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Abstract. We revisit the security of cryptographic primitives in the
random-oracle model against attackers having a bounded amount of aux-
iliary information about the random oracle. This situation arises most
naturally when an attacker carries out offline preprocessing to generate
state (namely, auxiliary information) that is later used as part of an
on-line attack, with perhaps the best-known example being the use of
rainbow tables for function inversion. It also models non-uniform attack-
ers that may depend on the random oracle.

Unruh (Crypto 2007) introduced a generic technique for analyzing
security in this model: a random oracle about which S bits of arbitrary
auxiliary information are known can be replaced by a random oracle
whose value is fixed in some way on P points; the two are distinguish-
able with probability at most O(

√
ST/P ) by attackers making at most

T oracle queries. Unruh conjectured that the distinguishing advantage
could be made negligible for a sufficiently large polynomial P .

We show that Unruh’s conjecture is false by proving that the distin-
guishing probability when using the above technique is at leastΩ(ST/P ).
Faced with this negative general result, we establish new security bounds
in this setting for specific applications of random oracles including the
construction of one-way functions, collision-resistant hash functions, pseu-
dorandom generators/functions, and message authentication codes. We
also explore the effectiveness of salting as a mechanism to defend against
auxiliary information, and give quantitative bounds demonstrating that
salting provably helps for the aforementioned applications.

1 Introduction

The random-oracle model [4] often provides a simple and elegant way of ana-
lyzing the concrete security of cryptographic schemes based on hash functions.
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To take a canonical example, consider (näıve) password hashing where a pass-
word pw is stored as O(pw) for O a cryptographic hash function, and we are
interested in the difficulty of recovering pw from O(pw) (i.e., we are interested
in understanding the one-wayness of O). In practice, when O is instantiated
using various cryptographic hash functions, it is empirically difficult to recover
pw from O(pw) when pw is chosen from any high-entropy distribution; in fact,
quantitatively speaking, if pw has min-entropy k then the best known attacks
take O(2k) work to recover pw. But it seems difficult to formalize natural, con-
crete assumptions about O that would allow us to prove such statements, or
to show that known attacks are the best possible. If we model O as a random
oracle, however, then statements such as these can be proven easily.

Importantly, the above discussion assumes that no preprocessing is done.
That is, we imagine an attacker who does no work prior to being given O(pw) or,
more formally, we imagine that the attacker is fixed before the random oracle O
is chosen. In that case, the only way an attacker can learn information about O
is by making explicit queries to an oracle for O during an online phase (i.e., after
being given O(pw)), and the above-mentioned bounds hold. Note, however, that
O might be a standardized hash function that is known in advance, and offline
preprocessing attacks—during which the attacker can query and store arbitrary
information about O—can be a significant threat in practice.

Concretely, let O : [N ] → [N ] (where [n] = {1, . . . , n}) and assume pw is
uniform in [N ]. The obvious attack to recover pw from O(pw) is an exhaustive-
search attack which uses time T = N in the online phase (equating time with
the number of queries to O) to recover pw. But an attacker could also generate
the entire function table for O during an offline preprocessing phase; then, given
O(pw), the attacker can recover pw in O(1) time using a table lookup. In the
example just mentioned the data structure generated during the offline phase
requires S = O(N) space (ignoring logN factors), but Hellman [12] showed a
more clever construction that, in particular, gives an attack using S = T =
O(N2/3) when O is treated as a random function (see [14, Section 5.4.3] for
a self-contained description). Rainbow tables implementing this approach along
with later improvements (most notably by Oechslin [17]) are widely used in
practice, and must be taken into account in any practical analysis. Further work
has explored improving these attacks and designing rigorous versions of them
that work for any function O, as well as showing bounds on how well such attacks
can perform [21, 9, 10, 2, 7].

The above discussion in the context of function inversion gives a practical
example of where auxiliary information about a random oracle (in this case, in
the form of rainbow tables generated using the random oracle) can quantitatively
change the security of a given application that uses the random oracle. For a more
dramatic (but less practically relevant) example, consider the case of collision
finding. Given a random function O : [N ] → [M ] where N > M , one can show
that O(

√
M) queries are needed in order to find a collision in O (i.e., distinct

points x, x′ with O(x) = O(x′)). But clearly a collision in O can be found
during an offline pre-processing phase and stored using O(1) space, after which
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it is trivial to output that collision in an online phase in O(1) time. The overall
conclusion is that in settings where offline preprocessing is a possibility, security
proofs in the random-oracle model must be interpreted carefully. (We refer the
reader to [19, 5], as well as many of the references below, for further discussion.)

Another motivation for studying auxiliary information in the random-oracle
model comes from the desire to obtain accurate security bounds against non-
uniform attackers that may depend on the random oracle; this is again motivated
by the fact that random oracles are usually instantiated by a fixed hash function.
The distinction between uniform and non-uniform attackers in the random-oracle
model has led to some confusion; we refer to [18, 5] for discussion. As yet another
example to illustrate the point, consider using a length-increasing random oracle
O : [N ] → [M ] as a pseudorandom generator. It is easy to show that a uniform
attacker making T oracle queries can distinguish the output of O from uniform
with probability at most O(T/N). But it is also known [1, 8, 5] that there always
exists a non-uniform attacker with O(logN)-bit advice about the random oracle,
and making no random-oracle queries, that can distinguish the output of O from
uniform with probability Ω(1/

√
N).

Random oracles with auxiliary input. While somewhat different, the two
motivating applications above effectively reduce to the following extension of the
traditional random-oracle model, first highlighted explicitly by Unruh [19], that
we refer to as the random-oracle model with auxiliary input (ROM-AI): First, as
in the traditional random-oracle model, a function O is chosen uniformly from
the space of functions on some domain and range. Then, a computationally
unbounded attacker A0 can compute S bits of information stO about O in an
offline phase before attacking the system (e.g., before keys are chosen by honest
parties). In a later, online phase, an attacker A1 is given stO and can additionally
make at most T queries to O while attacking the system. This naturally maps
to the preprocessing model discussed earlier, and can also be used to analyze
security against non-uniform circuits of size C by setting S = T = C.1

1.1 Handling Random Oracles with Auxiliary Input

Broadly speaking, there are three ways one can address the issue of auxiliary
input in the random-oracle model: (1) by using a generic approach that applies
to all uses of the random oracle, (2) by using an application-specific approach to
analyze existing schemes, or (3) by modifying existing schemes in an attempt to
defeat the use of auxiliary input. We discuss prior work along these lines below.

