6= j mod q. SinceG is a Vandermonde matrix andq > N ,
it can be shown that anyλ + 1 columns ofG are linearly independent [MacWilliams and
Sloane 1977]. This matrixG has the nice property that its columns can be generated by
an appropriate power of the primitive elements. That is, to store thekth column ofG at
nodek we need only store the seedsk at this node which can then regenerate the column
when needed. Other tradeoffs between memory usage and computational complexity will
be discussed later in the paper.

3We will show later that a sensor need not store the whole column, because each column can be generated from
a single field element.
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4. A MULTIPLE-SPACE KEY PRE-DISTRIBUTION SCHEME

Blom’s scheme achieves optimal resilience at the expense ofrelatively large memory re-
quirement. Here, we demonstrate a scheme which achieves good — although not optimal
— resilience but which offers the advantage of requiring much lower memory usage. Our
idea is based on the following observations: Blom’s method guarantees thatany pair of
nodes can establish a shared secret key. If we imagine a graphin which each sensor node
is a vertex and there is an edge between nodes only if they can establish a shared key, then
Blom’s scheme results in acompletegraph (i.e., an edge exists between any two nodes).
Although such connectivity is desirable, it is not necessary. To achieve our goal of allow-
ing any two nodes to communicate, all we need is aconnectedgraph. By relaxing the
requirement in this way, we achieve a scheme requiring much less storage.

Before we describe our proposed scheme, we define akey space(or spacein short) as a
matrix D as defined in the previous section. (The matrixG will be fixed.) We say a node
holds key spaceD if the node stores the secret information generated from(D,G) using
Blom’s scheme. Note that two nodes can calculate pairwise key if they hold a common key
space.

4.1 Key Pre-Distribution Phase

During the key pre-distribution phase, we assign information to each node such that after
deployment neighboring sensor nodes can establish a sharedsecret key with high proba-
bility. Assume that each sensor node has a unique identity ranging from1 to N . Our key
generation/distribution phase consists of the following steps:

Step 1: Generating a G matrix. We first select a primitive element from a finite field
GF (q), whereq is larger than the desired key length (and alsoq > N ), and then construct
a matrixG of size(λ + 1)×N as discussed in the previous section. (Here,λ is parameter
whose function will be discussed later.) LetG(j) represent thejth column ofG. Our goal
is to provideG(j) to nodej. However, as discussed in Section 3, althoughG(j) contains
(λ + 1) elements, each sensor only needs to store a “seed” (i.e., a single field element
which is the second entry of the desired column) which can be used to regenerateG(j).
Therefore the memory usage for storingG(j) at a node is just a single element. Since the
seed is unique for each sensor node, it can also be used as a node identity.

Step 2: Generating keyspaces. We generateω random, symmetric matricesD1, . . . ,Dω

of size(λ+1)×(λ+1). We then compute the matrixAi = (Di ·G)T . LetAi(j) represent
thejth row ofAi.

Step 3: Selecting τ spaces per node. For each node, we randomly selectτ (2 ≤ τ < ω)
distinct key spaces from theω possible choices. For each spaceDi selected by nodej,
we store thejth row ofAi at this node. This information is secret; under no circumstance
should a node send this information to any other node. Using Blom’s scheme, two nodes
can establish a common secret key if they both hold a common key space.

SinceAi is anN × (λ + 1) matrix, Ai(j) contains(λ + 1) elements. Therefore, each
node needs to store(λ + 1)τ elements in its memory. Because the length of each element
is (roughly) the same as the length of the shared secret keys which will ultimately be
generated, the memory usage of each node is(λ + 1)τ times the length of the key (we
do not count the seed used to regenerateG(j), since this seed may also serve as the node
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identity).

4.2 Key Agreement Phase

After deployment, each node needs to discover whether it shares a key space with its neigh-
bors. To do this, each node broadcasts a message containing the following information:
(1) the node’s id, (2) the indices of the spaces it carries,4 and (3) the seed used to generate
the appropriate column ofG (as mentioned earlier, we could also let this be equal to the
node identity, in which case this step is not needed).

Assume that nodesi andj are neighbors, and have sent the above broadcast messages.
If they determine that they share a common space, sayDc, they can compute a pairwise
secret key using Blom’s scheme: Initially nodei hasAc(i) and seed forG(i), and nodej
hasAc(j) and seed forG(j). After exchanging the seeds, nodei can regenerateG(j) and
nodej can regenerateG(i); then the pairwise secret keyKij = Kji between nodesi and
j can be computed in the following manner by these two nodes, respectively:

Kij = Kji = Ac(i) · G(j) = Ac(j) · G(i).

After secret keys with neighbors are set up, the entire sensor network forms the following
key-sharing graph:

DEFINITION 4.1. (Key-sharing graph)Let V represent all the nodes in the sensor net-
work. A key-sharing graphGks(V,E) is defined in the following manner: For any two
nodesi andj in V , there exists an edge between them if and only if (1) nodesi andj share
at least one common key space, and (2) nodesi andj can reach each other (i.e., are within
wireless transmission range).

We now show how two neighboring nodesi and j who do not share a common key
space can still establish a shared secret key. The idea is to use the secure channels that
have already been established in the key-sharing graphGks: as long asGks is connected,
two neighboring nodesi andj can always find a path inGks from i to j. Assume that
the path isi, v1, . . . , vt, j. To establish a common secret key betweeni andj, nodei first
generates a random keyK. Theni sends the key tov1 using their secure link;v1 sends the
key tov2 using the secure link betweenv1 andv2, and so on untilj receives the key from
vt. Nodesi andj use this secret keyK as their pairwise key. Because the key is always
forwarded over a secure link, no nodes beyond this path can determine the key.

