
Efficient Cryptographic Protocols Preventing

“Man-in-the-Middle” Attacks

Jonathan Katz

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2002

c© 2002

Jonathan Katz

All Rights Reserved

ABSTRACT

Efficient Cryptographic Protocols Preventing “Man-in-the-Middle” Attacks

Jonathan Katz

In the analysis of many cryptographic protocols, it is useful to distinguish two classes of attacks:

passive attacks in which an adversary eavesdrops on messages sent between honest users and active

attacks (i.e., “man-in-the-middle” attacks) in which — in addition to eavesdropping — the adversary

inserts, deletes, or arbitrarily modifies messages sent from one user to another. Passive attacks

are well characterized (the adversary’s choices are inherently limited) and techniques for achieving

security against passive attacks are relatively well understood. Indeed, cryptographers have long

focused on methods for countering passive eavesdropping attacks, and much work in the 1970’s and

1980’s has dealt with formalizing notions of security and providing provably-secure solutions for

this setting. On the other hand, active attacks are not well characterized and precise modeling has

been difficult. Few techniques exist for dealing with active attacks, and designing practical protocols

secure against such attacks remains a challenge.

This dissertation considers active attacks in a variety of settings and provides new, provably-

secure protocols preventing such attacks. Proofs of security are in the standard cryptographic model

and rely on well-known cryptographic assumptions. The protocols presented here are efficient and

practical, and may find application in real-world systems.