A generic approach. Unruh [19] was the first to propose a generic approach
for dealing with auxiliary input in the random-oracle model. We give an informal
overview of his results (a formal statement is given in Section 2). Say we wish
to bound the success probability ϵ (in some experiment) of an online attacker
making T random-oracle queries, and relying on S bits of (arbitrary) auxiliary
information about the random oracle. Unruh showed that it suffices to analyze

1 Though in the non-uniform RAM model one may again want to allow S ̸= T .
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the success probability ϵ′(P ) of the attack in the presence of a “pre-sampled”
random oracle that is chosen uniformly subject to its values being fixed in some
arbitrary way on P points (where P is a parameter), and no other auxiliary
information is given; ϵ is then bounded by ϵ′(P ) +O(

√
ST/P ).

This is an impressive result, but it falls short of what one might hope for.
In particular, P must be super-polynomial in order to make the “security loss”
O(
√

ST/P ) negligible, but in many applications if P is too large then the bound
ϵ′(P ) one can prove on an attacker’s success probability in the presence of a pre-
sampled random oracle with P fixed points becomes too high. Unruh conjectured
that his bound was not tight, and that it might be possible to bound the “security
loss” by a negligible quantity for P a sufficiently large polynomial.

Application-specific approaches.One might hope to prove tighter bounds for
specific constructions and applications. Bounds on the effectiveness of rainbow
tables are given in [21, 2]. De et al. [7] adapted the “compression paradigm”
of Gennaro and Trevisan [11, 10] to show limitations on attacks for inverting a
permutation O (see also the appendix of [13]) as well as for distinguishing the
output of a specific pseudorandom generator based on O. However, the lower
bounds of De et al. are for attacks that work for all O, rather than for attacks
that work with high probability for random O. In particular, they do not directly
apply when using the random oracle itself as a pseudorandom generator.

“Salting.” One defense against auxiliary input, which has been explicitly sug-
gested as early as 1979 [16] and is widely used to defeat such attacks in the
context of password hashing, is to use salting. Roughly, this involves choosing a
random but public value a and using O(a, ·) in place of O(·). Thus, in the context
of password hashing we would choose a uniform salt a and store (a,O(a, pw));
in the context of collision-resistant hashing we would choose and publish a and
then look at the hardness of finding collisions in the function O(a, ·); and in the
context of pseudorandom generators we would choose a and then look at the
pseudorandomness of O(a, x) (for uniform, secret x) given a.

De et al. [7] study the effect of salting for inverting a permutation O as well as
for a specific pseudorandom generator based on one-way permutations; as noted
above, however, they were interested in bounds for inverting/distinguishing all O
rather than random O. Chung et al. [6] study the effects of salting in the design
of collision-resistant hash functions, and used Unruh’s pre-sampling technique to
argue that salting defeats pro-processing in this important case. However, they
only considered particular values of S, T , and the sizeK of the salt space (namely,
S = T = M1/10, K = M4), and obtained the security bound ε = M−1/10

which is much weaker than the “expected” bound ε = M−4/5 given by the
classical ”birthday attack.” Using salting to obtain non-uniform security was
also advocated by Mahmoody and Mohammed [15], who used the technique for
obtaining non-uniform black-box separation results.
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We are not aware of any analysis of the effectiveness of salting for defeating
preprocessing in any other contexts.2 We highlight that although it may appear
“obvious” that salting defeats, say, rainbow tables, it is not at all obvious what
is the quantitative security benefit of salting, and it is not clear whether rainbow
tables can perhaps be adapted to give a (possibly different) online/offline tradeoff
when salting is used.

1.2 Our Results

We address all three approaches outlined in the previous section. First, we in-
vestigate the generic approach to proving security in the random-oracle model
with auxiliary input, and specifically explore the extent to which Unruh’s pre-
sampling technique can be improved. Here, our result is negative: disproving
Unruh’s conjecture, we show that there is an attack for which the “security loss”
stemming from Unruh’s approach is at least Ω(ST/P ). Although there remains
a gap between our lower bound and Unruh’s upper bound that will be interesting
to close, the upshot (as we discuss next) is that Unruh’s technique is not suf-
ficient for proving strong concrete-security bounds in the random-oracle model
when preprocessing is a possibility.

Consider, e.g., the case of function inversion. One can show that the proba-
bility of inverting a random oracle O : [N ] → [N ] for which P points have been
“pre-sampled” is O(P/N+T/N). Combined with the security loss of O(

√
ST/P )

resulting from Unruh’s technique, and plugging in the optimal value of P , we
obtain a security bound of O((ST/N)1/3+T/N) for algorithms making T oracle
queries and using S bits of auxiliary input about O. Further, our negative result
shows that the best bound one could hope to prove by using Unruh’s approach
is O((ST/N)1/2 + T/N). Both bounds fall short of the best known attacks,

which succeed with probability Ω
(
min

{
T
N , (S

2T
N2 )1/3

}
+ T

N

)
. Similar gaps exist

for other cryptographic primitives.

Faced with this, we turn to studying a direct approach for proving tighter
bounds for specific applications of hash functions, namely, their use as one-
way functions, pseudorandom generators/functions (PRGs/PRFs), or message
authentication codes (MACs). Here we show much tighter, and in many cases
optimal, bounds for the security of these primitives (cf. Table 1 with K = 1); our
bounds always beat what can be shown using the provable version of Unruh’s
pre-sampling technique.

The bounds we show are weaker than what one might hope—but in many
cases this is inherent since attacks using preprocessing that match our bounds
are known to exist. Given this limitation as compared to the traditional random-
oracle model, we formally examine the effects of “salting” as a way of mitigating
or even defeating the effects of pre-processing. Here we look at the natural,
“salted” constructions of one-way functions, collision-resistant hash functions

2 Bellare et al. [3] study security of salting for the purposes of multi-instance security,
but they do not address the issue of preprocessing.
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Security bounds (here) Best known attacks

OWFs ST
Kα

+ T
α

min
{

ST
Kα

, ( S2T
K2α2 )

1/3
}
+ T

α

CRHFs S
K

+ T2

M
S
K

+ T2

M

PRGs ( ST
KN

)1/2 + T
N

( S
KN

)1/2 + T
N

PRFs ( ST
KN

)1/2 + T
N

( S
KN

)1/2 + T
N

MACs ST
KN

+ T
N

+ T
M

min
{

ST
KN

, ( S2T
K2N2 )

1/3
}
+ T

N
+ 1

M

Table 1. Security bounds and best known attacks using space S and time T for
“salted” constructions of primitives based on a random oracle. The first three (unkeyed)
primitives are constructed from a random oracle O : [K]× [N ] → [M ], where [K] is the
domain of the salt, [N ] is the domain of the secret, and α = min(N,M); the final two
(keyed) primitives are constructed from a random oracle O : [K] × [N ] × [L] → [M ],
where [L] is the domain of the input. For simplicity, logarithmic terms and constant
factors are omitted.

(CRHFs), PRGs, PRFs and MACs. Note that the “unsalted” results for one-
way functions, PRGs, PRFs, and MACs mentioned above are simply special
cases of our results when the cardinality of the salt space is K = 1.