4.3 Computing ω, τ , and the Memory Usage

As we have just shown, to make it possible for any pair of nodesto be able to find a secret
key between them, the key sharing graphGks(V,E) needs to beconnected. Given the size
and the density of a network, how can we select values forω andτ such that the graphGks

is connected with high probability? We use the following three-step approach, adapted
from [Eschenauer and Gligor 2002]. Although this approach is heuristic and not rigorous,
it has been suggested and used in previous work in this area [Eschenauer and Gligor 2002;
Chan et al. 2003].

Step 1: Computing required local connectivity. Let Pc be the probability that the key-
sharing graph is connected. We refer to this as theglobal connectivity. We let local con-

4If we do not wish to disclose the indices of the spaces each node carries, we can use a challenge-response
technique instead [Chan et al. 2003].
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nectivityp refer to the probability of two neighboring nodes sharing atleast one space;
i.e., the probability that two neighboring nodes can establish a common key. The global
connectivity and the local connectivity are related: to achieve a desired global connectivity
Pc, the local connectivity must be higher than a certain threshold value called therequired
local connectivity, and denoted byprequired.

Using results from the theory of random graphs [Erdős and Ŕenyi 1959], we can relate
the average node degreed to the global connectivity probabilityPc in a network of sizeN
(for N large):

d =
(N − 1)

N
[ln(N) − ln(− ln(Pc))] . (1)

For a given density of sensor network deployment, letn be the expected number of neigh-
bors within wireless communication range of a node. Since the expected node degree in
Gks should be at leastd as calculated above, the required local connectivityprequired can
be estimated as:

prequired =
d

n
. (2)

We stress that this only guarantees connectivity in a heuristic (and not a rigorous) sense:
to apply the theory of random graphs it must be the case that a node has edgeswith other
nodes uniformly distributed throughout the graph. Here, however, nodes only have edges
to their physically-close neighbors. Yet, we are not aware of any problems in practice with
using this heuristic estimate.

Step 2: Computing actual local connectivity. After we have selected values forω and
τ , the actual local connectivity is determined by these values. We usepactual to represent
the actual local connectivity; namely,pactual is the actual probability of two neighboring
nodes sharing at least one key space (which is the same as the probability that they can
establish a common key). Sincepactual = 1 − Pr(two nodes do not share any space), we
have

pactual = 1 −
(

ω
τ

)(

ω−τ
τ

)

(

ω
τ

)2 = 1 − ((ω − τ)!)2

(ω − 2τ)!ω!
. (3)

Values ofpactual have been plotted in Fig. 2 forτ = 2, 4, 6, 8 andω varying fromτ to 100.
For example, one can see that whenτ = 4, the value ofω must be at most 25 in order to
achieve local connectivitypactual ≥ 0.5.

The collection of sets of spaces assigned to each sensor forma probabilistic quorum sys-
tem [Malkhi et al. 2001]; the goal is for two sensors to have a space in common with high

probability. Next we show that ifτ ≥
√

ln 1
1−pactual

√
ω, then the probability of intersec-

tion is at leastpactual. For example, whenτ ≥
√

ln 2
√

ω, the probability of intersection
is at least1/2. This helps explain the behavior observed in Fig. 2. A proof of this fact,
similar to proof of the “birthday paradox”, is as follows: Itis well-known that1−x ≤ e−x
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Fig. 2. Probability of two nodes sharing a key when each node hold τ key spaces chosen randomly from a set of
ω key spaces.

for all x ≥ 0. Therefore,

pactual = 1 − ((ω − τ)!)2

(ω − 2τ)!ω!

= 1 −
(

1 − τ

ω

)

(

1 − τ

ω − 1

)

· · ·
(

1 − τ

ω − τ + 1

)

≥ 1 − e−( τ
ω

+ τ
ω−1

+···+ τ
ω−τ+1 )

≥ 1 − e−
τ2

ω .

Accordingly, to achieve a desiredpactual for a givenω we must have

τ ≥
√

ln
1

1 − pactual

√
ω.

Step 3: Computing ω and τ . Knowing the required local connectivityprequired and the
actual local connectivitypactual, in order to achieve the desired global connectivityPc, we
should havepactual ≥ prequired. Thus:

1 − e−
τ2

ω ≥ (N − 1)

nN
[ln(N) − ln(− ln(Pc))] . (4)

So, in order to achieve a certainPc for a network of sizeN with n expected neighbors for
each node, we just need to find values ofω andτ such that Inequality (4) is satisfied.

Step 4: Computing memory usage. For each selected space in Blom’s scheme, a node
needs to carryλ + 1 field elements; Hence the total memory usagem for each node is:

m = (λ + 1)τ (5)

field elements (As mentioned earlier, we do not count the seedneeded to generateG(i)
since this can also serve as the node identity.)
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5. SECURITY ANALYSIS

We evaluate the multiple-space key pre-distribution scheme in terms of its resilience against
node capture. Our evaluation is based on two metrics: (1) Whenx nodes are captured,
what is the probability that at least one key space is broken?This analysis shows when the
network starts to become insecure. (2) Whenx nodes are captured, what fraction of the
additional communication (i.e., communication amonguncapturednodes) also becomes
compromised? This analysis shows the expected payoff an adversary obtains after cap-
turing a certain number of nodes. In our analysis we assume that the adversary has noa
priori knowledge of the keys carried by each sensor and we thereforemodel the attacker
as compromising random nodes.5

5.1 Probability of At Least One Space Being Broken

We define our unit of memory as the size of a secret key (e.g., 64bits). In Blom’s scheme,
for a space to beλ-secure each node needs to use memory of sizeλ + 1. Therefore, if
the memory usage ism and each node needs to carryτ spaces, the value ofλ should be
⌊m

τ
⌋ − 1. We use this value forλ in the following analysis.

