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Abstract. A fuzzy extractor (FE), proposed for deriving cryptographic
keys from biometric data, enables reproducible generation of high-quality
randomness from noisy inputs having sufficient min-entropy. FEs rely in
their operation on a public “helper string” that is guaranteed not to
leak too much information about the original input. Unfortunately, this
guarantee may not hold when multiple independent helper strings are
generated from correlated inputs as would occur if a user registers their
biometric data with multiple servers; reusable FEs are needed in that
case. Although the notion of reusable FEs was introduced in 2004, it has
received relatively little attention since then.
We first analyze an FE proposed by Fuller et al. (Asiacrypt 2013) based
on the learning-with-errors (LWE) assumption, and show that it is not
reusable. We then show how to adapt their construction to obtain a
weakly reusable FE. We also show a generic technique for turning any
weakly reusable FE to a strongly reusable one, in the random-oracle
model. Finally, we give a direct construction of a strongly reusable FE
based on the LWE assumption, that does not rely on random oracles.

1 Introduction

Consider using biometric data as a source for generating cryptographic keys. For
example, assume Alice wants to use her biometric data (e.g., fingerprint) w to
generate a cryptographic key that she will then use to encrypt her data before
storing it on a public server. In a naive approach, Alice could use w itself as
the key to encrypt the data. There are two problems with this approach: first,
when Alice re-scans her biometric data at a later point in time, it is likely she
will recover a value w′ that is close, but not equal, to the initial value w. Alice
will be unable to recover her original data with such a noisy key if she uses a

⋆ This research is based upon work supported in part by the Office of the Director
of National Intelligence (ODNI), Intelligence Advanced Research Projects Activ-
ity (IARPA). The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies, either
expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.

⋆⋆ Currently at SRI International. Email: karim.eldefrawy@sri.com.



standard encryption scheme. Second, w is not uniform, and thus it is unclear
what security is obtained when using w as a key in standard encryption schemes.

Fuzzy extractors. Fuzzy extractors (FEs) provide a solution to the above
challenges. A fuzzy extractor, first formally introduced by Dodis, Reyzin, and
Smith [8], consists of a pair of algorithms (Gen,Rec) that work as follows: the
generation algorithm Gen takes as input a value (e.g., biometric data) w, and
outputs (pub, r), where the first of these is called the “helper string.” The re-
covery algorithm Rec takes as input pub along with a value w′, and outputs r if
w′ is “sufficiently close” to the original value w. The security guarantee, roughly
speaking, is that r is uniform—or at least computationally indistinguishable from
uniform—for an adversary who is given pub, as long as the original input (i.e.,
w) comes from a distribution with sufficiently high min-entropy.

Fuzzy extractors can address the scenario described earlier. Alice can run
Gen on the initial scan of her biometric data to compute (pub, r)← Gen(w); she
will use r to encrypt her data, and send the resulting ciphertext along with pub
to the server. When she wishes to recover her data at some later point in time,
she will obtain a fresh scan w′ of her biometric data and the server will send to
Alice both pub and the ciphertext; Alice will compute r = Rec(pub, w′) and use
r to decrypt the ciphertext. This ensures security, even from the server, since
the key used for encryption (i.e., r) is uniform even conditioned on pub.

Reusability. One might hope that an FE would remain “secure” even if used on
multiple, related input strings w1, . . .. Concretely, consider a setting in which a
user relies on different scans w1, . . . , wℓ of their biometric data when interacting
with ℓ servers, where each server (independently) computes (pubi, ri)← Gen(wi)
as above. (We stress that even though the same underlying biometric feature is
used every time, the {wi} represent independent scans of that feature; thus, the
{wi} will be close to each other but will not necessarily be identical.) Each of
the public values pubi may become known to an adversary, and the original defi-
nition of fuzzy extractors does not provide any guarantees in this case. Boyen [6]
was the first to highlight this issue, and he showed (contrived) constructions of
FEs that are secure when used once, but that completely leak the underlying
values w1, . . . , wℓ if used multiple times. Subsequent work of Simoens et al. [16]
and Blanton and Aliasgari [4, 5] showed that even some previously proposed
constructions of fuzzy extractors are not reusable.