Our results are summarized in Table 1, where they are compared to the
best known attacks using preprocessing. In the case of CRHFs, our bound is
essentially tight and matches the trivial attack of storing explicit collisions for
S distinct salts. In the remaining cases, although our bounds are not tight, it
is interesting to note that (assuming N ≥ T ≥ S) our results show that setting
the length of the salt equal to the length of the secret (i.e., setting K = N)
yields the same security bound O(T/N) that is achieved for constructions in
the standard random-oracle model without preprocessing. Summarizing a bit
informally: using an n-bit salt and an n-bit secret gives n-bit security even
in the presence of preprocessing. Thus, salting provably defeats preprocessing
in these settings. This also means that the concern of Bernstein and Lange [5]
regarding the use of (potentially unrealistic) non-uniform attackers in definitions
of security becomes a moot point when salting is possible.

All our bounds are proven using the “compression paradigm” introduced
by Gennaro and Trevisan [11, 10]. The main idea is to argue that if some at-
tacker succeeds with “high” probability, then that attacker can be used to re-
versibly encode (i.e., compress) a random oracle beyond what is possible from
an information-theoretic point of view. Since we are considering attackers who
perform preprocessing, our encoding must include the S-bit auxiliary informa-
tion produced by the attacker. Thus, the main technical challenge we face is to
ensure that our encoding compresses by (significantly) more than S bits.

Outlook. In this work we revisit the random-oracle model with auxiliary in-
put, as we believe it has received insufficient attention from the cryptographic
community despite being important for a variety of reasons. We hope our work
will motivate researchers to further explore the security of other constructions
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in the random-oracle model in the presence of auxiliary information, as well as
the effect of preprocessing on other ideal primitives (e.g., ideal ciphers).

2 Limits On the Power of Pre-Sampling

For two distributions D1, D2 over universe Ω, we use ∆(D1, D2) to denote their
statistical distance 1

2 ·
∑

y∈Ω |Pr[D1 = y]− Pr[D2 = y]|. Let Func(A,B) denote
the set of all functions from A to B.

In this section, we revisit the result of Unruh [19] that allows one to replace
arbitrary (bounded-length) auxiliary information about a random oracle O with
a (bounded-size) set fixing the value of the random oracle on some fraction of
points. For a set of tuples Z = {(x1, y1), . . .}, we let O′[Z] denote a random
oracle chosen uniformly subject to the constraints O′(xi) = yi.

Theorem 1 ([19]). Let P, S, T ≥ 1 be integers, and let A0 be an oracle al-
gorithm that outputs state of length at most S bits. Then there is an oracle
algorithm Pre outputting a set containing at most P tuples such that for any
oracle algorithm A1 that makes at most T oracle queries,

∆(AO1 (A
O
0 ), A

O′[PreO]
1 (AO0 )) ≤

√
ST

2P
.

This theorem enables proving various results in the random-oracle model
even in the presence of auxiliary input by first replacing the auxiliary input
with a fixed set of input/output pairs and then using standard lazy-sampling
techniques for the value of the random oracle at other points. However, applying
this theorem incurs a cost of

√
ST/2P , and so super-polynomial P is required

in order to obtain negligible advantage overall. It was open whether the bound
in Theorem 1 can be improved; Unruh conjectured [19, Conjecture 14] that for
all polynomials S, T there is a polynomial P such that the statistical difference
above is negligible. We disprove this conjecture by showing that the bound in
the theorem cannot be improved (in general) below O(ST/P ). That is,

Theorem 2. Consider random oracles O ∈ Func([N ], {0, 1}), and let S, T, P ≥ 1
be integers with 4P 2/ST + ST ≤ N . Then there is an oracle algorithm A0 that
outputs S-bit state and an oracle algorithm A1 that makes T oracle queries such
that for any oracle algorithm Pre outputting a set containing at most P tuples,

∆(AO1 (A
O
0 ), A

O′[PreO]
1 (AO0 )) ≥

ST

24P
.

Proof. Pick S disjoint sets X1, . . . , XS ⊂ [N ], where each set is of size t =
T · (4(P/ST )2 + 1). Partition each set Xi into t/T = 4(P/ST )2 + 1 disjoint
blocks Xi,1, . . . , Xi,t/T , each of size T . Algorithm AO1 outputs an S-bit state
where the ith bit is equal to maj(⊕x∈Xi,1

O(x), . . . ,⊕x∈Xi,t/T
O(x)) where maj

is the majority function. Algorithm AO1 (b1, . . . , bS) chooses a uniform block Xi,j

and outputs 1 iff ⊕x∈Xi,j
O(x) = bi.
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We have

Pr[AO1 (A
O
0 ) = 1]

= Pr
O,i,j

[
maj(⊕x∈Xi,1O(x), . . . ,⊕x∈Xi,t/T

O(x)) = ⊕x∈Xi,jO(x)
]

= Pr
z1,...,zt/T←{0,1},j←[t/T ]

[maj(z1, . . . , zt/T ) = zj ]

= Ej

Pr
∑

i ̸=j

zi =
t/T − 1

2

+
1

2
· Pr

∑
i ̸=j

zi ̸=
t/T − 1

2


=

1

2
+

1

2
· Pr

[∑
i>1

zi =
t/T − 1

2

]

=
1

2
+

(
t/T − 1
t/T−1

2

)
· 2−t/T

≥ 1

2
+

1

3
√
t/T − 1

=
1

2
+

ST

6P
,

where the inequality above uses
√
2πn (n/e)n ≤ n! ≤ e

√
n (n/e)n so that(

n

n/2

)
≥

√
2πn (n/e)n

(e
√
n/2 (n/2e)n/2)2

=
2
√
2π

e2
√
n
· 2n ≥ 2

3
· 2n√

n
.

On the other hand, for any algorithm Pre we have

Pr[A
O′[PreO]
1 (AO0 ) = 1]

= Pr
i,j,O,O′

[maj(⊕x∈Xi,1O(x), . . . ,⊕x∈Xi,t/T
O(x)) = ⊕x∈Xi,jO′(x)]

≤ P/T

St/T
+

1

2
·
(
1− P/T

St/T

)
=

1

2
+

P

2St
≤ 1

2
+

ST

8P
.

The first inequality above holds since, for any fixed i, j,O,

Pr
O′

[
maj(⊕x∈Xi,1O(x), . . . ,⊕x∈Xi,t/T

O(x)) = ⊕x∈Xi,jO′(x)
]
= 1/2

unless the value of O′ is fixed by PreO at every point in Xi,j . But PreO can
ensure that the value of O′ is fixed in that way for at most P/T out of the St/T
blocks defined by i, j. This concludes the proof.