Let Si be the event that theith key space is compromised (fori ∈ {1, . . . , ω}), letCx be
the event thatx nodes are compromised in the network, and setθ = τ

ω
. We have

Pr(at least one space is broken| Cx) = Pr(S1 ∪ S2 ∪ · · · ∪ Sω | Cx).

Applying the union bound, we obtain

Pr(S1 ∪ · · · ∪ Sω | Cx) ≤
ω

∑

i=1

Pr(Si | Cx).

Due to the fact that each key space is broken with equal probability, we have

ω
∑

i=1

Pr(Si | Cx) = ω Pr(S1 | Cx).

Therefore,

Pr(at least one space is broken| Cx) ≤
ω

∑

i=1

Pr(Si | Cx) = ω · Pr(S1 | Cx). (6)

We now need to calculatePr(S1 | Cx), the probability of the first key space being
compromised whenx nodes are compromised. Because each node carries information
from τ spaces, the probability that each compromised node carriesinformation about the
first key space isθ = τ

ω
. Therefore, afterx nodes are compromised, the probability that

exactlyj of thesex nodes contain information about the first key space is
(

x
j

)

θj(1−θ)x−j .
Since each key space can be “broken” only after at leastλ + 1 nodes are compromised (by
theλ-secure property of the underlying Blom’s scheme), we have the following result:

Pr(S1 | Cx) =
x

∑

j=λ+1

(

x

j

)

θj(1 − θ)x−j . (7)

5This assumption is reasonable due to the randomness in the key selection process, especially if we assume that
a challenge-response technique is used to establish keys (cf. footnote 4).
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Combining Inequality (6) and Equation (7), we thus obtain the following upper bound:

Pr(at least one space is broken| Cx) ≤ ω ·
x

∑

j=λ+1

(

x

j

)

θj(1 − θ)x−j

= ω ·
x

∑

j=λ+1

(

x

j

)

( τ

ω

)j (

1 − τ

ω

)x−j

. (8)
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Fig. 3. The probability of at least one key space being compromised by the adversary when the adversary has
capturedx nodes (m = 200, ω = 50). The valuep in the figure representspactual.

We plot both simulation and analytical results in Fig. 3. From the figure, the two results
match each other closely, meaning that the union bound worksquite well in the scenarios
we discuss. Fig. 3 shows, for example, that when the memory usage is set to 200,ω is set
to 50, andτ is set to 4, the value ofλ for each space is49 = ⌊ 200

4 ⌋ − 1, but an adversary
needs to capture about 380 nodes in order to be able to break atleast one key space with
reasonably-high probability.

5.2 The Fraction of Compromised Network Communication

To better understand the resilience of our key pre-distribution scheme, we explore the effect
of the capture ofx sensor nodes by an adversary on the security of the rest of thenetwork.
In particular, we calculate the fraction of additional communication (i.e., communication
among the uncaptured nodes) that an adversary can compromise based on the information
retrieved from thex captured nodes. To compute this fraction, we first compute the prob-
ability that any one of the additional communication links is compromised afterx nodes
are captured. Note that we only consider the links in the key-sharing graph, and each of
these links is secured using a pairwise key computed from thecommon key space shared
by the two nodes of this link. We should also notice that afterthe key setup stage, two
neighboring nodes can use the established secure links to agree upon another random key
to secure their communication. Because this key is not generated from any key space, the
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security of this new random key does not directly depend on whether the key spaces are
broken. However, if an adversary can record all communication during the key setup stage,
he/she can still compromise this new key after compromisingthe corresponding links in
the key-sharing graph.

Let c be a link in the key-sharing graph between two uncompromisednodes, and let
K be the communication key used for this link. LetSi denote theith key space, and let
Bi represent the joint event thatK belongs toSi andSi is compromised. We use the
notationK ∈ Si to represent that “keyK was derived usingSi”. The probability ofc
being compromised given the compromise ofx other nodes is:

Pr(c is broken| Cx) = Pr(B1 ∪ B2 ∪ · · · ∪ Bω | Cx).

Sincec uses only one key, eventsB1, . . . ,Bω are mutually exclusive. Therefore,

Pr(c is broken| Cx) =

ω
∑

i=1

Pr(Bi | Cx) = ω · Pr(B1 | Cx),

because all eventsBi are equally likely. Note that

Pr(B1 | Cx) =
Pr((K ∈ S1) ∩ (S1 is compromised)∩ Cx)

Pr(Cx)
.

Since the event(K ∈ S1) is independent of the eventsCx and (S1 is compromised),

Pr(B1 | Cx) =
Pr(K ∈ S1) · Pr(S1 is compromised∩ Cx)

Pr(Cx)

= Pr(K ∈ S1) · Pr(S1 is compromised| Cx).

Pr(S1 is compromised| Cx) can be calculated using Equation (7). The probability that
K belongs to spaceS1 is the probability that linkc uses a key from spaceS1. Since key
spaces are assigned uniformly from theω possibilities, we have:

Pr(K ∈ S1) = Pr(the link c uses a key from spaceS1) =
1

ω
.

Therefore,

Pr(c is broken| Cx) = ω · Pr(B1 | Cx)

= ω · 1

ω
· Pr(S1 is compromised| Cx)

= Pr(S1 is compromised| Cx)

=

x
∑

j=λ+1

(

x

j

)

( τ

ω

)j (

1 − τ

ω

)x−j

. (9)

Assume that there areγ secure communication links that do not involve any of thex
compromised nodes. Given the probabilityPr(c is broken| Cx), we know that the expected
fraction of broken communication links among thoseγ links is

γ · Pr(c is broken| Cx)

γ
= Pr(c is broken| Cx)

= Pr(S1 is compromised| Cx). (10)

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 17

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nodes compromised

F
ra

ct
io

n 
of

 c
om

m
un

ic
at

io
ns

 c
om

pr
om

is
ed

q=1
q=2
q=3
Our scheme: ω=11, τ=2

(a)m = 200, pactual = 0.33
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Fig. 4. Fraction of compromised links (in the key-sharing graph) between non-
compromised nodes, after an adversary has compromisedx random nodes. Here,m is
the memory usage of the scheme andpactual denotes the probability that any given pair of
nodes can directly establish a pairwise key.