On the positive side, Boyen defined a notion of reusability for FEs (called
outsider security) and showed that the code-based construction of Dodis et al. [8]
is reusable when a linear code is used. (Several variant definitions of reusability
have been proposed; we discuss these definitions further in Section 2.2.) Canetti
et al. [7] constructed a fuzzy extractor for the Hamming metric whose primary
advantage is that it achieves reusability under very weak assumptions on the
different scans w1, . . . , wℓ. (In contrast, Boyen assumed that wi = w ⊕ δi for a
small shift δi known to the adversary.) The scheme of Canetti et al. can also
be used for sources of lower entropy rate than prior work, if the distribution of
the {wi} satisfies a certain assumption. For completeness, however, we note that
the scheme of Canetti et al. also has several disadvantages relative to the reusable
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scheme analyzed by Boyen: it tolerates a lower error rate, has computational—
rather than information-theoretic—security, and relies on “composable digital
lockers,” which in practice would likely be instantiated with a hash function
modeled as a random oracle. Alamélou et al. [2] constructed reusable FEs for
the set-difference metric, again based on composable digital lockers.

1.1 Our Contributions

In this work, we propose new, indistinguishability-based definitions of reusability
for FEs, which can be viewed as adopting aspects of the definitions of reusability
given by Boyen [6] and Canetti et al. [7]. We consider both a weak and a strong
notion of reusability. Informally, our definition of weak reusability says that if a
sequence of values (pub1, r1) ← Gen(w1), . . . are computed using related inputs
w1, . . ., then an adversary cannot distinguish r1 from a uniform string even given
all the {pubi}; our notion of strong reusability says that this continues to hold
even if the attacker is given {ri}i>1.

We then show that a recent computational fuzzy extractor proposed by Fuller
at al. [10] (the FMR scheme) based on the learning-with-errors (LWE) assump-
tion is not even weakly reusable.1 In fact, from the public information pub1 and
pub2 of two instances of the scheme, an attacker can learn the original inputs w1

and w2 in their entirety. Fuller et al. do not claim reusability in their paper,
but our result is nevertheless interesting as it gives another natural (i.e., not
contrived) example of a fuzzy extractor that is not reusable.

We then prove that the FMR scheme does achieve weak reusability if common
public parameters are used by all parties running the scheme. (Interestingly, the
idea of using common public parameters was proposed by Herder et al. [11]
for a related scheme, with a different motivation.) Even with this modification,
however, the scheme does not achieve strong reusability.

With the goal of “bootstrapping” security of the modified FMR scheme from
weak to strong reusability, we propose a generic transformation from any weakly
reusable FE to a strongly reusable FE in the random-oracle model.2 Applying
this transformation to the modified FMR scheme gives a strongly reusable fuzzy
extractor based on the LWE assumption in the random-oracle model.

Finally, we show a construction of a strongly reusable FE based on the LWE
assumption that does not rely on the random-oracle model.

1.2 Paper Organization

In Section 2 we review existing definitions of reusable fuzzy extractors and intro-
duce our own definitions of reusability. We analyze the reusability of the FMR
scheme in Section 3, showing that it is not weakly reusable as described, but

1 Huth et al. [12, Theorem 5] claim that the construction of Fuller et al. is reusable,
but their proof is incorrect.

2 Alamélou et al. [2] show a transformation with a similar goal, but it only applies to
FEs for the set-difference metric on sets over exponential-size universes.
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can be modified to achieve weak reusability. In Section 4, we introduce a generic
transformation (in the random-oracle model) that can be applied to any scheme
achieving weak reusability in order to obtain strong reusability. We present an
LWE-based, strongly reusable FE (without random oracles) in Section 5.

2 Definitions

We let H∞(·) denote min-entropy, and let SD denote statistical distance.

2.1 Fuzzy Extractors

Let M be a metric space with distance metric d. We begin by reviewing the
notion of fuzzy extractors (FEs).

Definition 1 (Fuzzy extractor). Let Π = (Gen,Rec) be such that Gen takes
as input w ∈ M and outputs (pub, r) with r ∈ {0, 1}ℓ, and where Rec takes as
input pub and w′ ∈ M and outputs a string r′ ∈ {0, 1}ℓ or an error symbol ⊥.
We say that Π is an (M, ℓ, t, ϵ)-fuzzy extractor for class of distributions W if:

Correctness: For any w,w′ ∈ M with d(w,w′) ≤ t, if Gen(w) outputs pub, r,
then Rec(pub, w′) = r.

