
Ring Signatures: Stronger Definitions, and Constructions without

Random Oracles∗

Adam Bender† Jonathan Katz†‡ Ruggero Morselli†§

Abstract

Ring signatures, first introduced by Rivest, Shamir, and Tauman, enable a user to sign a
message so that a ring of possible signers (of which the user is a member) is identified, without
revealing exactly which member of that ring actually generated the signature. In contrast
to group signatures, ring signatures are completely “ad-hoc” and do not require any central
authority or coordination among the various users (indeed, users do not even need to be aware
of each other); furthermore, ring signature schemes grant users fine-grained control over the
level of anonymity associated with any particular signature.

This paper has two main areas of focus. First, we examine previous definitions of security
for ring signature schemes and suggest that most of these prior definitions are too weak, in the
sense that they do not take into account certain realistic attacks. We propose new definitions
of anonymity and unforgeability which address these threats, and give separation results prov-
ing that our new notions are strictly stronger than previous ones. Second, we show the first
constructions of ring signature schemes in the standard model. One scheme is based on generic
assumptions and satisfies our strongest definitions of security. Two additional schemes are more
efficient, but achieve weaker security guarantees and more limited functionality.

1 Introduction

Ring signatures enable a user to sign a message so that a “ring” of possible signers (of which the user
is a member) is identified, without revealing exactly which member of that ring actually generated
the signature. This notion was first formally introduced by Rivest, Shamir, and Tauman [22], and
ring signatures — along with the related notion of ring/ad-hoc identification schemes — have been
studied extensively since then [6, 21, 1, 25, 5, 18, 13, 24, 20, 2]. Ring signatures are related, but
incomparable, to the notion of group signatures [8]. On the one hand, group signatures have the
additional feature that the anonymity of a signer can be revoked (i.e., the signer can be traced)
by a designated group manager. On the other hand, ring signatures allow greater flexibility: no
centralized group manager or coordination among the various users is required (indeed, users may be
unaware of each other at the time they generate their public keys), rings may be formed completely
“on-the-fly” and in an ad-hoc manner, and users are given fine-grained control over the level of
anonymity associated with any particular signature (via selection of an appropriate ring).

∗An extended abstract of this paper appeared in the 3rd Theory of Cryptography Conference, March 4-7 2006,
New York, NY, USA [4].

†Dept. of Computer Science, University of Maryland. {bender,jkatz,ruggero}@cs.umd.edu
‡Supported in part by NSF Trusted Computing Grants #0310499 and #0310751, NSF-ITR #0426683, and NSF

CAREER award #0447075.
§Supported by NSF Trusted Computing Grant #0310499 and NSF-ITR #0426683.

1

Ring signatures naturally lend themselves to a variety of applications which have been suggested
already in previous work (see especially [22, 21, 13, 2]). The original motivation was to allow
secrets to be leaked anonymously. Here, for example, a high-ranking government official can sign
information with respect to the ring of all similarly high-ranking officials; the information can
then be verified as coming from someone reputable without exposing the actual signer. Ring
signatures can also be used to provide a member of a certain class of users access to a particular
resource without explicitly identifying this member; note that there may be cases when third-party
verifiability is required (e.g., to prove that the resource has been accessed) and so ring signatures,
rather than ad-hoc identification schemes, are needed. Finally, we mention the application to
designated-verifier signatures [19] especially in the context of e-mail. Here, ring signatures enable
the sender of an e-mail to sign the message with respect to the ring containing the sender and the
receiver; the receiver is then assured that the e-mail originated from the sender but cannot prove
this to any third party. For this latter application it is sufficient to use a ring signature scheme
which supports only rings of size two. Chen et al. [9] propose another application of ring signatures
where rings of size two suffice.

1.1 Our Contributions in Relation to Previous Work

This paper focuses on both definitions and constructions. We summarize our results in each of
these areas, and relate them to prior work.

Definitions of security. Prior work on ring signature/identification schemes provides definitions
of security that are either rather informal or seem (to us) unnaturally weak, in that they do not
address a number of seemingly valid security concerns. One example is the failure to consider the
possibility of adversarially-chosen public keys. Specifically, both the anonymity and unforgeability
definitions in most prior work assume that honest users always sign with respect to rings consisting
entirely of honestly-generated public keys; no security is provided if users sign with respect to a
ring containing even one adversarially-generated public key. Clearly, however, a scheme which is
not secure in the latter case is of limited use; this is especially true since rings are constructed in
an ad-hoc fashion using keys of (possibly unknown) users which are not validated by any central
authority as being correctly constructed. We formalize security against such attacks (as well as
others), and show separation results proving that our definitions are strictly stronger than those
considered in previous work. In addition to the new, strong definitions we present, the hierarchy
of definitions we give is useful for characterizing the security of ring signature constructions.

Constructions. We present three ring signature schemes which are provably secure in the standard
model. We stress that these are the first such constructions, as all previous constructions of which
we are aware rely on random oracles/ideal ciphers.1 It is worth remarking that ring identification
schemes are somewhat easier to construct (using, e.g., techniques of Cramer et al. [11]); ring
signatures can then easily be derived from such schemes using the Fiat-Shamir methodology in
the random oracle model [16]. This approach, however, is no longer viable (at least, based on our
current understanding) when working in the standard model.

Our first construction is based on generic assumptions, and satisfies the strongest definitions
of anonymity and unforgeability considered here. Moreover, this construction is completely ad-
hoc and requires no setup assumptions of any kind. This construction is inspired by the generic

1Although Xu, Zhang, and Feng [24] claim a ring signature scheme in the standard model based on specific
assumptions, their proof was later found to be flawed (personal communication from J. Xu, March 2005). Concurrently
to our work, Chow, Liu and Yuen [10] show a ring signature scheme that they prove secure in the standard model
(for rings of constant size) based on a new number-theoretic assumption.

2

construction of group signatures due to Bellare et al. [3] and, indeed, the constructions share some
similarities at a high level. However, a number of subtleties arise in our context that do not arise in
the context of group signatures, and the construction given in [3] does not immediately lend itself
to a ring signature scheme. Two issues in particular that we need to deal with are the fact that
we have no central group manager to issue “certificates” as in [3], and that we additionally need
to take into account the possibility of adversarially-generated public keys as discussed earlier (this
is not a concern in [3] where there is only a single group public key published by a (semi-)trusted
group manager).

Our other two constructions are more efficient than the first, and rely on specific number-
theoretic assumptions. These have various disadvantages with regard to the generic solution dis-
cussed previously. First, these schemes require some system-wide public parameters (essentially
a description of a cyclic group along with a generator) that must be shared by all users of the
scheme. Importantly, however, we stress that there is no possibility of embedding any “trapdoor”
in these parameters; thus, reliance on such parameters is much less problematic than relying on a
“common reference string” that typically does have some trapdoor information associated with it,
and must therefore be generated by a trusted party (who can violate security of the scheme if they
are corrupted). Our final two schemes also provide more limited functionality and security guar-
antees than our first construction; most limiting is that they only support rings of size two. Such
schemes are still useful for certain applications (as discussed earlier); furthermore, constructing an
efficient 2-user ring signature scheme without random oracles is still difficult, as we do not have the
Fiat-Shamir methodology available in our toolbox. These two schemes are based, respectively, on
the recent (standard) signature schemes of Waters [23] and Camenisch and Lysyanskaya [7].

2 Preliminaries

We use the standard definitions of public-key encryption schemes and semantic security; signature
schemes and existential unforgeability under adaptive chosen-message attacks; and computational
indistinguishability. In this paper we will assume public-key encryption schemes for which, with
all but negligible probability over (pk, sk) generated at random using the specified key generation
algorithm, Decsk(Encpk(M)) = M holds with probability 1.

We will also use the notion of a ZAP, which is a 2-round, public-coin, witness-indistinguishable
proof system for any language L ∈ NP . ZAPs were introduced by Dwork and Naor [14], who show
that ZAPs can be constructed based on any non-interactive zero-knowledge (NIZK) proof system;
the latter, in turn, can be constructed based on trapdoor permutations [15].

Formally, a ZAP is a triple (`,P,V) such that (1) the initial message r from the verifier V has
length `(k) (where k is the security parameter); (2) the prover P, on input the verifier-message r,
statement x, and witness w, outputs π ← Pr(x,w); finally, (3) Vr(x, π) outputs 1 or 0, indicating
acceptance or rejection of the proof.

A ZAP is used in the following way: The verifier generates a random first message r ← {0, 1}`(k)

and sends it to the prover P. The prover, given r, a statement x, and associated witness w, sends
π ← Pr(x,w) to the verifier. The verifier then runs Vr(x, π) and accepts iff the output is 1.

A formal definition of the security properties guaranteed by a ZAP follows. Let L be an NP
language with associated polynomial-time and polynomially-bounded witness relation RL (i.e., such

that L
def
= {x | ∃w : (x,w) ∈ RL}). If (x,w) ∈ RL we refer to x as the statement and w as the

associated witness for x.

Definition 1 [ZAP] A ZAP for an NP language L (with associated witness relation RL) is a triple

3

(`,P,V), where `(·) is a polynomial, P is a ppt algorithm, and V is polynomial-time deterministic
algorithm such that.