5.2.1 Comparison to previous work.We first consider the compromise of links in the
key-sharing graph. Fig. 4 compares our scheme with the Chan-Perrig-Song scheme (for
q = 2, 3) and the Eschenauer-Gligor scheme (i.e., withq = 1). The figure clearly shows the
advantages of our scheme. Taking as an example the case in whichm = 200 andpactual =
0.33, in both the Chan-Perrig-Song and Eschenauer-Gligor schemes an adversary needs to
compromise less than 100 nodes in order to compromise10% of the links in the key-sharing
graph. In our scheme, however, the adversary needs to compromise 500 nodes before
compromising 10% of the links. Therefore, our scheme quite substantially lowers the
initial payoff to an adversary for small-scale network breaches. We remark that although
Chan, Perrig, and Song propose improving the security of their scheme using multi-path
key reinforcement [Chan et al. 2003], the same technique canbe applied to our scheme to
improve the security as well; we leave further comparison toour future work.

In Blom’s scheme, whenm = 200 the network is perfectly secure if less than200 nodes
are compromised, but is completely compromised as soon as200 nodes are compromised
(pactual is always equal to1 in Blom’s scheme).

In Fig. 4, we have only considered the security performance of our key pre-distribution
scheme when two neighboring nodes can directly compute a shared key. Since the local
connection probability is less than 1, two neighboring nodes might need to use a multi-hop
path to set up a shared key (as discussed in Section 4). We refer to the secure channel estab-
lished in this way as anindirect link. When any node or link along the multi-hop path used
to establish an indirect link is compromised, the indirect link itself is also compromised.
Our analysis in Fig. 4 does not take such indirect links into account.

Due to the complexity of the analysis in this case, we used computer simulations to
compare the resilience of our scheme in this case to previousschemes. We simulated a
sensor network withn = 1000 nodes where indirect links were assumed between any pair
of nodes where a direct link did not exist (the indirect link was assumed to be set up over
the shortest existing path within the key-sharing graph); all other system parameters are
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the same as in n Fig. 4. We randomly pickedx sensor nodes and considered them to be
compromised. We then counted the number of secure links (including indirect links) that
are compromised due to this capture. The results of our simulation are shown in Fig. 5.
¿From the figure, we see that our scheme is still significantlybetter than the Eschenauer-
Gligor and Chan-Perrig-Song schemes. However, in all theseschemes, the fraction of
communication links compromised when indirect links are taken into account increases
more quickly. This is due to the fact that, when considering indirect links, some of the
intermediate nodes and links that help to establish the indirect links might be compromised,
leading to the compromise of a portion of the indirect links.This also explains why the
fraction of compromised links whenpactual = 0.33 is slightly higher than whenpactual =
0.5, as there are more indirect links in the former scenario thanin the latter scenario.
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Fig. 5. Fraction of compromised links (including indirect links) between non-compromised
nodes, after an adversary has compromisedx random nodes.

5.2.2 Further Analysis.Even though Equation (9) can be used for numerical compu-
tation, it is too complex to allow a closed-form analytical result expressing the relationship
betweenx, m, ω, andτ . The results in Fig. 4 indicate that there is a small range ofx in
which the fraction of compromised links increases exponentially with respect tox. Here,
we develop an analytical estimate of this range. It should benoted that Equation (9) is the
tail of a binomial distribution. Therefore, using known bounds on the tail of a binomial
distribution [Peterson 1972] we can derive the following theorem whose proof is given in
Appendix A.

THEOREM 5.1. Assume thatλ = m
τ

≫ 1, so thatλ + 1 ≈ λ. Define the entropy
function ofy, for 0 ≤ y ≤ 1, asH(y) = −y ln y − (1 − y) ln(1 − y) and letH ′(y) =
dH(y)/dy. Then for allx ≥ λ + 1,

1

2
√

xα(1 − α)
e−xE(α,θ) ≤

x
∑

j=λ+1

(

x

j

)

θj(1 − θ)x−j ,

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 19

whereα = λ+1
x

, θ = τ
ω

, andE(α, θ) = H(θ) + (α − θ)H ′(θ) − H(α). Furthermore, if

x <
mω

τ2
, (11)

then
x

∑

j=λ+1

(

x

j

)

θj(1 − θ)x−j ≤ e−xE(α,θ).

According to [Peterson 1972],E(α, θ) < 0 whenx > mω
τ2 . So, whenx > mω

τ2 , the lower
bound indicates that the tail of the binomial distribution increases exponentially with re-
spect tox. It is also true thatE(α, θ) > 0 when Inequality (11) is satisfied [Peterson 1972].
The upper bound indicates that the tail of the binomial distribution can be exponentially
bounded away from1 whenx is much less thanmω

τ2 . For example, whenm = 200, τ = 2,
ω = 11, andx is 25% less thanmω

τ2 (i.e.,x = 0.75 · mω
τ2 = 413), then the upper bound is

e−5.089 = 0.006, which is two orders of magnitude smaller than1. Hence,mω
τ2 can be used

as an estimate (upper bound) of the value ofx for which the fraction of compromised links
increases exponentially with respect tox. So the adversary can obtain higher payoff when
the number of nodes it compromises is close tomω

τ2 . The results shown in Fig. 4 verify that
this estimate is quite accurate.