3 Function Inversion

In this section, we prove bounds on the hardness of inverting “salted” random or-
acles in the presence of preprocessing. For natural number n, let [n] = {1, . . . , n}.
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Consider choosing a random function O : [K]× [N ] → [M ] and then allowing an
attacker A0 (with oracle access to O) to perform arbitrary preprocessing to gen-
erate an S-bit state stO. We then look at the hardness of inverting O(a, x), given
stO and a, for algorithms A1 making up to T oracle queries, where a ∈ [K] and
x ∈ [N ] are uniform. We consider two notions of inversion: finding x itself, or
the weaker goal of finding any x′ with O(a, x′) = O(a, x). Assuming N = M for
simplicity in the present discussion, we show that in either case the probability of
successful inversion is O( ST

KN + T logN
N ). We remark that the best bound one could

hope to prove via a generic approach (i.e., using Theorem 1 with best-possible
bound O(ST/P )) is3 O(

√
ST/KN + T/N).

By way of comparison, rainbow tables [12, 9, 17, 2, 7] address the case K = 1
(i.e., no salt), and give success probability O(min{ST/N, (S2T/N2)1/3}+T/N).
One way to adapt rainbow tables to handle salt is to compute K independent
rainbow tables, each using space S/K, for the K reduced functions O(a, ·). This
approach gives success probability O(min{ST/KN, (S2T/K2N2)1/3} + T/N),
showing that our bound is tight when ST 2 < KN .

We begin with some preliminary lemmas that we will use in this and the
following sections.

Lemma 1. Say there exist deterministic procedures (Enc,Dec) such that for all
m ∈ M we have Dec(Enc(m)) = m. Then Em[ |Enc(m)| ] ≥ log |M |.

Proof. For m ∈ M , let sm = |Enc(m)|. Define C =
∑

m 2−sm , and for m ∈ M
let qm = 2−sm/C. Then Em[ |Enc(m)| ] = −Em[log qm] − logC. By Jensen’s in-
equality, Em[log qm] ≤ logEm[qm] = − log |M |, and by Kraft’s inequality C ≤ 1.
The lemma follows.

Following De et al. [7], we also consider randomized encodings (Enc,Dec) for
a set M . We say such an encoding has recovery probability δ if for all m ∈ M ,

Prr[Dec(Enc(m, r), r) = m] ≥ δ.

(Note that Dec is given the randomness used by Enc.) The encoding length of
(Enc,Dec) is defined to be maxm,r{ |Enc(m, r)|}.

Lemma 2 ([7]). Suppose there exist randomized encoding and decoding proce-
dures (Enc,Dec) for a set M with recovery probability δ. Then the encoding length
of (Enc,Dec) is at least log |M | − log 1/δ.

Proof. By a standard averaging argument, there exists an r and a set M ′ ⊆ M
with |M ′| ≥ δ · |M | such that Dec(Enc(m, r), r) = m for all m ∈ M ′. Let
Enc′,Dec′ be the deterministic algorithms obtained by fixing the randomness
to r. By Lemma 1, Em′ [ |Enc′(m′)| ] ≥ |M ′| ≥ |M | − log 1/δ, and hence there
exists an m′ with |Enc′(m′)| ≥ |M | − log 1/δ.

3 Any such bound would take the form O(ST/P + P/KN + T/N), where the first
term is from application of the theorem, the second is the probability that the input
to A1 is from the set of fixed points, and the third is the success probability of a
trivial brute-force search. Setting P =

√
ST/KN optimizes this bound.
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We now state and prove the main results of this section.

Theorem 3. Consider random oracles O ∈ Func ([K]× [N ], [M ]). For any or-
acle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes at most
T oracle queries,

Pr
O,a,x

[AO1 (A
O
0 , a,O(a, x)) = x] = O

(
ST

KN
+

T logN

N

)
.

Theorem 4. Consider random oracles O ∈ Func ([K]× [N ], [M ]). Fix oracle
algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes at most T
oracle queries, and such that

Pr
O,a,x

[x′ := AO1 (A
O
0 , a,O(a, x)) : O(a, x) = O(a, x′)] = ε .

Then either ε < logMN
N or else ε = O

(
ST
K·α + T logN

α

)
, where we let α =

min{N/ logM,M}.

To prove Theorem 3, we first prove the following lemma:

Lemma 3. Consider random oracles O ∈ Func ([K]× [N ], [M ]). Assume there
exist oracle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes
at most T oracle queries, and such that

Pr
O,a,x

[
AO1 (A

O
0 , a,O(a, x)) ever queries (a, x) to O

]
= ϵ.

Then there exists a randomized encoding for a set F ⊆ Func ([K]× [N ], [M ]) of
size at least ε

2 ·MKN , with recovery probability at least 0.9 and encoding length
(in bits) at most

KN logM + S +K logN − εKN

100T
log

(
εN

100eT

)
.

Proof. By an averaging argument, there is a set F ⊆ Func ([K]× [N ], [M ]) of
size at least ε/2 · |Func ([K]× [N ], [M ]) | = ε

2 ·MKN such that for all O ∈ F

Pr
a,x

[AO1 (A
O
0 , a,O(a, x)) ever queries (a, x) to O] ≥ ϵ/2.

Fix arbitrary O ∈ F . We encode O as follows. Let stO be the output of AO0
and, for a ∈ [K], let Ua ⊆ [N ] be the points x for which AO1 (stO, a,O(a, x)) ever
queries (a, x) to O. The high-level idea is that rather than encode the mapping
{(x,O(a, x))}x∈Ua explicitly, we will encode the set of points {O(a, x)}x∈Ua and
then use A1 to recover the mapping. If we attempt this in the straightforward
way, however, then it may happen that A1 queries its oracle on a point for which
the mapping is not yet known. To get around this issue, we use this approach
for a random subset of Ua so that this only happens with small probability.
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Specifically, the encoder uses randomness r to pick a set R ⊆ [K]×[N ], where
each (a, x) ∈ [K]× [N ] is included in R with probability 1/10T . For a ∈ [K], let
Ga be the set of (a, x) ∈ R such that AO1 (stO, a,O(a, x)) at some point queries
(a, x) to O, but never queries O on any other (a′, x′) ∈ R. Let G =

∪
a Ga.

Define Va = {O(a, x)}x∈Ga
, and note that |Va| = |Ga| ≤ N .

As in De et al. [7], with probability at least 0.9 the size of G is at least
εKN/100T . To see this, note that by a Chernoff bound, R has at least εKN/40T
points with probability at least 0.95. The expected number of points (a, x) ∈ R
for which AO1 (stO, a,O(a, x)) at some point queries (a, x) to O but A1 also
queries O for some other point (a′, x′) ∈ R (i.e., besides (a, x) itself) is at most
εKN

2 · 1
10T ·

(
1− (1− 1/10T )T

)
≤ εKN

2000T . Thus, by Markov’s inequality, with

probability at least 0.95 the number of such points is at most εKN
100T . So with

probability at least 0.9, we have |G| ≥ 3εKN
200T ≥ εKN

100T .