Completeness For any (x,w) ∈ RL and any r ∈ {0, 1}`(k):

Pr [π ← Pr(x,w) : Vr(x, π) = 1] = 1 .

(The original definition [14] allows for a negligible completeness error, but their construction
achieves perfect completeness when instantiated using the NIZK of [15].)

Adaptive soundness There exists a negligible function ε such that

Pr
[

r ← {0, 1}`(k) : ∃(x, π) : x 6∈ L and Vr(x, π) = 1
]

≤ ε(k) .

Witness indistinguishability (Informal) For any x ∈ L, any pair of witnesses w0, w1 for x,
and any r ∈ {0, 1}`(k), the distributions {Pr(x,w0)} and {Pr(x,w1)} are computationally
indistinguishable. (Formally, we need to speak in terms of sequences {rk ∈ {0, 1}

`(k)}, {xk},
and {(wk,0, wk,1)} but we avoid doing so for simplicity of exposition.) ♦

3 Definitions

We begin by presenting the functional definition of a ring signature scheme. We refer to an ordered
list R = (PK1, . . ., PKn) of public keys as a ring, and let R[i] = PKi. We will also freely use
set notation, and say, e.g., that PK ∈ R if there exists an index i such that R[i] = PK. We will
always assume, without loss of generality, that the keys in a ring are ordered lexicographically.

Definition 2 [Ring signature] A ring signature scheme is a triple of ppt algorithms (Gen, Sign,
Vrfy) that, respectively, generate keys for a user, sign a message, and verify the signature of a
message. Formally:

• Gen(1k), where k is a security parameter, outputs a public key PK and secret key SK.

• Signs,SK(M,R) outputs a signature σ on the message M with respect to the ring R =
(PK1, . . . , PKn). We assume the following: (1) (R[s], SK) is a valid key-pair output by
Gen; (2) |R| ≥ 2 (since a ring signature scheme is not intended to serve as a standard signa-
ture scheme); and (3) each public key in the ring is distinct.

The first of the above conditions simply models ring signature usage (where a signer “knows”
their index s in the ring). The latter two conditions are without much loss of generality: it
is easy to modify any ring signature scheme to allow signatures with |R| = 1 by including a
special key for just that purpose, and given a ring R with repeated keys the signer/verifier can
simply take the sub-ring of distinct keys in R and correctness (see below) will be unaffected.

• VrfyR(M,σ) outputs a single bit indicating validity or invalidity of a purported signature σ
on a message M with respect to the ring of public keys R.

We require the following correctness condition: for any k, any {(PKi, SKi)}
n
i=1 output by Gen(1k),

any s ∈ [n], and any M , we have VrfyR(M,Signs,SKs
(M,R)) = 1 where R = (PK1, . . . , PKn).

4

A c-user ring signature scheme is a variant of the above that only supports rings of fixed size
c (i.e., the Sign and Vrfy algorithms only take as input rings R for which |R| = c, and correctness
is only required to hold for such rings). ♦

To improve readability, we will generally omit the input “s” to the signing algorithm (and simply
write σ ← SignSK(M,R)), with the understanding that the signer can determine an index s for
which SK is the secret key corresponding to public key R[s]. Strictly speaking, there may not be
a unique such s (especially when R contains incorrectly-generated keys); in real-world usage of a
ring signature scheme, though, a signer will certainly be able to identify his own public key.

A ring signature scheme is used as follows: At various times, different users run the key-
generation algorithm Gen to generate public and secret keys. We stress that no coordination
among these users is assumed or required. When a user with secret key SK wishes to generate
an anonymous signature on a message M , he chooses a ring R of public keys which includes his
own, computes σ ← SignSK(M,R) and outputs (σ,R); in such a case, we refer to the holder of
SK as the signer of the message. Assuming the scheme is secure, anyone can now verify that this
signature was generated by someone holding a secret key corresponding to a public key in R by
running VrfyR(M,σ).

Although our functional definition of a ring signature scheme requires users to generate keys
specifically for that purpose (in contrast to the requirements of [1, 2]), our first construction can
be easily modified to work with any ring of users as long as they each have a public key for both
encryption and signing (see Section 5).

As discussed in the Introduction, ring signatures must satisfy two independent notions of secu-
rity: anonymity and unforgeability. There are various ways each of these notions can be defined
(and various ways these notions have been defined in the literature); we present our definitions in
Sections 3.1 and 3.2, and compare them to previously-suggested definitions in Section 4.

3.1 Definitions of Anonymity

The anonymity condition requires, informally, that an adversary should not be able to tell which
member of a ring generated a particular signature. (All the anonymity definitions that follow can
be phrased in either a computational or an unconditional sense where, informally, anonymity holds
for polynomial-time adversaries in the former case and all-powerful adversaries in the latter case.
For simplicity, we present only the computational versions.) We begin with a basic definition of
anonymity which is already stronger than that considered in most previous work in that we give
the adversary access to a signing oracle (this results in a stronger definition even in the case of
unconditional anonymity).

Definition 3 [Basic anonymity] Given a ring signature scheme (Gen, Sign, Vrfy), a polynomial
n(·), and a ppt adversary A, consider the following game:

1. Key pairs {(PKi, SKi)}
n(k)
i=1 are generated using Gen(1k), and the set of public keys S

def
=

{PKi}
n(k)
i=1 is given to A.

2. A is given access to an oracle OSign(·, ·, ·) such that OSign(s,M,R) returns SignSKs
(M,R),

where we require R ⊆ S and PKs ∈ R.

3. A outputs a message M , distinct indices i0, i1, and a ring R ⊆ S for which PKi0 , PKi1 ∈ R.
A random bit b is chosen, and A is given the signature σ ← SignSKib

(M,R).

4. The adversary outputs a bit b′, and succeeds if b′ = b.

5

(Gen,Sign,Vrfy) achieves basic anonymity if, for any ppt A and any polynomial n(·), the success
probability of A in the above game is negligibly close to 1/2. ♦

(A variant is for the adversary to be given a signature computed by a randomly-chosen member
of R, with the requirement that the adversary should be unable to guess the actual signer with
probability better than 1/|R| + negl(k). It is easy to see that this is equivalent to the above.)

Unfortunately, the above definition of basic anonymity leaves open the possibility of the follow-
ing attack: (1) an adversary generates public keys in some arbitrary manner (which may possibly
depend on the public keys of the honest users), and then (2) a legitimate signer generates a sig-
nature with respect to a ring containing some of these adversarially-generated public keys. The
definition above offers no protection in this case! This attack, considered also in [21] (in a slightly
different context) is quite realistic since, by their very nature, ring signatures are intended to be
used in settings where there is no central authority checking validity of public keys. This motivates
the following, stronger definition:

Definition 4 [Anonymity w.r.t. adversarially-chosen keys] Given a ring signature scheme
(Gen,Sign,Vrfy), a polynomial n(·), and a ppt adversary A, consider the following game:

1. As in Definition 3, key pairs {(PKi, SKi)}
n(k)
i=1 are generated using Gen(1k) and the set of

public keys S
def
= {PKi}

n(k)
i=1 is given to A.

2. A is given access to an oracle OSign(·, ·, ·) such that OSign(s,M,R) returns SignSKs
(M,R),

where we require PKs ∈ R. (In contrast to Definition 3, we no longer require R ⊆ S.)

3. A outputs a message M , distinct indices i0, i1, and a ring R for which PKi0 , PKi1 ∈ R.
(Again, we no longer require R ⊆ S.) A random bit b is chosen, and A is given the signature
σ ← SignSKib

(M,R).

4. The adversary outputs a bit b′, and succeeds if b′ = b.

(Gen,Sign,Vrfy) achieves anonymity w.r.t. adversarially-chosen keys if for any ppt A and polyno-
mial n(·), the success probability of A in the above game is negligibly close to 1/2. ♦

The above definition only guarantees anonymity of a particular signature as long as there are
at least two honest users in the ring. In some sense this is inherent, since if an honest signer U
chooses a ring in which all other public keys (i.e., except for the public key of U) were created by
an adversary, then that adversary “knows” that U must be the signer (since the adversary did not
generate the signature itself).

A weaker requirement one might consider when the signer U is the only honest user in a ring
is that the other members of the ring should be unable to prove to a third party that U generated
the signature (we call this an attribution attack). Preventing such an attack in general seems to
require the involvement of a trusted party (or at least a common random string), something we
would like to avoid. We instead define a slightly weaker notion which, informally, can be viewed
as offering an honest user U some protection against attribution attacks as long as at least one
other user U ′ in the ring was honest at the time U ′ generated his public key. However, we allow this
user U ′ — as well as all other honest users in the ring (except for U) — to later collude with an
adversary by revealing their secret keys in an attempt to attribute the signature to U .2 (Actually,
we even allow these users to reveal the randomness used to generate their secret keys. This ensures

2The idea is that everyone else in the ring is trying to “frame” U , but U is (naturally) refusing to divulge her
secret key. Although this itself might arouse suspicion, the point is that it still cannot be proved — in court, say —
that U was the signer.