Based on the above discussion, the number of nodes an adversary needs to compromise
to gain a significant payoff is linearly related to the amountof the memory used whenω
andτ are fixed. That is, if the probability of any two nodes sharingat least one space,
pactual, is fixed, then increasing the memory space at each node linearly increases the
degree of security. For fixed memory usage, the security is linearly related toω

τ2 . Since
ω andτ are related topactual, one should choose those values ofω andτ that satisfy the
requirement on global connectivity and at the same time yield the largest value ofω

τ2 . For
example, by using Inequality (4), one may find all pairs(ω, τ) satisfying the requirement
on the global connectivity. Among all the pairs, the one withthe largest value ofω

τ2 gives
the best security.

When the average number of neighbors of each sensor is decreased, Equation (2) shows
that the value ofprequired increases. For a network of sizeN with desired global con-
nectivity Pc, the value ofpactual must be increased in order to guarantee that the whole
network is connected. However, the resilience of our schemeis weakened due to larger
pactual. In the following we give a simple sufficient condition onn (the average number of
neighbors per node) such that our scheme is “useful”; i.e., has better resilience (for a given
amount of memory) than Blom’s scheme. That is, we want to find the minimum value of
n which guaranteesω/τ2 > 1. As derived in Section 4.3,

pactual ≥ 1 − e−
τ2

ω .

Thus, when1 − e−
τ2

ω ≥ prequired = d/n thenpactual ≥ prequired. It is easy to derive
that whenevern ≥ ⌈ d

1−e−1 ⌉, the requirementpactual ≥ prequired can be satisfied while
simultaneously achievingω/τ2 > 1. For example, withN = 1000 andpc = 0.9999,
havingn = ⌈ d

1−e−1 ⌉ = 26 neighbors per node (on average) implies that our scheme is
“useful.”
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6. OVERHEAD ANALYSIS

6.1 Communication Overhead

According to our previous discussions, the probabilitypactual that two neighboring nodes
share a key space is less than 1. When two neighboring nodes arenot connected directly,
they need to find a path (in the key-sharing graph) to connect to each other. In this section,
we investigate the number of hops required on this path for various parameters of our
scheme. Our analytical approach is similar to that given in [Chan et al. 2003].

jr zi
Fig. 6. Overlap regionAoverlap(z).

Let ph(ℓ) be the probability that the smallest number of hops needed toconnect two
neighboring nodes isℓ. Obviously,ph(1) is pactual. Forph(2), the third node connecting
these two nodes must be in the overlapped region of the transmission range of nodei and
nodej, as shown in Fig. 6. The size of this overlap region is:

Aoverlap(z) = 2r2 cos−1
( z

2r

)

− z ·
√

r2 −
(z

2

)2

, (12)

wherer is the transmission range of each node. The total number of nodes in the overlap
region is:

Noverlap(z) =
n

πr2
Aoverlap(z),

wheren is the total number of sensor nodes in the transmission rangeof a sensor node.
We then calculateph(2, z), the probability thati andj are not connected directly but

there exists at least one common neighbor connecting them, given that the distance between
i andj is z:

ph(2, z) = (1 − pactual)[1 − p2,1(z)],

wherep2,1(z) is the probability that none of the common neighbors ofi andj is connected
to both of them given thati andj are not connected.

The value ofph(2) can be calculated as the average ofph(2, z) throughout all the possi-
ble values ofz:

ph(2) =

∫ r

0

f(z)p(2, z)dz,

wheref(z) is the Probability Density Function (PDF) ofz:

f(z) =
∂F (Z)

∂z
=

∂ [Pr(Z ≤ z)]

∂z
=

∂

∂z

[

πz2

πr2

]

=
2z

r2
.
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A similar approach may be used to calculateph(3). The only difference is that, in the case
of ph(3), we need to find the probability that two nodesu andv, that are neighboring to
nodesi andj, respectively, should provide a secure link between nodesi andj as shown
in Fig. 7.

�yzxui j v
Fig. 7. Overlap region forph(3).

We provide the full derivations ofph(2) andph(3) in Appendix B. The final results are
as follows:

ph(2) = (1 − pactual) ·



1 − 2

∫ 1

0

y · p
n
π

[

2cos−1( y

2 )−y·

√

1−( y

2 )
2

]

2,2 dy





ph(3) ≈ [1 − ph(1) − ph(2)]

[

1 − 2

∫ 1

0

z · (p̃3,2)

∫

2π

0

∫

1

0

n2

π2

[

2cos−1( x
2 )−x

√

1−( x
2 )

2

]

dydθ
dz

]

,

where

p2,2 = 1 −
(

ω−τ
τ

) [(

ω
τ

)

− 2
(

ω−τ
τ

)

+
(

ω−2τ
τ

)]

(

ω
τ

)2

p̃3,2 ≈ 1 −
(

ω−τ
τ

)

(

ω
τ

)3 ·
τ−1
∑

a=1

τ−1
∑

b=1

τ−max(a,b)
∑

c=1

(

τ

a

)(

τ

b

)(

ω − 2τ

c

)(

ω − 2τ − c

τ − a − c

)(

ω − 3τ + a

τ − b − c

)

x =
√

y2 + z2 + 2yz cos(θ) .

We plot the values ofph(1), ph(2), andph(3) in Fig. 8. From these figures, we can
observe thatph(1) + ph(2) ≈ 1 whenτ is large (i.e., the probability that at most 2 hops
are required is essentially 1).

6.2 Computational Overhead

As indicated in Section 3, it is necessary for nodes to calculate the common keys by using
the corresponding columns of matrixG. If G is a Vandermonde matrix, the dominating
computational cost of our scheme is due to2λ−1 multiplications in the fieldGF (q): λ−1
come from the need to regenerate the corresponding column ofG from a seed, while the
otherλ multiplications come from the inner product of the corresponding row of(DG)T

with this column ofG. Note that this can be easily reduced to onlyλ multiplications using
Horner’s rule for polynomial evaluation. (AlthoughO(λ) additions inGF (q) are also
necessary, these are dominated by the field multiplications.)
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Fig. 8. Distribution of the number of hops required to connect neighbors (ω = 50).