Security: For any adversary A and distribution W ∈ W, the probability that A
succeeds in the following experiment is at most 1/2 + ϵ:
1. w is sampled from W , and then (pub, r) ← Gen(w) is computed. Give

pub to A.
2. Choose b ← {0, 1}. If b = 0, give r to A; otherwise, choose u ← {0, 1}ℓ

and give u to A.
3. A outputs b′, and succeeds if b = b′.

The above definition is information-theoretic. For a computational (M, ℓ, t, ϵ)-
fuzzy extractor we require security to hold only for computationally bounded
adversaries.

Other models. In this work we will also consider two other models in which
FEs can be defined. In the random-oracle model we assume that Gen and Rec (as
well as the adversary) have access to a uniform function H chosen at the outset
of the experiment. In the public-parameters model we assume public parame-
ters generated by a trusted party, and made available to Gen and Rec (and the
adversary). All our definitions can easily be adapted to either of these models.

2.2 Reusability of Fuzzy Extractors

Definition 1 provides a basic notion of security for FEs. As discussed in the
Introduction, however, it does not ensure security if Gen is computed multiple
times on the same (or related) inputs. Security in that setting is called reusability.
Several definitions of reusability have been proposed in prior works [6, 7]. We
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begin by reviewing prior definitions, and then suggest our own. In all cases, we
describe an information-theoretic version of the definition, but a computational
version can be obtained in the natural way.

Let Π = (Gen,Rec) be an (M, ℓ, t, ϵ)-fuzzy extractor for class of distribu-
tions W. The original definition suggested by Boyen [6, Def. 6] (adapted to the
fuzzy extractors rather than fuzzy sketches3) considers a set ∆ of permutations
onM such that δ(w) is “close” to w for any δ ∈ ∆ and w ∈M. It then requires
that the success probability of any attacker A in the following experiment should
be small for any distribution W ∈ W:

1. w∗ is sampled from W .
2. A may adaptively make queries of the following form:

– A outputs a perturbation δ ∈ ∆.
– In response, Gen(δ(w∗)) is run to obtain (pub, r), and A is given pub.

3. A outputs w′, and succeeds if w′ = w∗.

Informally, then, the attacker is given the public output pub generated by several
independent executions of Gen on a series of inputs related (in an adversarially
chosen way) to an original value w∗; the definition then guarantees that the
attacker cannot learn w∗.

Canetti et al. [7, Def. 2] consider a stronger definition, which requires that
the success probability of any attacker A should be close to 1/2 in the following
experiment:

1. A specifies a collection of correlated random variables (W ∗,W2, . . . ,Wρ),
where each Wi ∈ W.

2. Values w∗, w2, . . . , wρ are sampled from (W ∗,W2, . . . ,Wρ).
3. Compute (pub∗, r∗)← Gen(w∗) as well as (pubi, ri)← Gen(wi) for 2 ≤ i ≤ ρ.
4. Give to A the values pub∗ and {(pubi, ri)}

ρ
i=2.

5. Choose b← {0, 1}. If b = 0, give r∗ to A; otherwise, choose u← {0, 1}ℓ and
give u to A.

6. A outputs a bit b′, and succeeds if b′ = b.

This definition is stronger than Boyen’s definition in several respects. First, it
allows the attacker to request Gen to be run on a sequence of inputs that are
correlated in an arbitrary way with the original value w∗; in fact, there is not even
any requirement that w∗ be “close” to wi in any sense. Second, the definition
gives the attacker the extracted strings {ri} and not just the public values {pubi}.
Finally, it requires that the attacker cannot distinguish the extracted value r∗

from a uniform string, rather than merely requiring that the attacker cannot
compute the initial input w∗.