6

security when erasure cannot be guaranteed, or when it cannot be guaranteed that all users will
comply with the directive to erase their random coins.) Security in such a setting also ensures some
measure of security in case honest users’ secret keys are exposed or stolen.

In addition to the above, we consider also the stronger variant in which the secret keys of all
honest users in the ring (i.e., including U) are exposed. This parallels the anonymity definition
given by Bellare, et al. in the context of group signatures [3] (in fact, our definition is even stronger
since we give the adversary the random coins of the corrupted users and not just their secret keys).
For simplicity we also protect against adversarially-chosen keys, though one could consider the
weaker definition that does not.

Definition 5 [Anonymity against attribution attacks/full key exposure] Given a ring
signature scheme (Gen,Sign,Vrfy), a polynomial n(·), and a ppt adversary A, consider the following
game:

1. For i = 1 to n(k), generate (PKi, SKi) ← Gen(1k;ωi) for randomly-chosen ωi. Give to A

the set of public keys {PKi}
n(k)
i=1 . (This is functionally identical to the first step in previous

definitions, except that we now make explicit the random coins used to generate keys.)

2. As in Definition 4, A is given access to an oracle OSign(·, ·, ·) such that OSign(s,M,R) returns
SignSKs

(M,R), where we require PKs ∈ R.

3. A is also given access to an oracle Corrupt(·) that, on input i, returns ωi.

4. As in Definition 4, A outputs a message M , distinct indices i0, i1, and a ring R for which
PKi0 , PKi1 ∈ R. A random bit b is chosen and A is given σ ← SignSKib

(M,R).

5. The adversary outputs a bit b′, and succeeds if b′ = b and |{i0, i1} ∩ C| ≤ 1, where C is the
set of queries to the corruption oracle.

(Gen,Sign,Vrfy) achieves anonymity against attribution attacks if, for any ppt A and polyno-
mial n(·), the success probability of A in the above game is at most 1/2 + negl(k). If we allow
|{i0, i1} ∩ C| = 2, then we say (Gen,Sign,Vrfy) achieves anonymity against full key exposure. ♦

Linkability. Another desideratum of a ring signature scheme is that it be unlinkable; that is,
it should be infeasible to determine whether two signatures (possibly generated with respect to
different rings) were generated by the same signer. A detailed discussion on the relation between
anonymity and unlinkability appears in [3, Section 3], and the conclusion reached there is that
anonymity and unlinkability are equivalent under any “reasonable” formulation of these two notions.
We concur with that assessment in our setting, and in particular remark that even our most
basic definition of anonymity implies that signatures by the same signer cannot be meaningfully
correlated. On the other hand, it is not hard to see that a weaker definition of anonymity whereby
the adversary obtains only users’ public keys and a single signature — but cannot obtain multiple
other signatures via a signing oracle — does not imply unlinkability.

3.2 Definitions of Unforgeability

The intuitive notion of unforgeability is, as usual, that an adversary should be unable to output
(R,M, σ) such that VrfyR(M,σ) = 1 unless either (1) one of the public keys in R was generated by
the adversary, or (2) a user whose public key is in R explicitly signed M previously (with respect
to the same ring R). Some subtleties arise, however, when defining a chosen-message attack on the
scheme. Many previous works (e.g., [22]), assume a definition like the following:

7

Definition 6 [Unforgeability against fixed-ring attacks] A ring signature scheme (Gen, Sign,
Vrfy) is unforgeable against fixed-ring attacks if for any ppt adversary A and for any polynomial
n(·), the probability that A succeeds in the following game is negligible:

1. Key pairs {(PKi, SKi)}
n(k)
i=1 are generated using Gen(1k), and the set of public keys R

def
=

{PKi}
n(k)
i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·), where OSign(s,M) outputs SignSKs
(M,R).

3. A outputs (M ∗, σ∗) and succeeds if VrfyR(M∗, σ∗) = 1 and also A never made a query of the
form OSign(?,M ∗). ♦

Note that not only is A restricted to making signing queries with respect to the full ring R, but its
forgery is required to verify with respect to R as well. The following stronger, and more natural,
definition was used in, e.g., [1]:

Definition 7 [Unforgeability against chosen-subring attacks] A ring signature scheme (Gen,
Sign, Vrfy) is unforgeable against chosen-subring attacks if for any ppt adversary A and for any
polynomial n(·), the probability that A succeeds in the following game is negligible:

1. Key pairs {(PKi, SKi)}
n(k)
i=1 are generated using Gen(1k), and the set of public keys S

def
=

{PKi}
n(k)
i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·, ·), where OSign(s,M,R) outputs SignSKs
(M,R)

and we require that R ⊆ S and PKs ∈ R.

3. A outputs (R∗,M∗, σ∗) and succeeds if R∗ ⊆ S, VrfyR∗(M∗, σ∗) = 1, and A never queried
(?,M∗, R∗) to its signing oracle. ♦

While the above definition is an improvement, it still leaves open the possibility of an attack
whereby honest users are “tricked” into generating signatures using rings containing adversarially-
generated public keys. (Such an attack was also previously suggested by [21, 20].) The following
definition takes this into account as well as, for completeness, an adversary who adaptively corrupts
honest participants and obtains their secret keys. Since either of these attacks may be viewed as
the outcome of corrupting an “insider” (even though, technically speaking, there are not really any
“insiders” in the context of ring signatures), we use this terminology.

Definition 8 [Unforgeability w.r.t. insider corruption] A ring signature scheme (Gen, Sign,
Vrfy) is unforgeable w.r.t. insider corruption if for any ppt adversary A and for any polynomial
n(·), the probability that A succeeds in the following game is negligible:

1. Key pairs {(PKi, SKi)}
n(k)
i=1 are generated using Gen(1k), and the set of public keys S

def
=

{PKi}
n(k)
i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·, ·), where OSign(s,M,R) outputs SignSKs
(M,R)

and we require that PKs ∈ R.

3. A is also given access to a corrupt oracle Corrupt(·), where Corrupt(i) outputs SKi.

4. A outputs (R∗,M∗, σ∗) and succeeds if VrfyR∗(M∗, σ∗) = 1, A never queried (?,M ∗, R∗), and
R∗ ⊆ S \ C, where C is the set of corrupted users. ♦

Herranz [17] considers, albeit informally, a definition intermediate between our Definitions 7
and 8 in which corruptions of honest players are allowed but adversarially-chosen public keys are
not explicitly mentioned.

8

4 Separations Between the Security Definitions

In the previous section, we presented various definitions of anonymity and unforgeability. Here, we
show that these definitions are in fact distinct, in the sense that there exist (under certain assump-
tions) schemes satisfying a weaker definition but not a stronger one. First, we show separations
for the definitions of anonymity, considering in each case a scheme simultaneously satisfying the
strongest definition of unforgeability. (Proof sketches for the claims presented in this section are
given in Appendix A.1.)

Claim 1 If there exists a scheme that achieves basic anonymity and is unforgeable w.r.t. insider
corruption, then there exists a scheme that achieves these same properties but is not anonymous
w.r.t. adversarially-chosen keys.

Claim 2 If there exists a scheme that is anonymous w.r.t. adversarially-chosen keys and is
unforgeable w.r.t. insider corruption, then there exists a scheme that achieves these same properties
but is not anonymous against attribution attacks.

Claim 3 Assume the existence of a semantically-secure public-key encryption scheme. If there
exists a scheme that is anonymous against attribution attacks and is unforgeable w.r.t. insider
corruption, then there exists a scheme that achieves these same properties but is not anonymous
against full key exposure.

Looking ahead, the initial scheme we present in the following section also gives an example of a ring
signature scheme having the properties described in Claim 3. However, we rely there on stronger
assumptions than semantically-secure public-key encryption.

We also show separations for the definitions of unforgeability, considering now schemes which
simultaneously achieve the strongest definition of anonymity:

Claim 4 If there exists a scheme that is anonymous against full key exposure and unforgeable w.r.t.
insider corruption, then there exists a scheme that is anonymous against full key exposure and
unforgeable against fixed-ring attacks, but not unforgeable against chosen-subring attacks.

We remark that the scheme of [18] serves as a natural example of a scheme that is unforgeable
against fixed-ring attacks but not unforgeable against chosen-subring attacks (in the random oracle
model); this was subsequently fixed in [17]. See Appendix A.2.

Claim 5 If there exists a scheme that is anonymous against full key exposure and unforgeable
against chosen-subring attacks, then there exists a scheme that achieves these same properties
but is not unforgeable w.r.t. insider corruption.

5 Ring Signatures Based on General Assumptions

We now describe our construction of a ring signature scheme that satisfies the strongest of our
proposed definitions, and is based on general assumptions. Let (EGen,Enc,Dec) be a semantically-
secure public-key encryption scheme, let (Gen′,Sign′,Vrfy′) be a (standard) signature scheme, and
let (`,P,V) be a ZAP (for an NP-language that will become clear once we describe the scheme).
We denote by C∗ ← Enc∗RE

(m) the probabilistic algorithm that takes as input a set of encryption

9

public keys RE = {pkE,1, . . . , pkE,n} and a message m, and does the following: it first chooses
random s1, . . . , sn−1 ∈ {0, 1}

|m| and then outputs:

C∗ =



EncpkE,1
(s1),EncpkE,2

(s2), · · · ,EncpkE,n−1
(sn−1),EncpkE,n

(m⊕
n−1
⊕

j=1

sj)



 .