Table I. Time (ms) for computing a 64-bit secret key (λ = 50).
Four 16-bit keys Two 32-bit keys One 64-bit key

Time (ms) 8.94 14.45 25.67

A natural choice is to work with fields of characteristic 2 (i.e., fields of the formGF (2k))
both because multiplications in this field are rather efficient and also because elements in
such fields naturally map to bit strings which can then be usedas cryptographic keys. We
observe that to derive a 64-bit key it is not necessary to workoverGF (2k) with k ≥ 64;
instead, one can define the key as the concatenation of multiple “sub-keys” each of which
lie in a smaller field. As an example, a 64-bit key can be composed of four 16-bit keys.
In general, this will lead to improved efficiency since, continuing with the above example,
4λ multiplications inGF (216) are more efficient thanλ multiplications inGF (264). The
key observation is that security is not affected by working overGF (q) whereq is “small”;
this is because our security arguments are information-theoretic and do not rely on any
“cryptographic hardness” of the fieldGF (q). The only requirement is that we work in a
field GF (q) with q > N , whereN is the number of nodes in the network.

We implemented our key pre-distribution scheme on MICAz sensor nodes [CROSS-
BOW TECHNOLOGY, INC. ]. The time of computing a 64-bit key when m = 200 and
τ = 4 (i.e.,λ = 50) is described in Table I for various underlying fields. Note that when
working overGF (216) the total number of multiplications is6416 ∗ λ = 200, while when
working overGF (232) the total number of multiplications is6432 ∗ λ = 100. We list the
performance for computations using 16-bit, 32-bit, and 64-bit multiplications. The perfor-
mance results indicate that moving to smaller fields does improve the performance. More
importantly, the results show that our key pre-distribution scheme is quite practical: if we
use four 16-bit sub-keys as a 64-bit key, a sensor can computeover100 such keys within
one second.

7. IMPROVING SECURITY USING TWO-HOP NEIGHBORS

In this section we describe a way to further improve the security of our key pre-distribution
scheme, following [Chan et al. 2003]. Using Inequality (4),we have

1 − e−
τ2

ω ≥ (N − 1)

nN
[ln(N) − ln(− ln(Pc))] . (13)

Notice that the left side is smaller whenω is larger, and the right side is smaller when
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n is larger when other parameters are fixed. Therefore, when the network sizeN , the
global connectivityPc, andτ are fixed, we can select a largerω if the expected number
of neighborsn increases while still satisfying the above inequality. We know immediately
from Inequality (11) that the larger the value ofω is, the more resilient the network will
be. Therefore, increasingn can lead to security improvement.

One can increasen by increasing the communication range of a node, but this also
increases the energy consumption. Another approach is to use two-hop neighbors. A two-
hop neighbor of nodev is a node that can be reached via one ofv’s one-hop (or direct)
neighbors. To send a message to a two-hop neighbor,v needs to ask its direct neighbor
to forward the message. Since the intermediate node only forwards the message and does
not need to read the contents of the message, there is no need to establish a secure channel
between the sender and the intermediate node, or between theintermediate node and the
two-hop neighbor. As long as the sender and its two-hop neighbor can establish a secure
channel, the communication between them will be secured.

If two nodes,i andj, are two-hop neighbors and both of them carry key information from
a common key space, they can find a secret key between themselves using the following
approach: First, they find an intermediate nodeI that is a neighbor of both of them. Nodes
i andj then exchange information as in the one-hop case, except that this is done viaI.
Then,i andj find a common key space, and compute their secret key as before. Nodesi
andj can then encrypt any future communication between them using this key. Although
all future communication still needs to pass through an intermediate node, the intermediate
node cannot decrypt the message if it does not carry the key space shared byi andj.

After all direct neighbors and two-hop neighbors have established secure channels among
themselves, the entire network forms anextended key-sharing graphGeks in which two
nodes are connected by an edge if there is a secure channel between them; i.e., these
two nodes (1) have at least one common key space, and (2) are either direct neighbors
or two-hop neighbors. Once we have formedGeks, key agreement between any pair of
two neighboring nodesi andj can be performed based onGeks in the same way as it is
performed based on the original key-sharing graphGks. The only difference is that now
some edges in the graph represent a channel between two-hop neighbors, and thus message
forwarding is needed.

7.1 Security Improvement

Security can be improved significantly if key agreement is based onGeks. When we treat a
two-hop neighbor as a neighbor, the radius of the range covered by a node doubles, so the
area that a node can cover is increased by a factor of four. Therefore, the expected number
of neighborsn′ for each node inGeks is about four times as large inGks. According
to Equations (1) and (2), to achieve the same connectivityPc as that ofGks, the value of
prequired for Geks is one fourth of the value ofprequired for Gks. Thus, the value ofpactual

for Geks is one fourth of the value ofpactual for Gks. As we have already shown, when
τ is fixed, decreasing the desiredpactual means thatω can be increased. For example,
assuming network sizeN = 10, 000, connectivity probabilityPc = 1 − 10−5, and fixing
τ = 2, we need to selectω = 7 for the Gks-based key agreement scheme; however,
using theGeks-based scheme, we can selectω = 31. The security of the latter scheme is
improved significantly. Using Equation (9), we plot the fraction of compromised links for
the above two cases in Fig. 9.
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Fig. 9. Fraction of compromised links in the key-sharing and extended key-sharing graphs. The left curve uses
the 1-hop-neighbor scheme (withω = 7 andτ = 2), and the right curve uses the 2-hop-neighbor scheme (with
ω = 31, andτ = 2). Both figures achieve the same global connectivity probability Pc = 0.99999. Note that
the resilience only depends on the values ofω andτ , while the connectivity probability depends on whether a
one-hop or two-hop scheme is used.