Assuming |G| ≥ εKN/100T , we encode O as follows:

1. Include stO and, for each a ∈ [K], include |Va| and a description of Va. This
requires S +K logN +

∑
a∈[K] log

(
M
|Ga|
)
bits.

2. For each a and y ∈ Va (in lexicographic order), run AO1 (stO, a, y) and include
in the encoding the answers to all the oracle queries made by A1 that have
not been included in the encoding so far, except for any queries in R. (By
definition of Ga, there will be at most one such query and, if so, it will be
the query (a, x) such that O(a, x) = y.)

3. For each (a, x) ∈ ([K] × [N ]) \G (in lexicographic order) for which O(a, x)
has not been included in the encoding so far, add O(a, x) to the encoding.

Steps 2 and 3 explicitly include in the encoding the value of O(a, x) for each
(a, x) ∈ ([K] × [N ]) \ G. Thus, the total number of bits added to the encoding
by those steps is (KN −

∑
a |Ga|) · logM .

To decode, the decoder first uses r to recover the set R defined above. Then
it does the following:

1. Recover stO, {|Va|}a∈K , and {Va}a∈K .

2. For each a and y ∈ Va (in lexicographic order), run A1(stO, a, y) while an-
swering the oracle queries of A1 using the values stored in the encoding. The
only exception is if A1 ever makes a query (a, x) ∈ R, in which case y itself is
returned as the answer. If that ever occurs, then x is such that O(a, x) = y.

3. For each (a, x) ∈ [K]× [N ] (in lexicographic order) for which O(a, x) is not
yet defined, recover the value of O(a, x) from the remainder of the encoding.

Assuming |G| ≥ εKN/100T , the decoding procedure recovers O. The encod-
ing length is

S +K logN +
∑

a∈[K]

log

(
M

|Ga|

)
+

(
KN −

∑
a∈K

|Ga|

)
logM.
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Because
(

M
|Ga|
)
≤
(

eM
|Ga|

)|Ga|
, the encoding length is bounded by

S +K logN +KN logM −
∑
a

|Ga| log
(
|Ga|
e

)
≤ S +K logN +KN logM − |G| log

(
|G|
eK

)
≤ S +K logN +KN logM − εKN

100T
log

(
εN

100eT

)
,

where the second line uses concavity of the function f(y) = −y log (y/e), and
the last line is because |G| ≥ εKN

100T .

Corollary 1. Consider random oracles O ∈ Func ([K]× [N ], [M ]). Assume
there exist oracle algorithms (A0, A1) such that A0 outputs S-bit state and A1

makes at most T oracle queries, and such that

Pr
O,a,x

[
AO1 (A

O
0 , a,O(a, x)) ever queries (a, x) to O

]
= ϵ.

Then ε = O
(

ST
KN + T logN

N

)
.

Proof. Lemma 3 gives an encoding for a set of size ε
2 ·M

KN with recovery proba-

bility 0.9, and encoding length at mostNK logM+S+K logN− εKN
100T log

(
εN

100eT

)
bits. But Lemma 2 shows that any such encoding must have encoding length at
least NK logM − log 2

ε − log 10
9 bits. We thus conclude that

S +K logN + log
20

9ε
≥ εKN

100T
log

(
εN

100eT

)
. (1)

Equation (1) implies the corollary, since either ε < 200eT
N , or else it must be the

case that ε ≤ ( 100TKN ) · (S +K logN + logN).

Corollary 1 implies Theorem 3, since we may assume that if AO1 (stO, a, y)
outputs x then it queries (a, x) to O (using one additional query, if necessary).

We now prove Theorem 4. For fixed O and a ∈ [K], let YO,a ⊆ [M ] be the
set of points A1 successfully inverts, i.e.,

YO,a = {y : O(a,AO1 (A
O
0 , a, y)) = y}.

Let XO,a ⊆ [N ] be the pre-images of the points in YO,a. That is,

XO,a = {x : O(a, x) ∈ YO,a}.

We show a deterministic encoding for Func([K]× [N ], [M ]). Given a function O,
we encode it by including for each a ∈ [K] the following information:

1. The set XO,a (along with its size), using logN +
(

N
|XO,a|

)
bits.
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2. The set YO,a (along with its size), using logM +
(

M
|YO,a|

)
bits.

3. For each x ∈ XO,a, the value O(a, x) ∈ YO,a encoded using log |YO,a| bits.
4. For each x ̸∈ XO,a, the value O(a, x) encoded using logM bits.

Decoding is done in the obvious way.
The encoding length of O (in bits) is

K logN +K logM

+
∑

a∈[K]

log

(
N

|XO,a|

)
+ log

(
M

|YO,a|

)
+ |XO,a| · log |YO,a|+ (N − |XO,a|) · logM.

Using the inequality log
(
A
B

)
≤ B · log eA

B and the log-sum4 inequality, the en-
coding length of O (in bits) is at most

K logN +K logM +

 ∑
a∈[K]

|XO,a|

 · log
eN
∑

a∈[K] |YO,a|
M
∑

a∈[K] |XO,a|

+

 ∑
a∈[K]

|YO,a|

 · log eKM∑
a∈[K] |YO,a|

+KN logM. (2)

Let ϵ′
def
= PrO,a,x[A

O
1 (A

O
0 , a,O(a, x)) = x], and note that EO[

∑
a |XO,a|] =

ϵNK and EO[
∑

a |YO,a|] = ϵ′NK. Applying the log-sum inequality again, we see
that the expected encoding length (taken over choice of O) is upper bounded by

K logNM + (εNK) · log eNε′NK

MεNK
+ (ε′NK) · log eKM

ε′NK
+KN logM.

By Lemma 1 the expected encoding length must be at least KN logM bits, and
so we obtain

logN + logM

N
+ ε′ · log eM

ε′N
≥ ε · log Mε

eNε′
. (3)

If ε < logMN
N we are done, so assume ε ≥ logMN

N . If Mε/(eNε′) < 4 then
ε < 4eε′N/M . If not, then this along with Equation (3) gives

ε′ log
eM

ε′N
≥ ε log

Mε

eNε′
− logNM

N

≥ 2ε− logNM

N
≥ ε ,

which implies ε = O(ε′ logM) (we may assume without loss of generality that
ε′ ≥ 1/N). Overall we conclude that ε = O(ε′ · max{logM,N/M}). Using the
bound on ε′ from Theorem 3, we obtain the claimed bound on ε.