Note that, informally, encryption using Enc∗ is semantically secure as long as at least one of the
corresponding secret keys is unknown.

The idea underlying our construction is the following. Each user has an encryption key pair
(pkE , skE) and a (standard) signature key pair (pkS , skS). To generate a ring signature with respect
to a ring R of n users, the signer first produces a standard signature σ ′ of M‖R with her signing key.
Next, the signer produces two ciphertexts C∗

0 , C∗
1 using Enc∗ and the set RE of all the encryption

public keys in the ring; one of these ciphertexts will be an encryption of σ ′ and the other will be an
encryption of “garbage”. Finally, the signer produces a proof π (using the ZAP) that at least one of
the ciphertexts is an encryption of a valid signature on the message with respect to the verification
key of one of the ring members.

Toward a formal description, let L denote the NP language:

{

(RS ,M,RE , C∗) : ∃pkS, σ, ω s.t. pkS ∈ RS

∧

C∗ = Enc∗RE
(σ;ω)

∧

Vrfy′pkS
(M,σ) = 1

}

;

i.e., (RS ,M,RE , C∗) ∈ L iff C∗ is an encryption (using Enc∗RE
) of a valid signature of M with

respect to some verification key pkS ∈ RS . We now give the details of our construction, which
is specified by the key-generation algorithm Gen, the ring signing algorithm Sign, and the ring
verification algorithm Vrfy.

Gen(1k):

1. Generate signing key pair (pkS , skS)← Gen′(1k).

2. Generate encryption key pair (pkE , skE)← EGen(1k) and erase skE .

3. Choose an initial ZAP message r ← {0, 1}`(k).

4. Output the public key PK := (pkS , pkE , r), and the secret key SK := skS .

Signi∗,SKi∗
(M, (PK1, . . . , PKn)):

1. Parse each PKi as (pkS,i, pkE,i, ri), and parse SKi∗ as skS,i∗. Set RE := {pkE,1, . . . , pkE,n}
and RS := {pkS,1, . . . , pkS,n}.

2. Set M ∗ := M |PK1 | · · · |PKn, where “|” denotes concatenation. Compute the signature
σ′

i∗ ← Sign′skS,i∗
(M∗).

3. Choose random coins ω0, ω1 and compute C∗
0 := Enc∗RE

(σ′
i∗ ;ω0) and3 C∗

1 := Enc∗RE
(0k;ω1).

4. For j ∈ {0, 1}, let xj denote the statement: “ (RS ,M∗, RE , C∗
j) ∈ L ”, and let x := x0

∨

x1.
Compute the proof π ← Pr1

(x, (pkS,i∗ , σ
′
i∗ , ω0)).

5. The signature is σ := (C∗
0 , C∗

1 , π).

3We assume for simplicity that valid signatures w.r.t. the verification keys {pkS,i} always have length k. The
construction can easily be adapted when this is not the case.

10

Vrfy{PK1,...,PKn}(M,σ)

1. Parse σ as (C∗
0 , C∗

1 , π). Parse each PKi as (pkS,i, pkE,i, ri). Set M ∗ := M |PK1 | · · · |PKn;
set RE := {pkE,1, . . ., pkE,n}; and set RS := {pkS,1, . . . , pkS,n}.

2. For j ∈ {0, 1}, let xj denote the statement: “ (RS ,M∗, RE , C∗
j) ∈ L ”, and let x := x0

∨

x1.

3. Output Vr1
(x, π).

(In the conference version of this work [4], we presented a less efficient version of the scheme
in which the signature contained n ciphertexts rather than two.) It is easy to see that the scheme
above satisfies the functional definition of a ring signature scheme (recall that the {PKi} in a ring
are always ordered lexicographically). We now prove that the scheme satisfies strong notions of
anonymity and unforgeability (here we only claim anonymity against attribution attacks, but we
discuss further below how it is possible to obtain anonymity against full key exposure):

Theorem 1 If encryption scheme (EGen,Enc,Dec) is semantically secure, signature scheme (Gen ′,
Sign′, Vrfy′) is existentially unforgeable under adaptive chosen-message attacks, and (`,P,V) is a
ZAP for the language L′ = {(x0, x1) : x0 ∈ L

∨

x1 ∈ L}, then the above ring signature scheme is
anonymous against attribution attacks and unforgeable w.r.t. insider corruption.

Proof We prove each of the desired security properties in turn.

Anonymity. For simplicity of exposition, we consider Definition 5 with n = 2; i.e., we assume only
two users numbers 0 and 1 for convenience. We also assume without loss of generality that i0 = 0
and i1 = 1, and that the adversary corrupts player 1. It is straightforward that this implies the
general case. Given a ppt adversary A, we consider a sequence of experiments E0, Hybrid0, Hybrid1,
E1 such that E0 (resp., E1) corresponds to the experiment of Definition 5 with b = 0 (resp., b = 1),
and such that each experiment is computationally indistinguishable from the one before it. This
implies that A has negligible advantage in distinguishing E0 from E1, as desired.

For convenience, we review experiment E0. Here, two key pairs (PK0 = (pkS,0, pkE,0, r0), SK0)
and (PK1 = (pkS,1, pkE,1, r1), SK1) are generated and A is given PK0 and the randomness used
to generate (PK1, SK1) (recall our assumption that A corrupts player 1). The adversary is also
given access to a signing oracle that can be used to obtain signatures computed using SK0. The
adversary A then outputs a message M along with a ring of public keys R containing both PK0

and PK1. Finally, A is given σ ← SignSK0
(M,R).

Experiment Hybrid0 is the same as experiment E0 except that we change how the signature σ
is generated: in step 2 we compute σ′

0 ← Sign′skS,0
(M∗) and C∗

0 as before, but now additionally

compute σ′
1 ← Sign′skS,1

(M∗) and C∗
1 = Enc∗RE

(σ′
1;ω1).

It is not hard to see that experiment Hybrid0 is computationally indistinguishable from experi-
ment E0, assuming semantic security of the encryption scheme (EGen,Enc,Dec). This follows from
the observations that (1) adversary A is not given the random coins used in generating PK0 and
so, in particular, it is not given the coins used to generate pkE,0; (2) (informally) semantic secu-
rity of encryption under EncpkE,0

implies semantic security of encryption using Enc∗RE
as long as

pkE,0 ∈ RE (a formal proof is straightforward); and, finally, (3) the coins ω1 used in generating C∗
1

are not used in the remainder of the experiment.
Experiment Hybrid1 is the same as Hybrid0 except that we use a different witness when computing

the proof π for the ZAP. In particular, instead of using witness (pkS,0, σ
′
0, ω0) we use the witness

(pkS,1, σ
′
1, ω1). The remainder of the signing algorithm is unchanged.

11

It is relatively immediate that Hybrid1 is computationally indistinguishable from Hybrid0, as-
suming witness indistinguishability of the ZAP. (Use of a ZAP, rather than non-interactive zero-
knowledge, is essential here since the adversary may choose the “random string” component of all
the adversarially-chosen public keys any way it likes.) In more detail, we can construct the fol-
lowing malicious verifier algorithm V∗ using A: verifier V∗ generates (PK0, SK0) and (PK1, SK1)
exactly as in experiments Hybrid0 and Hybrid1, and gives these keys and the appropriate associated
random coins to A. Signing queries of A can be easily simulated by V ∗ in the obvious way. When
A outputs M and R with PK0, PK1 ∈ R, the verifier V∗ computes C∗

0 and C∗
1 exactly as in Hybrid1

and then gives to the prover P the sets RS and RE, the message M ∗, and the ciphertexts (C∗
0 , C∗

1);
this defines the NP-statement x exactly as in step 4 of the ring signing algorithm. In addition, V ∗

gives the two witnesses w0 = (pkS,0, σ
′
0, ω0) and w1 = (pkS,1, σ

′
1, ω1) to P. Finally, V∗ sends as its

first message the “random string” component r of the lexicographically-first public key in R (this
r is the random string that would be used to generate the proof π in step 4 of the ring signing
algorithm). The prover responds with a proof π ← Pr(x,wb) (for some b ∈ {0, 1}), and then V∗

returns the signature (C∗
0 , C∗

1 , π) to A.
Note that if the prover uses the first witness provided to it by V ∗ then the view of A is distributed

exactly according to Hybrid0, while if the prover uses the second witness provided to it by V ∗ then
the view of A is distributed exactly according to Hybrid1. Witness indistinguishability of the ZAP
thus implies computational indistinguishability of Hybrid0 and Hybrid1.

We may now notice that Hybrid1 is computationally indistinguishable from E1 by exactly the
same argument used to show the indistinguishability of Hybrid0 and E0. This completes the proof.