Contents

1 Introduction 1

1.1 Summary of Contributions . 3

2 The Model and Definitions 5

2.1 The Model: Overview . 5

2.1.1 Initialization Phase . 6

2.1.2 The Adversary . 7

2.2 The Model: Details . 8

2.3 Security Against Man-in-the-Middle Attacks . 10

2.3.1 Definitional Approaches . 11

2.4 Previous Work . 14

2.5 Notation and Preliminaries . 14

2.5.1 Notation . 14

2.5.2 Cryptographic Assumptions . 16

2.5.3 Cryptographic Tools . 17

3 Password-Authenticated Key Exchange 23

3.1 Introduction . 23

3.1.1 Previous Work . 24

3.1.2 Our Contribution . 25

3.2 Definitions and Preliminaries . 26

3.2.1 The Model . 27

3.2.2 Protocol Components . 32

3.3 Protocol Details . 34

3.4 Proofs of Security . 38

i

4 Non-Interactive and Non-Malleable Commitment 61

4.1 Introduction . 61

4.1.1 Previous Work . 64

4.1.2 Our Contributions . 65

4.2 Definitions . 66

4.3 Non-Malleable Standard Commitment . 69

4.4 Non-Malleable Perfect Commitment . 73

4.4.1 Construction Based on the Discrete Logarithm Assumption 74

4.4.2 Construction Based on the RSA Assumption 82

4.5 Extensions . 84

5 Non-Malleable and Concurrent (Interactive) Proofs of Knowledge 86

5.1 Introduction . 86

5.1.1 Our Contributions . 89

5.1.2 Previous Work . 90

5.1.3 Outline of the Chapter . 91

5.2 Definitions and Preliminaries . 91

5.3 Non-Malleable Proofs of Plaintext Knowledge . 94

5.3.1 Construction for the RSA Cryptosystem . 95

5.3.2 Construction for the Rabin Cryptosystem . 101

5.3.3 Construction for the Paillier Cryptosystem 105

5.3.4 Construction for the El Gamal Cryptosystem 108

5.4 Applications . 111

5.4.1 Chosen-Ciphertext-Secure Interactive Encryption 111

5.4.2 Password-Based Authentication and Key Exchange 122

5.4.3 Deniable Authentication . 123

5.4.4 Identification . 135

5.4.5 Deniable Authentication with Improved Efficiency 141

6 Conclusions 147

ii

List of Figures

1.1 Man-in-the-middle attack on a public-key encryption scheme. 2

3.1 A password-only key-exchange protocol. 35

3.2 Specification of protocol initialization. 39

3.3 Specification of the Execute, Reveal, and Test oracles. 39

3.4 Specification of the Send oracle. 40

3.5 The modified Execute oracle for the proof of Claim 3.2. 44

3.6 Modified initialization procedure. 46

3.7 The modified Send1 and Send3 oracles for the proof of Claim 3.7. 50

3.8 Specification of the Corrupt oracle. 53

4.1 The Pedersen commitment scheme. 62

4.2 Man-in-the-middle attack on the Pedersen commitment scheme. 63

4.3 A non-malleable commitment scheme based on the discrete logarithm problem. . . . 74

4.4 A non-malleable commitment scheme based on the RSA problem. 83

5.1 Proof of knowledge of a discrete logarithm. 87

5.2 Man-in-the-middle attack on a proof of knowledge. 88

5.3 Non-malleable PPK for the RSA cryptosystem. 96

5.4 Knowledge extraction. 98

5.5 Non-malleable PPK for a Rabin-like cryptosystem. 102

5.6 Non-malleable PPK for the Paillier cryptosystem. 106

5.7 Non-malleable PPK for the El Gamal cryptosystem. 109

5.8 A deniable-authentication protocol based on RSA. 126

5.9 A deniable-authentication protocol for polynomial-size message spaces. 130

5.10 Identification scheme secure against man-in-the-middle attacks. 137

5.11 A deniable-authentication protocol for exponential-size message spaces. 142

iii

Acknowledgments

It has been a pleasure and an honor to work with Moti Yung and Rafail Ostrovsky these past

few years. Moti was kind enough to take a chance when he agreed to supervise me three-and-a-half

years ago, and I will be forever in his debt for this favor. As an advisor, he patiently and skillfully

guided me, always recommending the relevant papers to read and the appropriate problems on

which to focus. In addition to teaching me the proper way to conduct research and making me think

(hard!) about the best ways to present my results, he has shared with me his vast experience and

broad perspective of the field and has taught me the importance of avoiding politics. I am very

appreciative for all he has done for me. Rafi has tremendously contributed to my development as

a scientist in more ways than can be enumerated here. As a mentor, he has provided guidance,

insight, and direction, has suggested challenging and fruitful research directions to pursue, and has

given generous encouragement (and new ideas) whenever I got stuck. I thank him for his intellectual

guidance and his contribution to my personal and intellectual growth.

I am grateful to my advisor Zvi Galil for his patient advice, unwavering support, and continual

help throughout my time in the PhD program. I also appreciate very much the fact that he took me

seriously when I emailed him four years ago asking about the possibility of my transferring to the

department of computer science. His kind words at that time gave me the necessary encouragement

to proceed.

This dissertation would not have been possible without the financial support I received from

a number of sources. First and foremost, I thank the Department of Defense for a DoD NDSEG

Fellowship and for graciously allowing me to continue my fellowship when I joined the department

of computer science. I am also very grateful for the financial support given to me by Luca Trevisan

and by the department of computer science at Columbia University. I thank Mary Van Starrex and

James Cunha for their help in orchestrating the latter.

I would not have been able, from a financial standpoint, to remain in graduate school and

complete my PhD had I not begun working full-time at Telcordia Technologies two years ago. My

time at Telcordia was a fantastic learning experience and, indeed, much of the work included in this

dissertation was done while working there. I am indebted to Jon Kettenring, Rich Graveman, and

Rafi Ostrovsky for giving me the opportunity to work at Telcordia and for making my experience

there so positive. I am also grateful to Jason Baron for first putting me in touch with Rich Graveman.

It is my pleasure to acknowledge Giovanni Di Crescenzo, Steven Myers, “Raj” Rajagopalan, and

Adam Smith with whom (in addition to Rafi) I collaborated while at Telcordia.

Thanks to Jonathan Gross and Andrew Kosoresow for serving on my thesis committee and

iv

for helping me make this dissertation (somewhat) more accessible to a wider audience. I am also

grateful to Jonathan Gross for his help during my transition to the department of computer science.

I thank Phil MacKenzie and Adam Smith for careful readings of Chapters 3 and 4, respectively;

their comments on content and style are much appreciated.

My time in graduate school was made much more enjoyable by those who shared the experience

with me at Columbia and elsewhere. I would like to specifically mention Yael Gertner who always

inspired me to press forward with my research yet kept me from taking my work too seriously, and

Ted Diament with whom I had many enjoyable and intellectually stimulating discussions. Dario

Catalano and Dalia Yablon also made my time at Columbia much more pleasant.

Finally, I would like to thank my wife Jill for her support, for putting up with my less-than-sunny

disposition these past few months, and for continually reminding me about those things in life that

are more important than this thesis.

v

1

Chapter 1

Introduction

Demonstrating the security of a cryptographic protocol is a delicate task. For one thing, the term

“secure” is meaningless (in the context of cryptography) except in reference to a specific, well-

defined adversarial model. This model must specify, among other things, what constitutes a breach of

security, what classes of adversarial behavior are being protected against, and what initial conditions

(setup assumptions) are assumed. Furthermore, the security of a protocol must be understood in

the context of the assumptions under which a proof of security is given. The canonical goal of

cryptography is to reduce the security of a protocol to a plausible and well-studied assumption (such

as: “factoring is hard”); such a proof implies that a given protocol is secure (with respect to a given

adversarial model) as long as the underlying assumption is true. Rigorous proofs of this type are

clearly preferable to “heuristic” arguments in favor of the security of a protocol or proofs of security

which require idealized assumptions known to be untrue.