4 The log-sum inequality states that for nonnegative t1, . . . , tn and w1, . . . , wn, it holds
that

∑n
i=1 ti log(wi/ti) ≤

(∑n
i=1 ti

)
· log(

∑n
i=1 wi/

∑n
i=1 ti). It also implies the av-

erage of t1 log(w1/t1), . . . , tn log(wn/tn) is less that t log(w/t) where t is the average
of t1, . . . , tn and w is the average of w1, . . . , wn.
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4 Collision-Resistant Hash Functions

In this section, we prove the following theorem.

Theorem 5. Consider random oracles O ∈ Func ([K]× [N ], [M ]). For any or-
acle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes at most
T oracle queries,

Pr
O,a

[(x, x′) := AO1 (A
O
0 , a) : x ̸= x′ ∧O(a, x) = O(a, x′)] = O

(
S + logK

K
+

T 2

M

)
.

The bound in the above theorem roughly matches the parameters achieved
by the following: A0 outputs collisions in O(ai, ·) for each of a1, . . . , aS ∈ [K].
Then A1 outputs the appropriate collision if a = ai for some i, and otherwise
performs a birthday attack in an attempt to find a collision.

To prove Theorem 5, we first prove the following lemma:

Lemma 4. Consider random oracles O ∈ Func ([K]× [N ], [M ]). Assume there
exist oracle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes
at most T oracle queries, and such that

Pr
O,a

[(x, x′) := AO1 (A
O
0 , a) : x ̸= x′ ∧ O(a, x) = O(a, x′)] = ϵ.

Then there exists a deterministic encoding for the set Func ([K]× [N ], [M ]) with
expected encoding length (in bits) at most

S +KN logM + logK − εK

2
log

(
εM

8eT 2

)
.

Proof. Fix O : [K]×[N ] → [M ], and let stO = AO0 . Let GO be the set of a ∈ [K]
such that AO1 (stO, a) outputs a collision in O(a, ·). We assume, without loss of
generality, that if AO1 (stO, a) outputs x, x′, then it must have queried O(a, x)
and O(a, x′) at some point in its execution. The basic observation is that we
can use this to compress O(a, ·) for a ∈ GO. Specifically, rather than store both
O(a, x) and O(a, x′) (using 2 logM bits), where x, x′ is the collision in O(a, ·)
output by A1, we instead store the value O(a, x) = O(a, x′) once, along with the
indices i, j of the oracle queries O(a, x) and O(a, x′) made by A1 (using a total
of logM + 2 log T bits). This is a net savings if 2 log T < logM . Details follow.

A simple case. To illustrate the main idea, we first consider a simple case
where AO1 (stO, a) never makes oracle queries O(a′, x) with a′ ≠ a. Under this
assumption, we encode O as follows:

1. Encode stO, |GO|, and GO. This requires S + logK + log
(

K
|GO|

)
bits.

2. For each a ∈ GO (in lexicographic order), run AO1 (stO, a) and let the second
components of the oracle queries of A1 be x1, . . . , xT . (We assume without
loss of generality these are all distinct.) If x, x′ are the output of A1, let i < j
be such that {x, x′} = {xi, xj}. Encode i and j, along with the answers to
each of A1’s oracle queries (in order) except for the jth. Furthermore, encode
O(a, x) for all x ∈ [N ] \ {x1, . . . , xT } (in lexicographic order). This requires
(N − 1) · logM + 2 log T bits for each a ∈ GO.
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3. For each a ̸∈ GO and x ∈ [N ] (in lexicographic order), store O(a, x). This
uses N logM bits for each a ̸∈ GO.

Decoding is done in the obvious way.
The encoding length of O (in bits) is

S + logK + log

(
K

|GO|

)
+KN logM − |GO| · (logM − 2 log T ).

Using the inequality
(

K
|Gf |
)
≤ ( eK

|Gf | )
|Gf |, the expected encoding length (in bits)

is thus

S + logK + EO
[
|GO| · log

eK

|GO|

]
+KN logM − EO[|GO|] · (logM − 2 log T )

≤ S + logK + EO[|GO|] · log
eK

EO[|GO|]
+KN logM − EO[|GO|] · (logM − 2 log T )

= S + logK +KN logM − εK log

(
εM

eT 2

)
,

where the inequality uses concavity of the function y · log 1/y, and the third line
uses EO[|GO|] = εK.

The general case. In the general case, we need to take into account the fact
that A1 may make arbitrary queries to O. This affects the previous approach
because A1(stO, a) may query O(a′, x) for a value x that is output as part of a
collision by A1(stO, a

′).
To deal with this, consider running AO1 (stO, a) for all a ∈ GO. There are at

most T · |GO| distinct oracle queries made overall. Although several of them may
share the same prefix a ∈ [K], there are at most |GO|/2 values of a that are used
as a prefix in more than 2T queries. In other words, there is a set G′O ⊆ GO of
size at least |GO|/2 such that each a ∈ G′O is used in at most 2T queries when
running AO1 (stO, a) for all a ∈ G′O.

To encode O we now proceed in a manner similar to before, but using G′O
in place of GO. Moreover, we run AO1 (stO, a) for all a ∈ G′O (in lexicographic
order) and consider all the distinct oracle queries made. For each a ∈ G′O, let
ia < ja ≤ 2T be such that the iath and jath oracle queries that use prefix a are
distinct but yield the same output. (There must exist such indices by assumption
on A1.) We encode (ia, ja) for all a ∈ G′O, along with the answers to all the
(distinct) oracle queries made with the exception of the jath oracle query made
using prefix a for all a ∈ G′O. The remainder of O(·, ·) is then encoded in the
trivial way as before. Decoding is done in the natural way.

Arguing as before, but with ϵK replaced by ϵK/2 and T replaced by 2T , we
see that the expected encoding length (in bits) is now at most

S + logK +KN logM − εK

2
log

(
εM

8eT 2

)
,
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as claimed.

Lemma 4 gives an encoding for Func ([K]× [N ], [M ]) with expected length
at most

S + logK +KN logM − εK

2
log

(
εM

8eT 2

)
bits. But Lemma 1 shows that any such encoding must have expected length at
least NK logM bits. We thus conclude that

S + logK ≥ εK

2
log

(
εM

8eT 2

)
.

This implies Theorem 5 since either ε ≤ 16eT 2

M or else ε ≤ 2S+2 logK
K .

5 Pseudorandom Generators and Functions

In this section, we prove the following theorems.

Theorem 6. Consider random oracles O ∈ Func ([K]× [N ], [M ]). For any or-
acle algorithms (A0, A1) such that A0 outputs S-bit state (with S > logN) and
A1 makes at most T oracle queries,∣∣∣∣ PrO,a,x

[AO1 (A
O
0 , a,O(a, x)) = 1]− Pr

O,a,y
[AO1 (A

O
0 , a, y) = 1]

∣∣∣∣
= O

(
logM ·

(√
ST

KN
+

T logN

N

))
.