Our definitions. The benefit of the definition of Canetti et al. is that it refers
to indistinguishability of the extracted string r∗ from a uniform string (rather
than inability of learning w∗ as in Boyen’s definition). However, the definition of
Canetti et al. seems too strong since it allows for arbitrarily correlated4 random

3 A fuzzy sketch [8] is a precursor to a fuzzy extractor, but we do not rely on this
notion directly in our work.

4 Though whether this is realistic depends on whether errors in the biometric readings
are dependent or independent of the underlying biometric.
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variables W ∗,W2, . . . ,Wρ, rather than adopting a model of perturbations similar
to the one considered by Boyen. We combine aspects of the previous definitions
to obtain our definitions of weak and strong reusability, both of which focus
on indistinguishability of the extracted string and which restrict the possible
perturbations under consideration. Roughly, the definition of weak reusability
gives the adversary access to the helper values only, whereas in strong reusability
the adversary is also given the extracted strings.

For the next two definitions, we specialize to the Hamming metric for simplic-
ity; for x ∈ Zm

q we let d(x) = d(x,0) denote the Hamming weight (i.e., number
of nonzero coordinates) of x.

Definition 2 (Weak reusability). Let Π = (Gen,Rec) be an (M, ℓ, t, ϵ)-fuzzy
extractor for class of distributions W. We say that Π is ϵ-weakly reusable if for
any W ∈ W, any adversary A succeeds with probability at most 1/2 + ϵ in the
following experiment:

1. A value w∗ is sampled from W , and Gen(w∗) is run to obtain pub∗, r∗. The
value pub∗ is given to A.

2. A may adaptively make queries of the following form:

(a) A outputs a shift δ ∈M with d(δ) ≤ t.

(b) Gen(w∗ + δ) is run to obtain pub and r, and A is given pub.

3. Choose b← {0, 1}. If b = 0, give r∗ to A; otherwise, choose u← {0, 1}ℓ and
give u to A.

4. A outputs a bit b′, and succeeds if b′ = b.

We remark that weak reusability implies security in the sense of Definition 1.

Definition 3 (Strong reusability). Let Π = (Gen,Rec) be an (M, ℓ, t, ϵ)-
fuzzy extractor for class of distributions W. We say that Π is ϵ-strongly reusable
if for any W ∈ W, any adversary A succeeds with probability at most 1/2+ ϵ in
the following experiment:

1. A value w∗ is sampled from W , and Gen(w∗) is run to obtain pub∗, r∗. The
value pub∗ is given to A.

2. A may adaptively make queries of the following form:

(a) A outputs a shift δ ∈M with d(δ) ≤ t.

(b) Gen(w∗ + δ) is run to obtain pub and r, which are both given to A.
3. Choose b← {0, 1}. If b = 0, give r∗ to A; otherwise, choose u← {0, 1}ℓ and

give u to A.
4. A outputs a bit b′, and succeeds if b′ = b.

2.3 The Learning-With-Errors Assumption

The learning-with-errors (LWE) assumption was introduced by Regev [15]. We
rely on the decisional version of the assumption:
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Definition 4 (Decisional LWE). For an integer q ≥ 2, and a distribution χ
over Zq, the learning-with-errors problem LWEn,m,q,χ is to distinguish between
the following distributions:

{A,As+ e} and {A,u}

where A← Zm×n
q , s← Zn

q , e← χm, and u← Zm
q .

Typically, the error distribution χ under which LWE is considered is the
discrete Gaussian distribution DZq,α (where α is related to the width of the
distribution), but this is not the only possibility.

Akavia et al. [1] showed that LWE has many bits that are simultaneously
hardcore. Formally:

Lemma 1 (cf. [1], Lemma 2). Assume LWEn−k,m,q,χ is hard. Then the fol-
lowing pairs of distributions are computationally indistinguishable:

{A,As+ e, s1,...,k} and {A,As+ e,u}

where A← Zm×n
q , s← Zn

q , e← χm, and u← Zk
q .

3 Reusability of the FE of Fuller et al.

In this section, we investigate the reusability of a recent construction of a fuzzy
extractor due to Fuller et al. [10]. We begin by reviewing the relevant points of
their construction, and then show that their scheme is not even weakly reusable.
(We stress that they do not claim reusability; nevertheless, this result is inter-
esting insofar as it shows a natural example of a fuzzy extractor that is not
reusable.) We then show that by making a small modification to their scheme
it is possible to achieve weak reusability; even this modified scheme, however, is
not strongly reusable.