The security of certain primitives against “passive” adversaries has become, by now, well-studied

and well-understood. A salient example is encryption, for which definitions and secure constructions

have been given by, among others, Goldwasser and Micali [69] and Blum and Goldwasser [21] (see

[62] for more details). The security desired from an encryption scheme against a passive eavesdropper

is intuitive, even if developing a formal definition is more difficult: to prevent the adversary from

learning any information about the message transmitted between honest users. Furthermore, many

techniques are known [69, 21] for achieving such privacy against an eavesdropper who is limited

to passively monitoring the communication network. Unfortunately, adversaries (who don’t often

play by the rules) may not restrict themselves to being passive! In fact, it is quite reasonable to

consider [99, 105, 44] an active adversary — a “man-in-the-middle” — who modifies the data as it is

transmitted from sender to receiver. Attacks of this type raise a host of new questions; for example:

What kind of security does one (optimally) want in such a setting? What does security mean in a

setting in which all communication is controlled by the adversary? Finally, how can one hope to

2

Client

C′ ◦ C2 ◦ · · · ◦ C48
-

C1 ◦ · · · ◦ C48
-

C′ ← Epk(0)

Server

(public key pk)

Verify?
accept/reject

�

..
.

C1 ◦ · · · ◦ C47 ◦ C′
-

Verify?
accept/reject

�

Figure 1.1: Man-in-the-middle attack on a public-key encryption scheme.

attain the desired level of security against such a powerful adversary? It is these types of questions

that are addressed by this dissertation.

We provide a concrete example to motivate this line of research. Consider a scenario in which

a client transmits a 48-bit credit-card number b1 ◦ · · · ◦ b48 to a server, perhaps along with a PIN

and whatever additional information is necessary to authorize a transaction. To ensure the client’s

privacy, all information sent from the client to the server is encrypted using the public key of the

server. Assume encryption is done bit-wise; i.e., a string is encrypted by encrypting each bit of the

string and then concatenating the resulting ciphertexts.

If the encryption algorithm E used to encrypt each bit of the string is secure against passive

eavesdroppers, the encryption of any polynomial-length string (as above) is also secure against a

passive eavesdropper. Unfortunately, the scheme is completely vulnerable against an active adversary

as shown by the following attack (cf. Figure 1.1). The adversary, upon observing transmission of

C1 ◦ · · · ◦C48 (where Ci represents encryption of bi), generates ciphertext C′ by encrypting 0 using

the public-key of the server (note that the adversary has access to the server’s public key since

it is public information). The adversary then sends C′ ◦ C2 ◦ · · · ◦ C48 to the server and waits to

see whether the server accepts (i.e., authorizes the transaction) or not. If the server accepts, the

adversary concludes that the first bit of the client’s credit-card number is 0; if the server rejects,

the first bit of the credit-card number must be 1. Repeating this attack for each bit of the message,

the adversary obtains the client’s credit-card number after sending only 48 messages to the server!

This may be compared with randomly guessing the credit-card number, where the adversary needs

to send (on average) 247 messages to the server before learning the correct value. Clearly, man-in-

3

the-middle attacks such as this represent a real threat and need to be taken into account explicitly

when designing real-world systems.

Encryption is typically a simple, one-round protocol in which a single message is sent between

two parties. Dealing with man-in-the-middle attacks is even more challenging [44] when considering

more complex protocols consisting of many rounds of interaction, possibly among more than two

parties. Even the correct formalization of security against man-in-the-middle attacks in a way which

prevents undesired adversarial behavior while making realistic assumptions about the adversary’s

capabilities is non-trivial; in fact, entirely satisfactory definitions have not yet been given for some

cryptographic tasks. Protocol design has been even more difficult, with few efficient protocols known

that prevent man-in-the-middle attacks in a provably-secure way.

In practice, man-in-the-middle attacks are often dealt with by designing protocols that protect

against a list of known attacks; such an approach, however, leaves the protocol vulnerable to new

attacks as they are developed. Furthermore, many widely deployed protocols have only heuristic

arguments in favor of their security. Such an approach does not engender much confidence, and,

unfortunately, many of these protocols have been broken soon after their introduction. A step in

the right direction is to “validate” a protocol by proving the protocol secure in an idealized model

such as the random oracle model1 [12]. Clearly, however, proofs of security requiring no unrealistic

assumptions are preferable.