Unforgeability. Assume there exists a ppt adversary A that breaks the above ring signature
scheme (in the sense of Definition 8) with non-negligible probability. We construct an adversary A ′

that breaks the underlying signature scheme (Gen′,Sign′,Vrfy′) (in the standard sense of existential
unforgeability) with non-negligible probability.
A′ receives as input a public key pkS. Let n = n(k) be a bound on the number of (honest user)

public keys that A expects to be generated. A′ runsA with input public keys S = {PK1, . . . , PKn},
that A′ generates as follows. A′ chooses i∗ ← {1, . . . , n} and sets pkS,i∗ = pkS . The remainder
of public key PKi∗ is generated exactly as prescribed by the Gen algorithm, with the exception
that the decryption key skE,i∗ that is generated is not erased. Public keys PKi for i 6= i∗ are also
generated exactly as prescribed by the Gen algorithm, again with the exception that the decryption
keys {skE,i} are not erased.
A′ then proceeds to simulate the oracle queries of A in the natural way:

1. When A requests a signature on message M , with respect to ring R (which may possibly
contain some public keys generated in an arbitrary manner by A), to be signed by user
i 6= i∗, then A′ can easily generate the response to this query by running the Sign algorithm
completely honestly;

2. When A requests a signature on message M , with respect to ring R (which, again, may
possibly contain some public keys generated in an arbitrary manner by A) to be signed by
user i∗, then A′ cannot directly respond to this query since it does not know skS,i∗. Instead,
A′ submits the appropriate message M ∗ to its signing oracle, and obtains in return a signature
σ′

i∗ . It then computes the remainder of the ring signature by following the rest of the Sign

algorithm; note, in particular, that skS,i∗ is not needed for this;

3. Any corruption query made by A for a user i 6= i∗ can be faithfully answered by A′. On the
other hand, if A ever makes a corruption query for i∗, then A′ simply aborts.

12

At some point, A outputs a forgery σ̄ = (C̄∗
0 , C̄∗

1 , π̄) on a message M̄ with respect to some ring
R̄ ⊆ S, none of whose members is corrupted. If PKi∗ 6∈ R̄, then A′ aborts. Otherwise, since A′

knows all relevant decryption keys, it can decrypt both C̄∗
0 and C̄∗

1 and obtain candidate signatures
σ̄i∗,0 and σ̄i∗,1 respectively. Finally, A′ sets M̄∗ = M̄ |PK1 | · · · |PKn′ (where R̄ = {PK i}) and
verifies whether either of σi∗,0 or σ̄i∗,1 is a valid signature for M ∗ with respect to pkS = pkS,i∗ ; if
so, it outputs M̄∗ along with the valid signature. Note that (by requirement) A never requested
a signature on message M̄ with respect to the ring R̄, and so A′ never requested a signature on
message M̄∗ from its own oracle.

We claim that if A forges a signature with non-negligible probability ε = ε(k), then A ′ forges
a signature with probability at least ε′ = ε/n− negl(k). To see this, note first that if A outputs a
valid forgery then with all but negligible probability (by adaptive soundness of the ZAP) it holds
that (R̄S , M̄∗, R̄E , C̄∗

j) ∈ L for some j (where R̄S , R̄E are defined in the natural way based on the

ring R̄ and the public keys it contains). Assuming this to be the case, we know that there exist i, j,
σ, and ω such that C∗

j = Enc∗RE
(σ;ω) and Vrfy′pkS,i

(M∗, σ) = 1 for some pkS,i ∈ R̄. Conditioned on

this, with probability at least 1/n − negl(k) it is the case that A′ does not abort and can recover
a valid signature on M̄∗ with respect to pkS = pkS,i∗. (We rely here on the fact that with all
but negligible probability over choice of encryption public keys, Enc∗ has zero decryption error).
Security of (Gen′,Sign′,Vrfy′) thus implies that ε is negligible.

“Oblivious” users. The scheme above can also be used in a situation where some users in the ring
have not generated a key pair according to Gen, as long as (1) every ring member has a public key
both for encryption and for signing (these keys may be associated with different schemes), and (2) at
least one of the members has included a sufficiently-long random string in his public key. Thus, a
single user who establishes a public key for a ring signature scheme suffices to provide anonymity
for everyone. This also provides a way to include “oblivious” users in the signing ring [1, 2].

Achieving a stronger anonymity guarantee. The above scheme is not secure against full
key exposure, and it is essential to our proof of anonymity that the adversary not be given the
random coins used to generate all (honest) ring signature keys.4 (If the adversary gets all sets of
random coins, it can decrypt ciphertexts encrypted using Enc∗RE

for any ring of honest users R and
thereby determine the true signer of a message.) It is possible to achieve anonymity against full key
exposure using an enhanced form of encryption for which, informally, there exists an “oblivious”
way to generate a public key without generating a corresponding secret key. This notion, introduced
by Damg̊ard and Nielsen [12], can be viewed as a generalization of dense cryptosystems in which
the public key is required to be a uniformly distributed string (in particular, dense cryptosystems
satisfy the definition below). We review the formal definition here.

Definition 9 An oblivious key generator for the public-key encryption scheme (EGen, Enc, Dec) is
a pair of ppt algorithms (OblEGen,OblRand) such that:

• OblEGen, on input 1k and random coins ω ∈ {0, 1}n(k), outputs a key pk;

• OblRand, on input a key pk, outputs a string ω;

and the following distribution ensembles are computationally indistinguishable:

{

ω ← {0, 1}n(k) : (ω,OblEGen(1k;ω))
}

4We remark that anonymity still holds if the adversary is given all secret keys (but not the randomness used to
generate all secret keys). This is because the decryption key skE is erased, and not included in SK.

13

and
{

(pk, sk)← EGen(1k);ω ← OblRand(pk) : (ω, pk)
}

.

♦

Note that if (EGen,Enc,Dec) is semantically secure, then (informally speaking) it is also semantically
secure to encrypt messages using a public key pk generated by OblEGen, even if the adversary has
the random coins used by OblEGen in generating pk. We remark for completeness that the El
Gamal encryption scheme (over the group of quadratic residues modulo a prime) is an example of
a scheme having an oblivious key generator.

Given the above, we adapt our construction in the natural way: specifically, the Gen algorithm
is changed so that instead of generating pkE using EGen (and then erasing the secret key skE and
the random coins used), we now generate pkE using OblEGen. Adapting the proof of Theorem 1,
we can easily show:

Theorem 2 Under the assumptions of Theorem 1 and assuming (EGen, Enc, Dec) has an oblivious
key generator, the modified ring signature scheme described above is anonymous against full key
exposure, and unforgeable w.r.t. insider corruption.

Proof The proof of unforgeability follows immediately from Theorem 1 since, by Definition 9, the
adversary cannot distinguish between the original scheme (in which the encryption key is generated
using EGen) and the modified scheme (in which the encryption key is generated using OblEGen).

We now argue that the modified scheme achieves anonymity against full key exposure. First note
that anonymity against attribution attacks claimed in Theorem 1 holds even when the adversary
is given all random coins used to generate (PK0, SK0) except for those coins used to generate
pkE,0 (using EGen). Now, if there exists a ppt adversary A that breaks anonymity of the modified
scheme in the sense of full key exposure, we can use it to construct a ppt adversary A ′ that
breaks anonymity of the original scheme against attribution attacks. A′ receives PK0, the random
coins ωS,1, ωE,1 used to generate (PK1, SK1), and the random coins ωS,0 used to generate pkS,0

(i.e., A is not given the coins used to generate pkE,0). Next, A′ runs ω′
E,0 ← OblRand(pkE,0) and

ω′
E,1 ← OblRand(pkE,1) and gives to A the public key PK0 it received as well as the random coins

ωS,0, ω
′
E,0, ωS,1, ω

′
E,1. The remainder of A’s execution is simulated in the natural way by A′.

Definition 9 implies that the advantage of A in the above is negligibly close to the advantage
of A in attacking the modified scheme in the sense of full key exposure. But the advantage of A
in the above is exactly the advantage of A′ in attacking the original scheme via key attribution
attack. Since we have already proved that the original scheme is anonymous against attribution
attacks (cf. Theorem 1), the modified scheme is anonymous against full key exposure.

6 Efficient Two-User Ring Signature Schemes

In this section, we present more efficient constructions of two-user ring signature schemes based on
specific assumptions. Our first scheme is based on the (standard) signature scheme constructed by
Waters [23], whereas the second is based on the Camenisch-Lysyanskaya signature scheme [7].

6.1 The Waters Scheme

We briefly review the Waters signature scheme. Let
�

,
�

1 be groups of prime order q such that
there exists an efficiently computable bilinear map ê :

�
×

�
→

�
1 . We assume that q,

�
,

�
1 , ê,

14

and a generator g ∈
�

are publicly known. The Waters signature scheme for messages of length n
is defined as follows:

Key Generation. Choose α ← � q and set g1 = gα. Additionally choose random elements
h, u′, u1, . . . , un ←

�
. The public key is (g1, h, u′, u1, . . . , un) and the secret key is hα.

Signing. To sign the n-bit message M , first compute w = u′ ·
∏

i:Mi=1 ui. Then choose random
r ← � q and output the signature σ = (hα · wr, gr).