3.1 Background

We first recall the FMR scheme proposed by Fuller, Meng, and Reyzin [10].
Although not directly relevant to our results, we remark that the security of
their scheme (in the non-reusable sense) depends on the distribution W over the
source. In particular, they proved security based on the LWE assumption when
(1) W is the uniform distribution over Zn

q , as well as when (2) W is a symbol-
fixing source [13]. Their construction follows the “code-offset” paradigm due to
Dodis et al. [8, Section 5], instantiated with a random linear code.

The FMR scheme relies on a subroutine Decodet that decodes at most t =
O(log(n)) errors in a random linear code. Namely, when given a random matrix
A ∈ Zm×n

q defining a linear code (with m ≥ 3n), and a vector b ∈ Zm
q that is

guaranteed to be within distance t of a codeword, algorithm Decodet outputs a
vector s ∈ Zn

q such that the codeword As is within distance t of b. A particular
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instantiation of this algorithm, that essentially performs a brute-force search
for s and is analyzed by Fuller et al., is as follows:

Decodet(A, b):

1. Select 2n distinct indices i1, . . . , i2n ← {1, . . . ,m}.
2. Restrict A, b to rows i1, . . . , i2n; denote these by Ai1,...,i2n , bi1,...,i2n .
3. Find n linearly independent rows of Ai1,...,i2n . (If no such rows exist, output
⊥ and halt.) Further restrict Ai1,...,i2n , bi1,...,i2n to those n rows; denote the
results by A′, b′.

4. Compute s′ = (A′)−1b′.
5. If b −As′ has at most t nonzero coordinates, output s′. Otherwise, return

to step 1.

Intuitively, decoding works because with good probability step 1 chooses rows
where there are no errors; when this occurs, s′ = (A′)−1b′ is a solution to the
linear system and is in fact a unique solution to the original problem. For an
analysis of the success probability and (expected) time complexity of Decodet,
we refer readers to the work of Fuller et al. [10].

Assume w ∈ Zm
q . The FMR fuzzy extractor is defined as:

Gen(w):

1. Sample uniform A ∈ Zm×n
q and s ∈ Zn

q .
2. Let pub = (A,As+ w).
3. Let r be the first n/2 coordinates of s.
4. Output (pub, r).

Rec(pub, w′):

1. Parse pub as (A, c); let b = c− w′.
2. Compute s′ = Decodet(A, b).
3. Output r′, the first n/2 coordinates of s′.

Note that when w and w′ differ in at most t coordinates, r′ = r as desired.

3.2 Reusability Analysis

Here we observe that the FMR scheme is not even weakly reusable. In fact, our
attack shows that even if the scheme is used only twice, on biometric data w1, w2

that are within distance t (but with nothing else about their relation known to
the attacker), an attacker can recover w1 and w2 in their entirety given the public
helper strings pub1, pub2.

In more detail, fix some w1 and let w2 = w1 + δ where δ has at most t
nonzero coordinates. (Both w1 and δ are unknown to the attacker.) An attacker
who observes the public information generated from w1, w2 obtains

pub1 = (A1,A1s1 + w1) and pub2 = (A2,A2s2 + w2).
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The attacker can then set up the following system of linear equations:

pub1 − pub2 = A1s1 + w1 −A2s2 − w2

= [A1 | −A2] ·
[
s1
s2

]
+ (w1 − w2)

= [A1 | −A2] ·
[
s1
s2

]
− δ.

Observe that [A1 | −A2] ·
[
s1
s2

]
is a linear system with m equations in 2n un-

knowns; moreover, δ has at most t nonzero coordinates. Thus, if m ≥ 6n the
attacker can use the decoding algorithm described previously to recover s1, s2
with good probability. The attacker can then compute w1 = pub1 −A1s1 and
w2 = pub2 −A2s2. This is a complete break.

In the attack described above we assume m ≥ 6n, whereas Fuller et al. only
require m ≥ 3n. Is it possible that working in the regime 3n ≤ m ≤ 6n avoids
our attack? Unfortunately not. First, one can extend the analysis of Fuller et al.
to show that Decodet works in this regime as well, though with larger expected
running time. Moreover, we expect that the attack can be improved given more
than two public helper strings.

3.3 Modifying the FMR Scheme

Interestingly, the problem at the heart of the attack shown in the previous sec-
tion is that the independent enrollments of w1, w2 used independently generated
matrices A1,A2. Consider instead what happens if a single (randomly gener-
ated) matrix A is used for all enrollments. In this case, proceedings as before
gives

pub1 − pub2 = As1 + w1 −As2 − w2

= A(s1 − s2) + w1 − w2

= A(s1 − s2)− δ.