1.1 Summary of Contributions

In this dissertation, we consider the security of a wide range of cryptographic primitives against

man-in-the-middle attacks.2 We present formal definitions of security against these attacks (in some

cases, these are the first such definitions to appear) and give constructions of efficient protocols

which are proven secure using standard cryptographic assumptions. Our contributions include the

following (terms below are defined in Chapter 2 and the relevant chapter in which the term appears):

• In Chapter 3, we consider the problem of password-only authenticated key exchange over a

network completely controlled by an adversary. Here, the password shared by two parties is

explicitly modeled as a weak, human-memorizable secret which may be easily guessed by the

adversary [11, 24]. Due to the inherent weakness of the password, a secure protocol must

ensure (among other things) that an adversary can not determine the password — and hence

1In the random oracle model, all participants are given oracle access to a truly random function. In practice, the
random oracle is instantiated with a cryptographic hash function. However, there are protocols which are secure in
the random oracle model but are known to be insecure when instantiated with any concrete function [29].

2“Man-in-the-middle attack” is a broad term for any attack in which communication between honest parties may
be corrupted by an adversary. In this work we include precise definitions of security against man-in-the-middle attacks
for all primitives we consider.

4

break the protocol — using an off-line dictionary attack. We work in a setting in which a

common string is known to all parties [20] and users otherwise share only a weak password (in

particular, a public-key infrastructure is not required), and give the first efficient and provably-

secure protocol for password-only authenticated key exchange in this setting. A preliminary

version of this work has appeared previously [83].

• In Chapter 4, we consider the important cryptographic primitive of commitment [96]. There,

we describe the first efficient and non-malleable protocols for non-interactive, perfect commit-

ment. The security of our schemes may be based on either the RSA assumption or the dis-

crete logarithm assumption. We also propose and analyze a construction of a non-interactive,

non-malleable, standard commitment scheme which has near-optimal commitment length. A

preliminary version of this work has appeared previously [41].

• We next consider the case of interactive proofs of knowledge. Extending previous definitions

in the non-interactive setting [44, 110, 38], we formally define the notion of a non-malleable,

interactive proof of plaintext knowledge (PPK). We then give efficient constructions of non-

malleable PPKs (for a number of standard cryptosystems) which remain secure even when

executed in a concurrent fashion. Finally, we show applications of these protocols to (1)

chosen-ciphertext-secure public-key encryption [99, 105], (2) password-based authenticated

key exchange in the public-key model [76, 22], (3) deniable authentication [44, 49], and (4)

identification [56]. In many cases, our work provides the first efficient solutions to these prob-

lems based on factoring or other number-theoretic assumptions. These results are described

in Chapter 5.

Chapter 2 contains a description of the basic adversarial model considered in this dissertation

along with an overview of some previous definitional approaches to security against man-in-the-

middle attacks. There, we also summarize related work in this area and provide relevant crypto-

graphic background.

5

Chapter 2

The Model and Definitions

This chapter contains a description of the adversarial model1 considered in this work, beginning

with a high-level overview and followed by a more detailed and formal definition. We also review

prior approaches to security against man-in-the-middle attacks and discuss relevant previous work

in this area. We conclude by introducing some notation and by defining cryptographic terms used

throughout the remainder of this dissertation.

2.1 The Model: Overview

Our model includes some number of honest users (also called participants or parties) who may, if

and when they choose, take part in an execution of the protocol. The entire protocol is viewed

as taking place in two, distinct phases. In the initialization phase, the set of users is established;

furthermore, during this phase certain information may be generated and distributed among these

users. Following this, the protocol execution phase begins and the desired protocol is run. It is

important to note that the protocol may be executed an arbitrary (polynomial) number of times

during the protocol execution phase following only a single execution of the initialization phase.

During the protocol execution phase, each participant executes a local algorithm to generate

outgoing messages as specified by the protocol; these messages may depend on information received

in the initialization phase and on the set of messages sent and received by the participant thus

far. Delivery of these messages is, however, not guaranteed. In fact, as we will see below, all

communication between participants is completely controlled by an adversary. Details follow.

1Although all our results may be cast in this model, we present a simplified view of the model when considering a
specific cryptographic task. Furthermore, we do not state a generic definition of security in this chapter; instead, we
give formal security definitions for each task we consider in the relevant chapter.

6

2.1.1 Initialization Phase

During the initialization phase, information is distributed among the parties using some (unspecified)

mechanism which is independent of the protocol itself. Examples of information which may be

distributed during this phase include:

• Secret information shared between two (or more) parties. Because the information is assumed

to be shared secretly during the initialization phase, this data is not available to the adversary.