Theorem 7. Consider random oracles O ∈ Func ([K]× [N ]× [L], {0, 1}). For
any oracle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes
at most T oracle queries to O and at most q queries to its other oracle,∣∣∣∣ PrO,a,k

[A
O,O(a,k,·)
1 (AO0 , a) = 1]− Pr

O,a,f
[AO,f

1 (AO0 , a) = 1]

∣∣∣∣
= O

(
q ·

(√
ST

KN
+

T logN

N

))
,

where f is uniform in Func ([L], {0, 1}).

Note that in both cases, an exhaustive-search attack (with S = 0) achieves
distinguishing advantage Θ(T/N). With regard to pseudorandom generators
(Theorem 6), De et al. [7] show an attack with T = 0 that achieves distinguishing

advantage Ω(
√

S
KN ) when M > N . Their attack can be extended to the case

of pseudorandom functions (assuming L ≥ q > logN) to obtain distinguishing

advantage Ω(
√

S
KN ) in that case as well.

In proving the above, we rely on the following [7, Lemma 8.4]:
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Lemma 5. Fix a parameter ϵ, and oracle algorithms (A0, A1) such that A0 out-
puts S-bit state and A1 makes at most T queries to O but may not query its
input. Let F ⊆ Func ([K]× [N ], {0, 1}) be such that if O ∈ F then

Pr
a,x

[AO1 (A
O
0 , a, x) = O(a, x)] ≥ 1

2
+ ε.

Then there is a randomized encoding for F with recovery probability Ω(ε/T ) and

encoding length (in bits) at most KN + S −Ω
(

ε2KN
T

)
+O(1).

We now prove Theorem 6.

Proof. Let

ϵ =

∣∣∣∣ PrO,a,x
[AO1 (A

O
0 , a,O(a, x)) = 1]− Pr

O,a,y
[AO1 (A

O
0 , a, y) = 1]

∣∣∣∣ .
We assume for simplicity that M is a power of 2. By Yao’s equivalence of distin-
guishability and predictability [20], there exist i ∈ [logM ] and oracle algorithms
(B0, B1) such that B0 outputs at most S+1 bits and B1 makes at most T oracle
queries, and such that

Pr
O,a,x

[BO1 (BO0 , a,O1(a, x), . . . ,Oi−1(a, x)) = Oi(a, x)] ≥ 1/2 + ε/ logM,

where Oi(a, x) denotes the ith bit of O(a, x). If B1 queries (a, x) with probability
at least ε/2 logM , then using Corollary 1 we have

ε = O

(
logM ·

(
ST

KN
+

T logN

N

))
. (4)

Otherwise, we may construct algorithms (C0, C1) such that

– C0 runs B0 and also outputs as part of its state the truth table of a function
mapping [K]× [N ] to outputs of length at most (logM − 1) bits;

– C1 makes at most T oracle queries, and never queries its own input;

and such that

Pr
Oi,a,x

[COi
1 (COi

0 , a, x) = Oi(a, x)] ≥ 1/2 + ε/2 logM.

So for at least an (ε/4 logM)-fraction of Oi ∈ Func ([K]× [N ], {0, 1}) we have

Pr
a,x

[COi
1 (COi

0 , a, x) = Oi(a, x)] ≥ 1/2 + ε/4 logM.

Using Lemma 5 and the specific construction of C0, this means there is a ran-
domized encoding of at least a (ε/4 logM)-fraction of O ∈ Func ([K]× [N ], [M ])
with encoding length (in bits) at most

KN +KN · (logM − 1) + S −Ω

(
(ε/ logM)2KN

T

)
+O(1),
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and recovery probability at least ε/4T logM . Lemma 2 then implies

KN logM + S −Ω

(
(ε/ logM)2KN

T

)
≥ log

(
εMKN

4 logM

)
− log

(
4T logM

ε

)
.

Now, if ε < 4T logM
N we are done. Otherwise, the above equation gives

Ω

(
(ε/ logM)2KN

T

)
≤ S + log

(
4 logM

ε

)
+ log

(
4T logM

ε

)
,

≤ S +O(logN) = O(S)

which in turn means that ε = O
(√

ST
KN · logM

)
. This, with Equation (4),

implies the theorem.

As intuition for the proof of Theorem 7, note that we may view a pseudoran-
dom function as a pseudorandom generator mapping a key to the truth table for
a function, with the main difference being that the distinguisher is not given the
entire truth table as input but instead may only access parts of the truth table
via queries it makes. We may thus apply the same idea as in the proof of Theo-
rem 6, with the output length (i.e., logM) replaced by the number of queries the
distinguisher makes. However in this case, Lemma 5 cannot be directly applied
and a slightly more involved compression argument is required.

With this in mind, we turn to the proof of Theorem 7:

Proof. Let

ϵ =

∣∣∣∣ PrO,a,k
[A
O,O(a,k,·)
1 (AO0 , a) = 1]− Pr

O,a,f
[AO,f

1 (AO0 , a) = 1]

∣∣∣∣ .
By Yao’s equivalence of distinguishability and predictability [20], there exist
i ∈ [q] and oracle algorithms (B0, B1) such that B0 outputs at most S + 1 bits
and B1 makes at most T oracle queries to O and i < q distinct queries to the
second oracle, and such that

Pr
O,a,k

[B
O,O(a,k,·)
1 (BO0 , a) outputs (x, b) s.t. O(a, k, x) = b] ≥ 1

2
+ ε/q,

where B1 does not query x to its second oracle. If with probability at least ε/2q
it holds that B1 queries O on some point of the form (a, k, ⋆), then we can apply
Corollary 1 to O′ ∈ Func([K]× [N ], {0, 1}L) (viewing O′(a, k) as the truth table
for O(a, k, ·)) to conclude that

ε = O

(
q ·
(

ST

KN
+

T logN

N

))
. (5)

Otherwise, we may construct an algorithm C1 that behaves as B1 except that it
never queries O on any query with prefix (a, k), and such that

Pr
O,a,k

[C
O,O(a,k,·)
1 (BO0 , a, k) outputs (x, b) s.t. O(a, k, x) = b] ≥ 1/2 + ε/2q.
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(Note that C1, like B1, does not query x to its second oracle.) This means that
for at least an (ε/4q)-fraction of O ∈ Func

(
[K]× [N ], {0, 1}L

)
, it holds that

Pr
a,k

[C
O,O(a,k,·)
1 (BO0 , a, k) outputs (x, b) s.t. O(a, k, x) = b] ≥ 1/2 + ε/4q.