An attacker can indeed solve this system of (noisy) linear equations as before;
in this case, however, the attacker only learns the difference s1 − s2 and there
is no immediate way for it to obtain w1, w2.

In fact, using a common A can be shown to achieve weak reusability:

Theorem 1. If the FMR scheme is an (M, ℓ, t, ϵ)-fuzzy extractor, and a com-
mon, random A is used for all executions of Gen, then the scheme is also ϵ-weakly
reusable.

Proof. (Sketch) Given pub = As+ w, with s, w unknown, it is possible to gen-
erate a correctly distributed helper string pubi for the value wi = w + δi if δi is
known. Specifically, this can be done by choosing a uniform vector si and then
setting pubi = Asi + pub+ δi.
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Note that since A is uniform, we in fact only require the existence of a
common random string in place of a trusted party who publishes A.

Unfortunately, this modified scheme is not strongly reusable. (This is, in fact,
also interesting as a natural separation between these two notions of reusability.)
Specifically, note that if an attacker computes s1−s2 as above, and additionally
learns one of the extracted strings r1 (which, recall, corresponds to the first n/2
coordinates of s1), then the attacker can compute r2.

4 From Weak to Strong Reusability

In this section we show a generic transformation (in the random-oracle model)
that can be used to turn any weakly reusable scheme (Gen,Rec) into a strongly
reusable one (Gen′,Rec′). The idea is simply to use H(r) as the extracted string
in place of r, where H is a hash function modeled as a random oracle. Intuitively,
since (Gen,Rec) is weakly secure, each of the extracted strings ri output by Gen
is individually uniform; however, there may be correlations between the ri such
that they are not jointly uniform. Applying H to each of the ri “breaks” these
dependencies and enures that the results are jointly uniform.

More formally, let (Gen,Rec) be an (M, ℓ, t, ϵ)-fuzzy extractor that is weakly
reusable, and let H : {0, 1}ℓ → {0, 1}ℓ be a hash function. Let n be a parameter,
and construct (Gen′,Rec′) as follows:

Gen′(w):

1. Compute (pub, r)← Gen(w).
2. Choose nonce← {0, 1}n.
3. Output ((pub, nonce),H(nonce, r)).

Rec′((pub, nonce), w′):

1. Compute r′ ← Rec(pub, w′).
2. Output H(nonce, r′).

Correctness of (Gen′,Rec′) is immediate. We claim that if H is modeled
as a random oracle, then (Gen′,Rec′) is strongly reusable (which implies that
(Gen′,Rec′) is also a fuzzy extractor in the usual sense).

Theorem 2. If (Gen,Rec) is an (M, ℓ, t, ϵ)-fuzzy extractor, then for any at-
tacker running in time at most t it holds that the transformed scheme (Gen′,Rec′)
is O(t · (ϵ+2−ℓ)+ t2 ·2−n)-strongly reusable if H is modeled as a random oracle.

Proof. (Sketch) Given an adversary A′ attacking (Gen′,Rec′) in the sense of
string reusability, we construct an adversary A attacking (Gen,Rec) in the sense
of weak reusability. A, given pub∗, chooses a uniform nonce∗ ∈ {0, 1}n and gives
(pub∗, nonce∗) to A′. When A′ makes a query for a shift δ, adversary A makes
the same query to obtain pub; it then chooses uniform nonce ∈ {0, 1}n and
r′ ∈ {0, 1}ℓ and gives ((pub, nonce), r′) to A′. Finally, when A receives a value
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u ∈ {0, 1}ℓ, it gives that value to A′. The H-oracle queries of A′ are simulated
by A in the obvious way.
A provides a perfect simulation for A′, and u is information-theoretically

indistinguishable from uniform, unless (1) a nonce value ever repeats, or (2) A′

ever makes an oracle query of the form H(⋆, r), where r is one of the extracted
strings (including r∗) output by Gen during the course of the weak reusability
experiment involving A. The probability of the first event is easily bounded.
Moreover, since each extracted string r is (individually) ϵ-indistinguishable from
uniform, the probability of the second event is bounded by O(t · (ϵ+ 2−ℓ)).