We distinguish two types of secret information. A key always refers to a cryptographically-

strong key; i.e., a string with sufficiently-large entropy so as to be resistant to guessing attacks

by the adversary. On the other hand, a password refers to a short string which may be easily

memorized by a human user (cryptographic keys, including public/secret keys, are too long to

be easily memorized!). Nothing about the entropy of a password is assumed. In particular,

passwords may be easily guessed by an adversary; hence, proofs of security (when passwords

are used) must explicitly take this fact into account.

• Public keys established as part of a public-key infrastructure (PKI). In this case, each par-

ticipant may generate a public key/secret key pair; the public key is distributed to all other

parties while the secret key remains known only to the party that generated it. Since the

public keys are freely distributed (with no effort made to limit their dissemination), they are

also available to the adversary; of course, the corresponding secret keys are unavailable to the

adversary.

• Public information known to all parties [20]. A secure PKI has been notoriously difficult to

implement and PKIs have well-known problems associated with registration, revocation, etc.

Much simpler than establishing a PKI is to fix public parameters (generated by a known,

probabilistic algorithm) and distribute this information to all participants. An example of

this is the common random string model in which all participants possess identical copies of a

uniformly-distributed string. Since this information is publicly distributed, it is also assumed

to be available to the adversary.

Of course, the initialization phase may consist of some combination of the above; it is also possible

to consider a null initialization phase in which no information is shared in advance of protocol

execution.

It is assumed that the initialization phase specified for a particular protocol is executed cor-

rectly before protocol execution begins. Such an approach allows separation of the analysis of the

initialization phase from the analysis of the protocol itself. On the other hand, it is important to

7

recognize that this (in some sense) introduces a new assumption in the proofs of security. For this

reason, protocols using weaker (i.e., easier to achieve) initialization phases are preferable to protocols

requiring stronger set-up assumptions.

2.1.2 The Adversary

We consider a very powerful adversary who controls all communication between the honest partic-

ipants. More precisely, we view transmission of a message msg from A to B as a two-step process

in which A first sends msg to the adversary and the adversary then sends msg to B. However,

the adversary may choose not to deliver messages (without notifying any participants), may deliver

messages out of order, may insert his own messages, and may arbitrarily modify messages in tran-

sit. Furthermore, the adversary may read all messages sent between users. This type of adversary,

though strong, is realistic in settings such as wireless communication networks in which messages

may be easily intercepted and potentially changed.

A protocol defines a probabilistic algorithm for each honest participant. The adversary is aware

of the algorithms defining the protocol, and can cause participants to execute the protocol by

interacting with the participants in the appropriate way. A formal description of the adversary

appears in Section 2.2.

This adversarial model considered here is distinct from (and incomparable with) other models

which have been proposed for security in a multi-party setting (e.g., [66, 95, 61, 26]). In particu-

lar, other models typically assume authenticated channels (so that the identity of the sender of a

message is unambiguous) and guaranteed delivery of messages; neither condition is assumed here.

Additionally, other models typically allow some fraction of the participants to be corrupted by the

adversary in which case the adversary learns all their local information including long-term secrets

as well as state information used during protocol execution. Here, we generally assume that par-

ticipants themselves may not be corrupted (although in Chapter 3 a limited form of corruption is

considered).2

Recently, a model capturing aspects of both the previous models and the model outlined here

has been proposed by Canetti [27]. Canetti has shown [27] that protocols secure in this model enjoy

very strong composability properties; in particular, protocols secure in this model are secure against

many types of man-in-the-middle attacks. The model is sufficiently general to allow the formulation

of many cryptographic tasks; on the other hand, the resulting definitions are often complex and

protocols proven secure in this model are extremely inefficient. For this reason, it is still often

2In other models, the corrupted players may deviate from a correct execution of the protocol. Here — since
authenticated communication is not assumed — the adversary may send whatever messages he likes (claiming they
were sent by one of the participants) and in this way achieve the same effect.

8

desirable to introduce alternate, simpler definitions for specific functionalities. We also remark that

Canetti’s model does not necessarily deal with all possible types of man-in-the-middle attacks (e.g.,

those considered in [81, 32, 44, 82]).

2.2 The Model: Details

The number of participants n is fixed during the initialization phase and is polynomial in the

security parameter. We model the participants and the adversary as interactive Turing machines

(our definition follows [70, 62]):

Definition 2.1 A probabilistic, multi-tape Turing machine M is an interactive Turing machine (ITM)

if it satisfies the following:

• M ’s tapes consist of: (1) a read-only input tape, (2) a read-only private-auxiliary-input tape,

(3) a read-only public-auxiliary-input tape, (4) a write-only output tape, (5) a read-and-write

work tape, (6) a read-only random tape, (7) a read-only communication-in tape, and (8) some

number of write-only communication-out tapes.