Verification. To verify the signature (A,B) on message M with respect to public key (g1, h, u′,

u1, . . ., un), compute w = u′ ·
∏

i:Mi=1 ui and then check whether ê(g1, h) · ê(B,w)
?
= ê(A, g).

6.2 A 2-User Ring Signature Scheme

The main observation we make with regard to the above scheme is the following: element h is
arbitrary, and only knowledge of hα is needed to sign. So we can dispense altogether with including
h in the public key; instead, a user U with secret α and the value g1 = gα in his public key will
use as his “h-value” the value ḡ1 contained in the public key of a second user Ū . This provides
anonymity since Ū could also have computed the same value (ḡ1)

α using the secret value ᾱ = logg ḡ1

known to him (because ḡα
1 = gᾱ

1). We now proceed with the details.

Key Generation. Choose α ← � q and set g1 = gα. Additionally choose random elements
u′, u1, . . . , un ←

�
. The public key is (g1, u′, u1, . . ., un) and the secret key is α. (We again assume

that q,
�

,
�

1 , ê, and g are system-wide parameters.)

Ring Signing. To sign message M ∈ {0, 1}n with respect to the ring R = {PK,PK} using secret
key α (where we assume without loss of generality that α is the secret corresponding to PK),
proceed as follows: parse PK as (g1, u′, u1, . . ., un) and PK as (ḡ1, ū′, ū1, . . ., ūn), and compute
w := u′ ·

∏

i:Mi=1 ui and w̄ := ū′ ·
∏

i:Mi=1 ūi. Then choose random r ← � q and output the signature

σ = (ḡα
1 · (ww̄)r, gr) .

Ring Verification. To verify the signature (A,B) on message M with respect to the ring R =
{PK,PK} (parsed as above), compute w := u′ ·

∏

i:Mi=1 ui and w̄ := ū′ ·
∏

i:Mi=1 ūi and then check

whether ê(g1, ḡ1) · ê(B, (ww̄))
?
= ê(A, g).

It is not hard to see that correctness holds. We prove the following regarding the above scheme:

Theorem 3 Assume the Waters signature scheme is existentially unforgeable5 under adaptive cho-
sen message attack. Then the 2-user ring signature scheme described above is unconditionally
anonymous against full key exposure, and unforgeable against chosen-subring attacks.

Proof Unconditional anonymity against full key exposure follows easily from the observation

made earlier: namely, that only the value ḡα
1 = gᾱ

1 (where ᾱ
def
= logg ḡ1) is needed to sign, and either

of the two (honest) parties can compute this value.
We now prove that the scheme satisfies Definition 7. We do this by showing how an adversary A

that forges a signature with respect to the ring signature scheme with non-negligible probability can
be used to construct an adversary Â that forges a signature with respect to the Waters signature
scheme (in the standard sense) with the same probability. For simplicity in the proof, we assume

5This holds [23] under the computational Diffie-Hellman assumption in � .

15

that A only ever sees the public keys of two users, requests all signatures to be signed with respect
to the ring R containing these two users, and forges a signature with respect to that same ring R.
By a hybrid argument, it can be shown that (for this scheme) this is equivalent to the more general
case when A may see multiple public keys, request signatures with respect to various (different)
2-user subsets, and then output a forgery with respect to any 2-user subset of its choice.

Construct Â as follows: Â is given the public key (ĝ1, ĥ, û′, û1, . . ., ûn) of an instance of the
Waters scheme. Â constructs two user public keys as follows: first, it sets g1 = ĝ1 and ḡ1 = ĥ.
Then, it chooses random u′, u1, . . . , un ←

�
and sets ū′ = û′/u′ and ūi = ûi/ui for all i. It gives

to A the public keys (g1, u′, u1, . . ., un) and (ḡ1, ū′, ū1, . . ., ūn). Note that both public keys have
the appropriate distribution. When A requests a ring signature on a message M with respect to
the ring R containing these two public keys, Â requests a signature on M from its signing oracle,
obtains in return a signature (A,B), and gives this signature to A. This is a perfect simulation,
since



ĥlogg ĝ1 ·



û′
∏

i:Mi=1

ûi





r

, gr



 =



ḡ
logg g1

1 ·



u′ū′
∏

i:Mi=1

uiūi





r

, gr



 ,

which is an appropriately-distributed ring signature with respect to the public keys given to A.
When A outputs a forgery (A∗, B∗) on a message M ∗, this same forgery is output by Â. Note

that Â outputs a valid forgery whenever A does, since

ê(g1, ḡ1) · ê
(

B∗, (u′ū′
∏

i:M∗
i =1 uiūi)

)

= ê(A∗, g)

implies

ê(ĝ1, ĥ) · ê
(

B∗, (û′∏

i:M∗
i =1 ûi)

)

= ê(A∗, g) .

We conclude that Â outputs a forgery with the same probability as A. Since, by assumption, the
Waters scheme is secure, this completes the proof.

An efficiency improvement. A (slightly) more efficient variant of the above scheme is also
possible. Key generation is the same as before, except that an additional, random identifier I ∈
{0, 1}k is also chosen and included in the public key. Let <lex denote lexicographic order. To
sign message M ∈ {0, 1}n with respect to the ring R = {PK,PK}, first parse PK as (I, g1, u′,
u1, . . ., un) and PK as (Ī, ḡ1, ū′, ū1, . . ., ūn). Choose random r ← � q. If I ≤lex Ī, compute
w = u′ ·

∏

i:Mi=1 ui and the signature

σ = (s · wr, gr) ;

if Ī <lex I, compute w̄ = ū′ ·
∏

i:Mi=1 ūi and the signature

σ = (s · w̄r, gr) ,

where, in each case, s = ḡα
1 = gᾱ

1 is computed using whichever secret key is known to the signer.
Verification is changed in the obvious way. A proof similar to the above shows that this scheme
satisfies the same security properties as in Theorem 3.

6.3 A Construction Based on the Camenisch-Lysyanskaya Scheme

A second ring signature scheme based on similar ideas can be derived from the signature scheme
of Camenisch and Lysyanskaya (scheme A in [7]), which we briefly review. Let

�
,

�
1 , q, ê, g be as

16

above (we again assume that these are publicly known). The Camenisch-Lysyanskaya signature
scheme for messages in � q is defined as follows:

Key Generation. Choose x, y ← � q and set X = gx and Y = gy. The public key is (X,Y) and
the secret key is (x, y).

Signing. To sign the message m ∈ � q, choose a random value a ∈
�

and output the signature
(a, ay, ax+mxy).

Verification. To verify the signature (a, b, c) on message m with respect to public key (X,Y),

check that ê(a, Y)
?
= ê(g, b) and ê(X, a) · ê(X, b)m ?

= ê(g, c).

The reader is referred to [7] for details regarding the assumption under which the above scheme
can be proven secure. As for adapting the above to a two-user ring signature scheme, our key
observation is that knowledge of either (x, Y) or (X, y) is sufficient to generate a signature. In
more detail:

• Using (x, Y), a signature on m may be computed as follows: choose random r ∈ � q and set
a = gr. Then output the signature (a, Y r, axY mxr).

• Using (X, y), a signature on m may be computed as follows: choose random r ∈ � q and set
a = gr. Then output the signature (a, ay , Xr+mry).

This suggests the following ring signature scheme: to generate a public key, choose x ← � q and
a random identifier I ∈ {0, 1}k ; the public key is (I,X = gx) and the secret key is x. To sign
m with respect to ring

{

(I,X), (Ī , X̄)
}

, proceed as follows: if I ≤lex Ī, compute a Camenisch-
Lysyanskaya signature (as described above) for the “public key” (X, X̄); if Ī <lex I, compute a
Camenisch-Lysyanskaya signature for the “public key” (X̄,X). Verification is done in the obvious
way.

Theorem 4 Assume the Camenisch-Lysyanskaya signature scheme is existentially unforgeable un-
der adaptive chosen message attack. Then the 2-user ring signature scheme described above is un-
conditionally anonymous against full key exposure, and unforgeable against chosen-subring attacks.

Proof Unconditional anonymity against full key exposure is immediate. Unforgeability against
chosen-subring attacks (assuming security of the Camenisch-Lysyanskaya scheme) can be easily
proven as in Theorem 3. Specifically, we show how an adversary A that forges a signature with
respect to the ring signature scheme with non-negligible probability can be used to construct an
adversary Â that forges a signature with respect to the Camenisch-Lysyanskaya signature scheme
(in the standard sense) with the same probability. For simplicity in the proof, we assume that A
only ever sees the public keys of two users, requests all signatures to be signed with respect to the
ring R containing these two users, and forges a signature with respect to that same ring R. As
before, this implies the more general case.

Construct Â as follows: Â is given the public key (X,Y) of an instance of the Waters scheme.
Â first chooses random I, Ī ∈ {0, 1}k ; assume without loss of generality that I ≤lex Ī. Then Â gives
A the public keys (I,X) and (Ī , Y). Note that both public keys have the appropriate distribution.
When A requests a ring signature on a message M with respect to the ring R containing these
two public keys, Â requests a signature on M from its signing oracle, obtains in return a signature
(a, b, c), and gives this signature to A. It is trivial to see that this is a perfect simulation.