7.2 Overhead Analysis

Such security improvement does come with a cost. If the length (the total number of edges)
of a path between two nodes inGeks is ℓ, the actual number of hops along this path is larger
thanℓ because some edges inGeks connect two-hop neighbors. For each node, the number
of two-hop neighbors on the average is three times the numberof one-hop neighbors if
nodes are uniformly distributed. Therefore, assuming thatthe probability of selecting a
two-hop edge and a one-hop edge is the same, for a path of length ℓ, the expected actual
length is3

4 ∗ 2ℓ+ 1
4 ∗ ℓ = 1.75ℓ (note, however, that in practice one can achieve better than

this by selectively choosing one-hop edges when they exist). Let p′h(ℓ) be theph(ℓ) value
of the two-hop-neighbor scheme and letp′′h(ℓ) be theph(ℓ) value of the basic scheme (i.e.,
only using direct neighbors); assume the maximum length of the shortest path between two
neighbors isL. Then the ratio between the overhead of the two-hop-neighbor scheme and
that of the basic scheme can be estimated using the followingformula:

Relative Overhead=
p′h(1) +

∑L

ℓ=2 1.75ℓ · p′h(ℓ)
∑L

ℓ=1 ℓ · p′′h(ℓ)
, (14)

where we do not need to multiply first term by1.75 since if two neighbors share a common
key, the path between them is never a two-hop edge. As an example, the overhead ratio
of the two schemes used in Fig. 9 is3.18: namely, with3.18 times more overhead, the
resilience is improved by a factor of4. The communication cost discussed here occurs
only during the key setup phase, so it is a one-time cost.

8. CONCLUSIONS

We have proposed a framework in which to analyze the securityof key pre-distribution
schemes, and we expect this framework will be useful to others working in this area. We
have also presented a new pairwise key pre-distribution scheme for wireless sensor net-
works. Our scheme has a number of appealing properties. First, our scheme is scalable
and flexible, and nodes do not need to be deployed at the same time; they can be added
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after initial deployment, and still be able to establish secret keys with existing nodes. Com-
pared to existing key pre-distribution schemes, our schemeis substantially more resilient
against node capture. Our analysis and simulation results have shown, for example, that to
compromise10% of the secure links in a network secured using our scheme, an adversary
has to compromise 5 times as many nodes as he/she had to compromise in a network se-
cured by the Chan-Perrig-Song or Eschenauer-Gligor schemes. Furthermore, we have also
shown that network resilience can be further improved if we use multi-hop neighbors.

We have conducted a thorough analysis of the efficiency of ourscheme. We have shown
that whenpactual ≥ 0.33, a node can (with very high probability) reach any neighbor
within at most 3 hops. The computational requirements of ourscheme are very modest, as
demonstrated by our implementation on MICAz sensor nodes and resulting performance.

APPENDIX

A. PROOF OF THEOREM 5.1

Assumex ≥ λ+1. According to the bound on the tail of a binomial distribution [Peterson
1972], Equation (9) can be bounded as follows:

1

2
√

xα(1 − α)
α−αx(1 − α)−(1−α)xθαx(1 − θ)(1−α)x ≤

x
∑

j=λ+1

(

x

j

)

θj(1 − θ)x−j

and ifα > θ, then
x

∑

j=λ+1

(

x

j

)

θj(1 − θ)x−j ≤ α−αx(1 − α)−(1−α)xθαx(1 − θ)(1−α)x, (15)

whereα = λ+1
x

andθ = τ
ω

. Sinceλ = m
τ

≫ 1, we haveλ + 1 ≈ λ. Consequently,α ≈
λ
x

= m
τx

. By taking the logarithm of the upper bound of Inequality (15) and multiplying by
− 1

x
, we have:

− 1

x
ln

(

α−αx(1 − α)−(1−α)xθαx(1 − θ)(1−α)x
)

= −H(α) − α ln θ − (1 − α) ln(1 − θ)

= −H(α) + H(θ) + (θ − α) ln θ + [(1 − θ) − (1 − α)] ln(1 − θ)

= −H(α) + H(θ) + (α − θ)(− ln θ + ln(1 − θ)).

SinceH ′(y) = dH(y)/dy = ln(1 − y) − ln y,

− 1

x
ln

(

α−αx(1 − α)−(1−α)xθαx(1 − θ)(1−α)x
)

= E(α, θ)

where

E(α, θ) = H(θ) + (α − θ)H ′(θ) − H(α).

Finally,

α > θ ⇐⇒ m

xτ
>

τ

ω

⇐⇒ x <
mω

τ2
,

giving the claimed result.
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B. CALCULATION OF PH(2) AND PH(3)

In the following, we assume the distance between two nodesi andj is z.

B.1 Calculation of ph(2)

The third node connecting nodesi andj must be in the overlapped region of the transmis-
sion range of nodei and nodej, as shown in Fig. 6. As stated in Equation (12) the size of
this overlapped region is:

Aoverlap(z) = 2r2 cos−1
( z

2r

)

− z ·
√

r2 −
(z

2

)2

,

wherer is the transmission range of each node. Since, on the average, each node hasn
neighbors within communication range, the nodal density inside the transmission range is:

ρ =
n

πr2
.

Thus, the total number of nodes in the overlap region is:

Noverlap(z) = ρAoverlap(z).