• M is message-driven; in other words, M is activated when a new message is written on its

communication-in tape and deactivated when it writes a special symbol ⊥ on its communication-

out tape. A period from when M is activated to when it is next deactivated is called a period

of activation. We may analogously define a period of deactivation.

• The content written on the communication-out tape during a particular period of activation

(not including the symbol ⊥) is called the message sent by M during that period; the content

written on the communication-in tape during a particular period of deactivation is called the

message received by M during that period.

To fully define our model, we describe how the participants jointly execute a protocol in the presence

of an adversary. We stress that joint execution among n participants does not mean that they must

all take part in every invocation of the protocol; it simply means that each participant has the option

of executing the protocol with some other (subset of the) participants of its choosing.

Definition 2.2 Let M1, . . . , Mn, and A be interactive Turing machines. We say that M1, . . . , Mn

are linked via A if:

• Each Mi has a single communication-out tape.

• A has n communication-out tapes labeled 1, . . . , n.

9

• The public-auxiliary-input tapes of M1, . . . , Mn, and A coincide.

• The ith communication-out tape of A coincides with the communication-in tape of Mi. The

communication-out tapes of each Mi coincide with the communication-in tape of A.

• All other tapes are distinct.

M1, . . . , Mn are called the participants and A is called the adversary.

The system is initialized as follows: the random tapes of each ITM are chosen independently at

random. The work tape, input tape, output tape, communication-in tape, and communication-out

tape(s) of all ITMs are initially empty. The public-auxiliary-input tape contains 1k so that the

security parameter is well-defined for all ITMs. The public- and private-auxiliary-input tapes may

contain additional information generated during the initialization phase3 (as described in Section

2.1.1). Typically, this auxiliary information will be the output of some probabilistic initialization

protocol. As an illustrative example, an ℓ-bit secret may be shared between users i and j by choosing

w at random from {0, 1}ℓ and writing w on the private auxiliary-input tapes of Mi and Mj (and on no

other tapes). Public-key generation by player i is achieved by running a key generation algorithm

to obtain (SK, PK), having (i, PK) written on the public auxiliary-input tape, and having SK

written on the private auxiliary-input tape of Mi. Finally, public information may be distributed by

running some algorithm to yield σ and then writing σ on the public auxiliary-input tape. Note that

A has access to the information written on the public auxiliary-input tape; this explicitly models

the public nature of this information.

During the protocol execution phase, A is the first to be activated. Computation proceeds as

follows: A begins by writing a (possibly empty) message on its ith communication-out tape, for some

i. When A is done, Mi is activated and may read the message written on its communication-in tape;

Mi also writes a (possibly empty) message on its communication-out tape. We assume the intended

recipient is clear from a description of the protocol; alternately, one may modify any protocol so that

Mi sends message (i, j, msg) whenever it would otherwise send msg intended for player j. When Mi

is done, the adversary is re-activated. Even though the adversary has only a single communication-

in tape, A can determine the sender of any message because A decides the order of activation. A

may write any message of his choice on the communication-in tape of any recipient; we stress that

the adversary is not required to deliver those messages output by the honest parties. Computation

proceeds in this manner until the adversary halts.

3In the non-uniform model, additional private auxiliary input may be given to the adversary. In this case, it is
often crucial for the security of the protocol that this auxiliary information be fixed before the initialization phase.
Alternately, this auxiliary information may arise from the composition of two (or more) protocols.

10

All participants are assumed to run in polynomial time (in the security parameter k). In partic-

ular, there exists some polynomial p(·) such that each Mi halts within at most p(k) steps regardless

of the behavior of the adversary. A is also assumed to run in polynomial time.

2.3 Security Against Man-in-the-Middle Attacks

The distinguishing feature of the above model is that there is no direct communication between any

of the honest parties. Instead, all communication is “routed” through A. Yet, not all hope is lost in

the face of such a strong adversary. Consider the problem of security against passive eavesdropping.4

If a PKI is established during the initialization phase, the desired level of security may be achieved

by having A encrypt all messages (using the public key of B) before sending them to B.

It is instructive to consider other types of attacks, beyond mere eavesdropping, so as to recognize

what is not achieved in this example. First of all, there is no guarantee that messages from A will

ever be received by B. Worse, however, is the fact that B is not assured that messages he receives

are actually from A, since the adversary (who has access to PKB) can also encrypt messages and

send them to B. In general, these types of attacks cannot be prevented (although there may be

ways to ensure that these attacks are detected) due to the strong adversarial model we consider; for

example, we do not assume authenticated channels between parties.

This discussion indicates that certain things cannot be achieved in our model. More precisely,

we can not hope to prevent the adversary from:

• Preventing communication between parties of his choice.