We encode this set of functions using a randomized encoding. The encoder uses
randomness r to pick a set R ⊆ [K]×[N ], where each (a, k) ∈ [K]×[N ] is included
in R with probability 1/10T . Let G ⊆ R be the set of (a, k) ∈ R such that

C
O,O(a,k,·)
1 (BO0 , a, k) does not query O on any point with prefix (a′, k′) ∈ R. Let

G0 be the subset of G such that the output of C1 is correct, and let G1 = G\G0.
As in De et al. [7], with probability at least ε/160qT , it holds that |G| ≥ KN

40T

and |G0| − |G1| ≥ εKN
80qT . Conditioned on these holding, we encode O as follows:

1. Include BO0 . This uses at most S + 1 bits.
2. For each (a, k) ∈ ([K]× [N ]) \ R (in lexicographic order), include the truth

table of O(a, k, ·). Then for each (a, k) ∈ R \ G (in lexicographic order),
include the truth table of O(a, k, ·). This uses a total of (KN − |G|) ·L bits.

3. Include a description of G0. This uses log
( |G|
|G0|
)
bits.

4. For each (a, k) ∈ G (in lexicographic order), include in the encoding the
answers to the oracle queries made by C1 to its second oracle O(a, k, ·) in
the order they are made; denote the set of such queries by X, and let (x, b) be
the output of C1. Also include in the encoding O(a, k, x′) for all x′ ̸∈ X∪{x}.
This requires |G| · (L− 1) bits.

To decode, the decoder first uses r to recover the set R defined above. Then it
does the following:

1. Recover BO0 .
2. For each (a, k) ∈ ([K]× [N ])\R, recover the truth table of O(a, k, ·). Identify

the set G by running C
O,O(a,k,·)
1 (BO0 , a, k) for (a, k) ∈ R by checking whether

C1 makes any queries to its first oracle whose prefix is in R. Then, for all
(a, k) ∈ R \G, recover the truth table of O(a, k, ·).

3. Recover G0.
4. For each (a, k) ∈ G, run C

O,O(a,k,·)
1 (BO0 , a, k) using values recovered already

to answer queries to the first oracle, and values from the encoding to answer
queries to the second oracle. When C1 outputs (x, b), set O(a, k, x) = b if
(a, k) ∈ G0, and O(a, k, x) = 1−b otherwise. Recover the rest of the function
table for O(a, k, ·) from the rest of the encoding.

Note that the above decoding procedure always succeeds when our assumptions
about |G| , |G0|, and |G1| hold. Moreover, given these assumptions, the length of
the above encoding (in bits) is at most

S + 1 +KNL+ log

(
|G|
|G0|

)
− |G| ≤ S + 1 +KNL−Ω

(
ε2KN

q2T

)
.

Lemma 2 thus implies ε = O(q ·
√

ST
KN ). Combined with Equation (5), this gives

the result of the theorem.
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6 Message Authentication Codes (MACs)

In this section, we prove the following theorem.

Theorem 8. Consider random oracles O ∈ Func ([K]× [N ]× [L], [M ]). For
any oracle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes
at most T queries to O,

Pr
O,a,k

[
(m, t) := A

O,O(a,k,·)
1 (AO0 , a) : O(a, k,m) = t

]
= O

(
ST

KN
+

T

M
+

T logN

N

)
,

where it is required that A1 not query m to its second oracle.

Note that any generic inversion attack can be used to attack the above con-
struction of a MAC by fixing some m ∈ [L] and then inverting the function
O(a, ·,m) given a; in this sense, it is to be expected that the bound above con-

tains terms O
(

ST
KN + T logN

N

)
as in Theorem 3. There is, of course, also a trivial

guessing attack that achieves advantage 1/M .

Proof. Let

ε = Pr
O,a,k

[
(m, t) := A

O,O(a,k,·)
1 (AO0 , a) : O(a, k,m) = t

]
.

If A1 queries O on some point of the form (a, k, ⋆) with probability at least ε/2,
then we can apply Corollary 1 to O′ ∈ Func([K]× [N ], [M ]L) (viewing O′(a, k)
as the function table of O(a, k, ·)) to conclude that ε = O

(
ST
KN + T logN

N

)
. Oth-

erwise, we may construct an algorithm B1 that behaves as A1 except that it
never queries O on any point of the form (a, k, ⋆), and such that

Pr
O,a,k

[B
O,O(a,k,·)
1 (AO0 , a, k) outputs (m, t) s.t. O(a, k,m) = t] ≥ ε/2,

where B1 (just like A1) does not query m to its second oracle.
We show a deterministic encoding for Func([K] × [N ] × [L], [M ]). Fix O in

that set, and let UO be the set of (a, k) for which B1 succeeds, i.e.,

UO = {(a, k) : B
O,O(a,k,·)
1 (AO0 , a, k) outputs (m, t) s.t. O(a, k,m) = t}.

Let GO be a subset of UO such that for every (a, k) ∈ GO it holds that

B
O,O(a,k,·)
1 (AO0 , a, k) does not query its first oracle on any point with prefix

(a′, k′) ∈ GO. Because B1 makes at most T queries, there exists such a set GO
with size at least |UO| /(T + 1). We encode O as follows.

1. Include AO0 , |GO|, and a description of GO using S + logKN + log
(
KN
|GO|

)
bits.
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2. For each (a, k) ∈ ([K]× [N ])\GO (in lexicographic order), include the truth
table of O(a, k, ·). This uses a total of (KN − |GO|) · L logM bits.

3. For each (a, k) ∈ GO (in lexicographic order), include in the encoding the
answers to all the oracle queries made by B1 to its second oracle in the order
they are made; denote the set of such queries by X, and let (m, t) be the
output of B1. Also include in the encoding O(a, k,m′) for all m′ ̸∈ X ∪{m}.
This requires |GO| · (L− 1) logM bits.

Decoding is done in the obvious way. The encoding length (in bits) is at most

S + logKN + log

(
KN

|GO|

)
+KNL logM − |GO| logM

≤ S + logKN + |GO| · log
(
eKN

|GO|

)
+KNL logM − |GO| logM.

The expected encoding length (taken over O ∈ Func([K] × [N ] × [L], [M ])) is
thus at most

S + logKN + E[ |GO| ] · log
(

eKN

M · E[ |GO| ]

)
+KNL logM,

using the log-sum inequality. But Lemma 1 shows that any such encoding must
have expected length at least KNL logM bits. We thus conclude that

S + logKN ≥ E[ |GO| ] · log
(
M · E[ |GO| ]

eKN

)
≥ εKN

2(T + 1)
· log

(
Mε

2e(T + 1)

)
,

where the second inequality uses the facts that y log y is an increasing function
for y ≥ 1 and

E[ |GO| ] ≥ E
[
|UO|
T + 1

]
≥ εKN

2(T + 1)
.

This implies Theorem 8 since either ε ≤ 4e(T+1)
M , or else it must be the case that

ε ≤ 2(S+logKN)(T+1)
KN = O( ST

KN + T logN
N ).
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