When A outputs a forgery (a∗, b∗, c∗) on a message M ∗, this same forgery is output by Â.
It is again trivial to see that this is a valid forgery for Â, and so we conclude that Â outputs a

17

forgery with the same probability as A. Since, by assumption, the Camenisch-Lysyanskaya scheme
is secure, this completes the proof.

Acknowledgments

We thank Giuseppe Ateniese for referring us to [5, 7], and Javier Herranz for informing us about [17].

References

[1] M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys. In Advances
in Cryptology — Asiacrypt 2002, volume 2501 of Lecture Notes in Computer Science, pages
415–432. Springer, 2002.

[2] B. Adida, S. Hohenberger, and R.L. Rivest. Ad-hoc-group signatures from hijacked keypairs.
A preliminary version was presented at the DIMACS Workshop on Theft in E-Commerce,
2005. Manuscript available at http://theory.lcs.mit.edu/~rivest/publications.html.

[3] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal defini-
tions, simplified requirements, and a construction based on general assumptions. In Advances
in Cryptology — Eurocrypt 2003, volume 2656 of Lecture Notes in Computer Science, pages
614–629. Springer, 2003.

[4] A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and constructions
without random oracles. In Third Theory of Cryptography Conference, TCC 2006, volume
3876 of Lecture Notes in Computer Science, pages 60–79. Springer, 2006.

[5] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In Advances in Cryptology — Eurocrypt 2003, volume 2656 of Lecture Notes
in Computer Science, pages 416–432. Springer, 2003.

[6] E. Bresson, J. Stern, and M. Szydlo. Threshold ring signatures and applications to ad-hoc
groups. In Advances in Cryptology — Crypto 2002, volume 2442 of Lecture Notes in Computer
Science, pages 465–480. Springer, 2002.

[7] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. In Advances in Cryptology — Crypto 2004, volume 3152 of Lecture Notes in Computer
Science, pages 56–72. Springer, 2004.

[8] D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology — Eurocrypt ’91,
volume 547 of Lecture Notes in Computer Science, pages 257–265. Springer, 1991.

[9] L. Chen, C. Kudla, and K.G. Paterson. Concurrent signatures. In Advances in Cryptology —
Eurocrypt 2004, volume 3027 of Lecture Notes in Computer Science, pages 287–305. Springer,
2004.

[10] S.S.M. Chow, V.K.-W. Wei, J.K. Liu, and T. H. Yuen. Ring signatures without random
oracles. In Proc. ACM Symposium on Information, Computer and Communications Security
(ASIACCS) 2006, pages 297–302. ACM, 2006.

18

[11] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In Advances in Cryptology — Crypto ’94, volume 839 of
Lecture Notes in Computer Science, pages 174–187. Springer, 1994.

[12] I. Damg̊ard and J.B. Nielsen. Improved non-committing encryption schemes based on a general
complexity assumption. In Advances in Cryptology — Crypto 2000, volume 1880 of Lecture
Notes in Computer Science, pages 432–450. Springer, 2000.

[13] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in ad-hoc groups.
In Advances in Cryptology — Eurocrypt 2004, volume 3027 of Lecture Notes in Computer
Science, pages 609–626. Springer, 2004.

[14] C. Dwork and M. Naor. Zaps and their applications. In Proc. 41st Annual Symposium on
Foundations of Computer Science (FOCS), pages 283–293. IEEE, 2000.

[15] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge proofs under
general assumptions. SIAM J. Computing, 29(1):1–28, 1999.

[16] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology — Crypto ’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194. Springer, 1987.

[17] J. Herranz. Some digital signature schemes with collective signers. PhD the-
sis, Universitat Politècnica de Catalunya, Barcelona, April 2005. Available at
http://www.lix.polytechnique.fr/~herranz/thesis.htm.

[18] J. Herranz and G. Sáez. Forking lemmas for ring signature schemes. In Progress in Cryptol-
ogy — Indocrypt 2003, volume 2904 of Lecture Notes in Computer Science, pages 266–279.
Springer, 2003.

[19] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their applica-
tions. In Advances in Cryptology — Eurocrypt ’96, volume 1070 of Lecture Notes in Computer
Science, pages 143–154. Springer, 1996.

[20] J.K. Liu, V.K. Wei, and D.S. Wong. Linkable spontaneous anonymous group signatures for
ad hoc groups. In Information Security and Privacy: 9th Australasian Conference (ACISP
2004), volume 3108 of Lecture Notes in Computer Science, pages 325–335. Springer, 2004.

[21] M. Naor. Deniable ring authentication. In Advances in Cryptology — Crypto 2002, volume
2442 of Lecture Notes in Computer Science, pages 481–498. Springer, 2002.

[22] R.L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret: Theory and applications of ring
signatures. In Theoretical Computer Science, Essays in Memory of Shimon Even, volume 3895
of Lecture Notes in Computer Science, pages 164–186. Springer, 2006. Preliminary version in
Asiacrypt 2001.

[23] B. Waters. Efficient identity-based encryption without random oracles. In Advances in Cryp-
tology — Eurocrypt 2005, volume 3494 of Lecture Notes in Computer Science, pages 114–127.
Springer, 2005.

[24] J. Xu, Z. Zhang, and D. Feng. A ring signature scheme using bilinear pairings. In Workshop
on Information Security Applications (WISA), volume 3325 of Lecture Notes in Computer
Science, pages 160–169. Springer, 2004.

19

[25] F. Zhang and K. Kim. ID-based blind signature and ring signature from pairings. In Advances
in Cryptology — Asiacrypt 2002, volume 2501 of Lecture Notes in Computer Science, pages
533–547. Springer, 2002.

A Separation Results

A.1 Proofs of Claims 1–5

Proof of Claim 1: Let Π = (Gen,Sign,Vrfy) be a ring signature scheme satisfying the conditions
stated in the claim. Construct the following scheme Π′: the key generation algorithm Gen′(1k)
computes (PK,SK)← Gen(1k) and outputs PK ′ = 0|PK and SK ′ = SK. The signing algorithm
Sign′s,SKs

(M,R) checks whether all public keys in R begin with a “0”: if so, it outputs σ ←
Signs,SKs

(M, R̄) (where R̄ contains the same keys as R, but with the leading bit of each key
removed); otherwise, it outputs s. Vrfy′R(M,σ) similarly checks whether all public keys in R begin
with a “0”: if so, it outputs VrfyR̄(M,σ) (with R̄ as above); otherwise, it outputs 0. (Note that
correctness is only required to hold for rings containing honestly-generated public keys.)

Clearly, the above scheme does not achieve anonymity w.r.t. adversarially-chosen keys. On the
other hand, it clearly still achieves basic anonymity. It is also not difficult to see that it remains
unforgeable w.r.t. insider corruption.

Proof of Claim 2: Let Π = (Gen,Sign,Vrfy) be a ring signature scheme satisfying the conditions
stated in the claim. The existence of such a scheme implies the existence of a standard sig-
nature scheme, which in turn implies the existence of one-way functions, which in turn implies
the existence of a symmetric-key encryption scheme (Enc,Dec) that is semantically-secure under
chosen-plaintext attacks. Construct scheme Π′ as follows: the key generation algorithm Gen′(1k)
computes (PK,SK) ← Gen(1k) but additionally chooses κ ← {0, 1}k ; it outputs PK ′ = PK
and SK ′ = SK|κ. The signing algorithm Sign′

s,SKs|κ
(M,R) computes σ ← Signs,SKs

(M,R) and

C ← Encκ(0k); it outputs the signature (σ,C). Verification is changed in the obvious way, simply
ignoring the ciphertext included as part of the signature.

The scheme does not achieve anonymity under attribution attacks since, given a signature
computed by a user with secret key SK|κ with respect to any ring, as long as the adversary has
all-but-one of the secret keys of the members of the ring (and, in particular, has the {κi} values for
all-but-one of the members), it can determine the correct signer with all but negligible probability.
On the other hand, it is not hard to show that the scheme remains anonymous w.r.t. adversarially-
chosen keys and also remains unforgeable w.r.t. insider corruption.

We remark that although the modified scheme, above, does not satisfy our formal definition
of anonymity against attribution attacks, it does not quite allow an adversary to unambiguously
prove to a third party that some user was the signer. (The issue is that the adversary can output
whatever {κi} it likes, and not the “actual” values it chose at the time of key generation.) This
can be prevented, however, if we additionally require users to include a commitment to κ as part
of their public key, and to include the corresponding decommitment as part of their secret key.

Proof of Claim 3: Let Π = (Gen,Sign,Vrfy) be a ring signature scheme satisfying the conditions
stated in the claim, and let (EGen,Enc,Dec) be a semantically-secure public-key encryption scheme.
We denote by C∗ ← Enc∗RE

(m) the probabilistic algorithm that takes as input a set of encryption
public keys RE = {pk1, . . . , pkn} and a message m, and does the following: it first chooses random

20

s1, . . . , sn−1 ∈ {0, 1}
|m| and then outputs:

C∗ =



Encpk1
(s1),Encpk2

(s2), · · · ,Encpkn−1
(sn−1),Encpkn

(m⊕
n−1
⊕

j=1

sj)



 .