• Attempting to impersonate one of the honest participants.

• Faithfully forwarding messages, thereby “copying” all messages sent by a particular user (we

will return to this point below).

Our goal, then, is to prevent more devious attacks whose feasibility is not an immediate consequence

of the model. As an example of such an attack, assume A is sending a “yes/no” response (represented

by a “1/0”) to B. The adversary might be able to “flip” the contents of A’s message by somehow

modifying the ciphertext C sent by A. Note that the adversary may (in theory) achieve this without

ever determining A’s original message, and thus the privacy of the encryption scheme is not violated.

Preventing this type of attack is among the problems considered in this work.

The above discussion suggests that defining security against man-in-the-middle attacks is not

simple. Indeed, many cryptographic primitives still have no universally agreed-upon definitions for

4In the context of our model, we may define a passive eavesdropper as an adversary who always reliably forwards
messages, without any modifications, to the intended recipient.

11

security against man-in-the-middle attacks. Yet, it will be useful to review some definitions which

have been suggested previously (in a variety of different settings) for eventual comparison with the

definitions under which we prove security of our constructions.

2.3.1 Definitional Approaches

Ping-pong protocols and early approaches. Man-in-the-middle attacks on cryptographic pro-

tocols have long been recognized as a fundamental problem. Early attempts to deal with such attacks

focused on the security of ping-pong protocols (in which the output of a party is a simple function

of the current input) against adversarial man-in-the-middle behavior [46, 45, 119, 52]. Although a

formal approach is taken, certain limitations of this approach are apparent. First is that the class of

ping-pong protocols is very limited; in particular, it does not include protocols which maintain state

during a multi-round execution. Thus, the approach does not address some very natural scenarios;

e.g., a party who executes a protocol only once and then refuses to execute the protocol again. Sec-

ond, the analysis of ping-pong protocols assumes that cryptographic primitives such as encryption

are ideal; for example, the analysis assumes that given a ciphertext C which is an encryption of some

message m, it is infeasible to come up with a different ciphertext C′ which is also an encryption of

m. Real-life encryption protocols, however, are not ideal; the resulting ciphertexts are simply bit

strings which may be manipulated in a variety of ways (cf. the man-in-the-middle attack in Figure

1.1). Finally, secure ping-pong protocols have typically been designed assuming identities have been

established for all participants. In a large network, however, this may not be the case.

The work of Rivest and Shamir [106] represents another early attempt to prevent man-in-the-

middle attacks (in this case, for a key-exchange protocol). Although their approach is novel, they

neither define nor prove security of their protocol. Analysis of their protocol shows that users need

to (effectively) share a cryptographic key in advance of protocol execution. Furthermore, although

the protocol achieves a “basic” level of security as outlined by the authors, the protocol is easily

seen to be susceptible to more complex attacks.

Non-malleability and simulatability. The limitations of the approaches mentioned above illus-

trate the need for formal approaches that do not idealize cryptographic primitives and that allow for

the analysis of more complex, “real-world” protocols. Dolev, Dwork, and Naor [44] were the first to

present an approach that may be applied to man-in-the-middle attacks in many different contexts.

Specifically, they introduce the notion of non-malleability and formally define non-malleability of

commitment, encryption, and (interactive) zero-knowledge proofs. Their approach may be viewed

as follows. Assume participants A and B, jointly executing some protocol, are linked via adversary

A. The protocol is said to be non-malleable if (informally) B’s “view” in the real world — in which

12

B interacts with man-in-the-middle A — can be simulated by an efficient algorithm that does not

interact with A. As an informal example, consider the case of public-key encryption. Assume that

A encrypts a message m (chosen from some specified distribution D) to yield a ciphertext C. Let C′

be a second ciphertext generated by A after receiving C. Note that B can decrypt C′ to obtain some

message m′, and this real-world experiment therefore defines some distribution D′ over (m, m′). Very

loosely speaking, a non-malleable encryption scheme has the property that there exists a simulator

(who is not given any ciphertext) that can output a ciphertext C′′ (with decryption m′′) such that

the distribution D′′ over (m, m′′) (where m is chosen from D) is indistinguishable from distribution

D′. In other words, ciphertext C is of no help to the adversary in constructing C′.

There is one additional point, however, which needs to be taken into account. A can always

exactly copy A’s messages and forward them to B; in the encryption example, the adversary can

output simply C′ = C. On the other hand, a simulator cannot do the same. Thus, the formal

definition of non-malleability must rule out such behavior.