Applying this transformation to the modified FMR scheme from the previ-
ous section gives a strongly reusable FE based on the LWE assumption (in the
random-oracle model).

5 A Strongly Reusable FE Without Random Oracles

In this section, we construct a strongly reusable FE based on the LWE assump-
tion, without relying on the random-oracle model. The basic idea is to use the
scheme of Fuller et al. to encode a random vector s as before; now, however,
rather than use some coordinates of s as the extracted string, we instead use s as
a key to encrypt an independent random value r. By using a specific symmetric-
key encryption scheme based on LWE (that also satisfies certain properties), we
obtain a construction based on the LWE assumption.

We first describe our symmetric-key encryption scheme (Enc,Dec). Let q,m, n
be integer parameters. To encrypt a message r ∈ {0, 1}m using a key s ∈ Zn

q ,
choose uniform B ← Zm×n

q and sample error vector e ∈ Zm
q . Finally, compute

h = Bs + e + q
2r and output the ciphertext (B,h). To decrypt a ciphertext

(B,h) using key s, compute h −Bs and then, for each coordinate, output 1 if
the coordinate lies in [ 3q8 , 5q

8 ], and 0 otherwise.
With this in place, we now describe the fuzzy extractor. As previously, we

assume a public, random matrix A available to all participants.

Gen(w):

1. Choose uniform s← Zn
q .

2. Let c = As+ w.
3. Choose uniform r ← {0, 1}m, and compute (B,h)← Encs(r).
4. Set pub = (c,B,h).
5. Output (pub, r).

Rec(pub, w′):

1. Parse pub as (c,B,h); let b = c− w′.
2. Compute s′ = Decodet(A, b).
3. Compute r′ = Decs′(B,h).
4. Output r′.
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Correctness (for the same range of parameters as in the FMR scheme) is
immediate. In analyzing security, we assume (1) the distribution on w ∈ Zm

q

is such that each coordinate of w is chosen independently according to some
distribution χ, and (2) for simplicity, the distribution over the error vector used
in our symmetric-key encryption scheme follows the same distribution. (This
can in fact be relaxed.) Based on these assumptions, we now sketch a proof of
security based on hardness of the LWEn,(t+2)m,q,χ problem, where the adversary
makes at most t oracle calls in the experiment of Definition 3.

Instantiating Definition 3 with our scheme, we see that we can reframe what
we need to prove in the following way. A value w∗ is chosen and the attacker A
is given A and

As+ w∗, B, Bs+ e+
q

2
r∗.

Next, for a sequence of shifts δi chosen by A, the attacker is given

Asi + w∗ + δi, Bi, Bisi + ei.

(This is not what the attacker is given, but it is easy to see that it is equivalent
to what the attacker is given.) The adversary’s goal is to distinguish r∗ from
uniform, and we claim that this is hard.

To see this, consider an algorithm A′ interacting t + 2 times with an LWE
oracle that outputs samples of the form (Bi,Bis + ei) for a fixed, uniform s
chosen at the outset of the experiment. We show how A′ can perfectly simulate
the view of A:

1. A′ calls its LWE oracle to obtain (A, c∗ = As + w∗), and calls the oracle
again to obtain (B,Bs+e). It then chooses a uniform r∗ ∈ {0, 1}m, sets the
public parameters to A, and gives (c∗,B, (Bs+ e) + q

2r
∗) to A.

2. When A submits a shift δi, algorithm A calls its LWE oracle to obtain the
pair (Bi,Bis+ ei). It then chooses a uniform s′i ∈ Zm

q and gives(
(As+ w∗) +As′i + δi, Bi, (Bis+ ei) +Bis

′
i

)
to A.

Note that A′ receives t+ 2 outputs from its LWE oracle.
Now consider what happens if the oracle provided to A′ is changed to output

pairs of the form (Bi,ui), where ui is uniform. (It is easy to see that distin-
guishing these two oracles is equivalent to the LWEn,(t+2)m,q,χ problem.) In that
case, the values given to A′ in the first step take the form (c∗,B,u + q

2r
∗),

and we see that r∗ is perfectly hidden. Thus, in this modified experiment, A
cannot distinguish r∗ from a uniform string. This completes the proof of strong
reusability for our construction.
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