Informally, encryption using Enc∗ is semantically secure as long as at least one of the corresponding
secret keys is unknown. (We will use the same encryption scheme in Section 5.)

Construct Π′ = (Gen′, Sign′, Vrfy′) as follows: Gen′(1k) computes (PK,SK) ← Gen(1k) and
(pk, sk)← EGen(1k), and then sets the public key equal to PK|pk and the secret key equal to SK.
The signing algorithm Sign′s,SKs

(M,R) parses each public key in R as PKi|pki and sets R′ = {PKi}
and RE = {pki}. Next, it computes σ ← Signs,SKs

(M,R′) and C∗ ← Enc∗RE
(s) and outputs (σ,C∗)

as the signature. Verification simply ignores the second component.
It is immediate that Π′ is not anonymous against full key exposure (since C ∗ can be decrypted

given the decryption keys {ski} of the entire ring). On the other hand, it is not difficult to see
that Π′ remains anonymous against attribution attacks (since C ∗ cannot be decrypted if one of the
secret keys is missing), and unforgeable w.r.t. insider corruption.

Note that our construction of Section 5 is anonymous against attribution attacks and unforgeable
w.r.t. insider corruption, but is easily seen to be insecure against full key exposure. (However, that
construction also assumes the existence of a ZAP.)

Proof of Claim 4: Let Π = (Gen,Sign,Vrfy) be a ring signature scheme satisfying the conditions
of the claim. Construct Π′ = (Gen′, Sign′, Vrfy′) as follows. The key generation algorithm Gen′ is
the same as Gen. The signing algorithm Sign′

s,SKs
(M,R) sets R′ = R ∪ {M} (where M is treated

as a public key) and computes σ1 ← Signs,SKs
(M,R) and σ2 ← Signs,SKs

(0k, R′). The output is
the signature (σ1, σ2). To verify a signature (σ1, σ2) (using Vrfy′), simply verify that signature σ1

is correct (using Vrfy).
It is easy to see that the scheme is insecure against chosen-subring attacks. Specifically, consider

the adversary A who receives the set of public keys (PK1, PK2, PK3) and then requests a signature
on the message M = PK3 with respect to the ring R = (PK1, PK2). Let (σ1, σ2) be the response
of the signing oracle. A outputs (0k, (σ2, σ2), (PK1, PK2, PK3)) and terminates. Note that (σ2, σ2)
is a valid ring signature (with respect to the scheme Π′) for the message 0k with respect to the ring
(PK1, PK2, PK3). Also note that A never requested a signature for such a message/ring pair. We
therefore conclude that A succeeds in producing a valid forgery with probability 1.

It is quite obvious that Π′ remains anonymous against full key exposure. Π′ is also unforgeable
against fixed-ring attacks. We prove this by contradiction. Let A′ be an adversary that breaks
the unforgeability of Π′ against fixed-ring attacks. We construct an adversary A that breaks the
unforgeability of Π w.r.t. insider corruption. (We remark that we do not use A’s ability to corrupt
users here, but only its ability to request signatures with respect to rings containing adversarially-
generated keys.) A takes as input a ring R = (PK1, . . . , PKn) and feeds it to A′. When A′

requests a signature (under Sign′) on the message M with respect to the fixed ring R, A uses its
signing oracle to obtain the two components σ1 and σ2. Note that A can obtain σ2, because it can
request a signature on a ring that contains public keys of its choice (M in this case). When A ′

outputs a candidate forgery (M, (σ1, σ2)) with respect to the fixed ring R, then A outputs σ1 as a
candidate forgery for message M with respect to the ring R. If the output of A ′ is a valid signature
with respect to Π′, then the output of A is a valid signature with respect to Π. Also, if A′ never
requested a signature on M , then A never requested a signature on M with respect to the ring R.
We conclude that A outputs a valid forgery whenever A′ does.

21

Proof of Claim 5: Let Π = (Gen,Sign,Vrfy) be a scheme satisfying the conditions of the claim.
We construct the scheme Π′ as follows. The key generation algorithm Gen′ runs Gen to obtain
(PK,SK), then outputs PK ′ = 0|PK and SK ′ = SK. We will say that a public key is “good” if it
begins with a zero and that it is “bad” if it begins with a one. Note that all public keys generated
by Gen′ are “good.”

The signing algorithm Sign′s,SKs
(M,R) proceeds as follows: let R′ be the ring consisting of only

the “good” public keys from R, with the initial bit stripped. Then compute σ ← Signs,SKs
(M,R′)

and output this as the signature. The verification algorithm is modified in the appropriate way.
Π′ is not unforgeable w.r.t. insider corruption. To see this, consider the adversary A who

receives public keys (PK ′
1, PK ′

2). Next, A generates an arbitrary “bad” public key PK ′ = 1|PK ′′.
The adversary then requests a signature on an arbitrary message M with respect to the ring
(PK ′

1, PK ′
2, PK ′) on behalf of the signer holding PK ′

1. The signing oracle returns a signature
σ that is a valid signature for message M respect to the ring (PK ′

1, PK ′
2) (recall that PK ′ is

ignored, since it is “bad”). But now A can output the forgery (M,σ, (PK ′
1, PK ′

2)) and succeed
with probability 1.

It is not hard to see that Π′ remains unforgeable against chosen-subring attacks (since, in such
attacks, the adversary can only request signatures with respect to rings that consist entirely of
“good” public keys). One can also easily show that Π′ remains anonymous w.r.t. key exposures.

A.2 The Herranz-Sáez Ring Signature Scheme

In the proof of Claim 4 (above), we presented an “artificial” ring signature scheme that is unforge-
able against fixed-ring attacks, but not against chosen-subring attacks. We now show a “natural”
scheme, the Herranz-Sáez ring signature scheme [18], that illustrates the same separation (albeit
under less general assumptions).

We first review the Herranz-Sáez ring signature scheme. Let
�

be a group of prime order q,
such that, given a bit string y it is possible to efficiently verify whether y ∈

�
. Let H : {0, 1}∗ → � q

be a hash function modeled as a random oracle. We assume that H, q,
�

, and a generator g ∈
�

are publicly known. The scheme is defined as follows:

Key Generation. Choose x← � q and set y = gx. The public key is y and the secret key is x.

Ring Signing. To sign message M with respect to the ring R = {y1, . . . , yn} (where yi ∈
�

for all
i) using secret key xs, proceed as follows:

1. For i = 1, . . . , n, i 6= s, choose random ai ← � q and set Ci = gai ;

2. Choose random as ← � q;

3. Compute Cs and b as follows:

Cs = gas

∏

i6=s

y
−H(M,Ci)
i

b = as + xsH(M,Cs) +
∑

i6=s

ai;

4. In the unlikely event that the Ci are not all distinct, restart from the beginning;

5. Output the signature σ = (b, C1, . . . , Cn).

22

Ring Verification. To verify the signature (b, C1, . . . , Cn) on message M with respect to the ring
R = {y1, . . . , yn} (where yi, Ci ∈

�
for all i), check that the Ci are all distinct and that:

gb ?
=

n
∏

i=1

Ci · y
H(M,Ri)
i .

It is not hard to see that the scheme above is unconditionally anonymous against full key
exposure, even in the standard model. This is because a ring signature on message M with respect
to a ring R is a uniformly random sample from the set of tuples (b, C1, . . . , Cn) that satisfy the
ring verification condition, and this distribution is independent of the index s of the signing key
used. Additionally, Herranz and Sáez [18] prove that this scheme is unforgeable against fixed-ring
attacks under the discrete logarithm assumption in the random oracle model. (The authors do not
formally define unforgeability, but an inspection of their proof of security reveals that their notion
of unforgeability matches our Definition 6.)

However, the Herranz-Sáez scheme is not unforgeable against chosen-subring attacks. Consider
an adversary that requests two signatures on the same arbitrary message M with respect to the
disjoint rings R = (y1, . . . , yn) and R′ = (y′1, . . . , y

′
m), obtaining signature σ = (b, C1, . . . , Cn) in the

first case and σ′ = (b′, C ′
1, . . . , C

′
m) in the second. The adversary then outputs the forged signature

σ∗ = (b + b′, C1, . . . , Cn, C ′
1, . . . , C

′
m)

on M with respect to the ring R ∪ R′ = (y1, . . . , yn, y′1, . . . , y
′
m). Applying the ring verification

algorithm shows that this is indeed a valid forgery, except in the unlikely case that Ci = C ′
j for

some i, j.
The above attack was, in fact, addressed in subsequent work of Herranz [17], where it is shown

that a simple modification of the scheme (in which the ring R is included as an additional input to
the hash function) is unforgeable against chosen-subring attacks. (Examination of the proof shows
that the modified scheme is also secure with respect to our Definition 8, although adversarially-
chosen keys are not explicitly addressed in [17].) Nevertheless, the attack on the original scheme
that we have demonstrated shows that security against chosen-subring attacks is strictly stronger
than security against fixed-ring attacks, and illustrates yet again the importance of rigorously
formalizing desired notions of security.

23