Let ph(2, z) be the probability thati andj are not connected directly but there exists at
least one common neighbor connecting them, given that the distance betweeni andj is z.
Then:

ph(2, z) = Pr{[i ⇔/ j] ∩ [∃ℓ ∈ Ni ∩Nj s.t.ℓ ⇔ i andℓ ⇔ j]}
= Pr{i ⇔/ j} · Pr{∃ℓ ∈ Ni ∩Nj s.t.ℓ ⇔ i andℓ ⇔ j|i ⇔/ j}
= (1 − pactual)[1 − p2,1(z)],

whereNi andNj represent the set of nodes in range of nodesi andj, respectively,p2,1(z)
is the probability that none of the common neighbors ofi andj is connected to both of
them given thati andj are not connected, and⇔ means two nodes share at least one key
space. Since the choices of key spaces for each node are independent,

p2,1(z) = (p2,2)
Noverlap(z)

,

wherep2,2 is the probability that a neighbor node,ℓ, of i andj is not connected to both of
them given thati andj are not connected. Also:

p2,2 = 1 −
(

ω
τ

)(

ω−τ
τ

)

(

ω
τ

)3 ·
{(

ω

τ

)

− 2

(

ω − τ

τ

)

+

(

ω − 2τ

τ

)}

= 1 −
(

ω−τ
τ

) [(

ω
τ

)

− 2
(

ω−τ
τ

)

+
(

ω−2τ
τ

)]

(

ω
τ

)2 ,

where
(

ω
τ

)

is the number of ways to selectτ keys fromω key spaces fori,
(

ω−τ
τ

)

is the
number of ways to select completely differentτ keys forj, and

(

ω
τ

)

− 2
(

ω−τ
τ

)

+
(

ω−2τ
τ

)

gives the number of ways to select keys forℓ such thatℓ is connected to bothi andj.
The PDF ofz, denotedf(z), can be expressed as:

f(z) =
∂F (Z)

∂z
=

∂ [Pr(Z ≤ z)]

∂z
=

∂

∂z

[

πz2

πr2

]

=
2z

r2
.
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Thus, we have:

ph(2) =

∫ r

0

(1 − pactual)
2z

r2

[

1 − (p2,2)
Noverlap(z)

]

dz

= (1 − pactual)







1 − 2

∫ 1

0

yp

n
π

[

2 cos−1( y

2 )−y·

√

1−( y

2 )
2

]

2,2 dy







,

where we replacez by y = z
r
.

B.2 Calculation of ph(3)

ph(3) can be calculated with a similar method. We defineph(3, z) as the probability that
3 hops are needed to connect nodei and nodej, given that the distance between them isz
(z ≤ r):

ph(3, z) = Pr{[i ⇔/ j] ∩ [∀ℓ ∈ Ni ∩Nj ℓ is not connected to bothi andj ] ∩
[∃u ∈ Ni andv ∈ Nj s.t.u ⇔ i andv ⇔ j andu ⇔ v]}

= [1 − ph(1) − ph(2)][1 − p3,1(z)],

where1 − p3,1(z) is the probability that there exists at least a pair of nodesu andv con-
nected to each other and connected toi andj separately, given thati andj are not directly
connected, nor can they be connected through another commonneighbor.

The exact calculation ofp3,1(z) is complicated. We give an approximation as follows:
For every neighborv of nodej, we find all possible nodesu, which may satisfyi ⇔ u ⇔
v ⇔ j. We then calculate the number of such pairs of(u, v). Assuming that nodev is at
location(y, θ) (puttingj at the origin), the distancex between nodesv i is:

x =
√

y2 + z2 + 2yz cos(θ).

Obviously, nodeu should reside in the shaded area in Fig. 7. The expected number of
nodes residing in the small neighborhood of(y, θ) is ρy · dy · dθ. The number of nodes in
the overlap region of circlei and circlev, Aoverlap(x), can be expressed asρ ·Aoverlap(x).
So the total number of pairs(u, v), given that the distance betweeni andj is z, is:

N3(z) =

∫ 2π

0

∫ r

0

ρ2y · Aoverlap(x) dy dθ,

where, similar to Eq. (12),Aoverlap(x) = 2r2 cos−1
(

x
2r

)

− x ·
√

r2 − (x
2 )2.

So,

p3,1(z) = (p3,2)
N3(z)

, (16)

wherep3,2 is the probability that for a pair of nodesu ∈ Ni andv ∈ Nj , secure connections
cannot be made through pathi, u, v, andj, given thati andj are not directly connected
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nor can they be connected through a common neighbor.p3,2 can be estimated6 as follows:

p̃3,2 ≈ 1 −
(

ω
τ

)(

ω−τ
τ

)

(

ω
τ

)4 ·
τ−1
∑

a=1

τ−1
∑

b=1

τ−max(a,b)
∑

c=1

(

τ

a

)(

τ

b

)

·
(

ω − 2τ

c

)(

ω − 2τ − c

τ − a − c

)(

ω − 2τ − (τ − a)

τ − b − c

)

, (17)

where
(

ω
τ

)

is the number of ways to selectτ keys fromω key spaces fori,
(

ω−τ
τ

)

is the
number of ways to select completely differentτ keys forj, a represents the number of
common keys shared byu andi, b represents the number of common keys shared byv and
j, c represents the number of common keys shared byu andv,

(

ω−2τ
c

)

gives the number of
ways to select the common keys different toi andj from the pool of key spaces,

(

ω−2τ−c
τ−a−c

)

is the number of ways to select theτ−a−c keys foru, and
(

ω−2τ−(τ−a)
τ−b−c

)

gives the number
of ways to select theτ − b − c keys forv.

Based on the distribution ofz, we have:

ph(3) ≈
∫ r

0

2z

r2
[1 − ph(1) − ph(2)]

[

1 − (p̃3,2)
N3(z)

]

dz,

replacingx, y, andz with x′ = x
r
, y′ = y

r
, andz′ = z

r
. We further simplify our notation

by dropping the primes from these variables. Thus,

ph(3) ≈ [1 − ph(1) − ph(2)]

[

1 − 2

∫ 1

0

z (p̃3,2)

∫

2π

0

∫

1

0

n2

π2

[

2 cos−1( x
2 )−x

√

1−( x
2 )

2

]

dydθ
dz

]

.
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