A related approach is to require that a real execution of the protocol be simulatable (in a way

made more precise below) by a simulator who is given access to an idealized functionality performing

the same task. Depending on the precise definition, simulatability may guarantee (some form of)

non-malleability. As an example, this approach has been used to define the security of key-exchange

protocols [4, 114, 24, 30] against man-in-the-middle attacks. Using this methodology, an ideal model

is defined in which the desired task is carried out. For the case of key exchange, this idealized model

might include a special, trusted party who generates session keys and delivers these keys securely to

any pair of users upon request. A simulator’s interaction with this ideal model is limited to a specific

set of actions; for example, in the case of key exchange the simulator might be allowed to request

that session keys be established between any two parties of its choosing. During a real execution of

the protocol, of course, messages must be exchanged (via the adversary) between parties desiring to

establish a session key. A protocol is said to be secure if these messages (that is, a real execution of

the protocol) can be efficiently simulated — for an arbitrary adversary — by a simulator running

in the ideal model. This implies that anything that can be done by the adversary attacking the

real protocol can be done equally well by a simulator attacking the ideal protocol. Since the ideal

protocol is secure against man-in-the-middle attacks by definition (assuming the ideal functionality

is defined properly), this implies that the real-world protocol is secure.

Recent work by Canetti [27] presents a unified framework in which to analyze protocols, roughly

along the lines sketched above (although we have omitted many important details in our discussion).

One of the contributions of this framework is that protocols simulatable under the given definition

are automatically secure against (certain classes of) man-in-the-middle attacks. Yet, it is difficult

13

(and in certain cases, impossible [28]) to design secure protocols in this model without additional

assumptions. Furthermore, for specific tasks (i.e., key exchange) it is often beneficial to design a

model with that task specifically in mind.

Oracle-based models. While the previously-mentioned approaches are appealing, they are often

very cumbersome to work with. Furthermore, they may in certain cases be too restrictive when

full simulatability is not required. This motivates other definitions which are easier to work with,

and — perhaps more importantly — often yield simpler and more efficient protocols. One such

approach is to allow the adversary to interact with oracles specified in a manner appropriate for

the task at hand. For example, in the case of encryption, the adversary may be given access to a

decryption oracle which takes as input any ciphertext C and returns the underlying plaintext. We

can then define a new type of secure encryption as follows [99, 105, 6] (see also Definition 2.5): First,

the adversary receives ciphertext C. Then, the adversary may interact with the decryption oracle,

obtaining the plaintext corresponding to any ciphertext(s) C′ of the adversary’s choosing.5 The

encryption scheme is said to be “chosen-ciphertext secure” if the contents of C remain hidden from

the adversary even after interaction with the decryption oracle. Oracle-based models have also been

proposed for analyzing key exchange and mutual authentication protocols [13, 15, 11].

In some cases, an oracle-based definition of security has been proven equivalent to a simulation-

based definition [114] or to non-malleability [6, 16]. In these cases, it is often significantly easier to

prove security of a protocol under the oracle-based definition; definitional equivalence then implies

that the protocol inherits the security properties guaranteed by the (seemingly) stronger definition.

Other approaches. Other approaches to man-in-the-middle attacks are also possible, especially

when the security desired is different from the security guarantees outlined above. For example,

when user identities and a PKI are assumed, we may imagine a situation in which a zero-knowledge

proof should be “meaningful” only to a specific receiver [81, 32]. Here, even if the adversary copies

a proof to a third party, the third party should not be convinced by the proof; thus, the definition

of security must deal explicitly with copying instead of simply disallowing it. One may also consider

the complementary notion in which proofs must remain uniquely identified with a particular prover

[19, 44, 82]; in this case, even when an adversary copies a proof it should remain clear which party

actually generated it.

5As before, we need to explicitly rule out copying. Thus, the adversary is not allowed to submit C′ = C to the
decryption oracle.

14

2.4 Previous Work

Here, we survey some of the most important work dealing with non-malleability. More detailed

discussion of previous work related to a particular application appears in the relevant chapters of

this thesis.

As mentioned above, definitions for non-malleable encryption, commitment, and (interactive)

zero-knowledge proofs have previously appeared [44]. Constructions of these primitives which

are provably non-malleable are also known [44]. Subsequently, definitions for non-malleable, non-

interactive zero-knowledge proofs (and non-interactive proofs of knowledge) appeared [110, 38], along

with constructions achieving these definitions. These were also used to construct improved non-

malleable encryption protocols, following the paradigm established in [99]. A revised definition of

non-malleable commitment (appropriate for the case of perfect commitment) appears in [40, 58].

The first construction of a non-interactive, non-malleable commitment scheme is given in [40].

The above constructions are all based on general assumptions and are therefore highly imprac-

tical. Only one efficient and provably-secure construction of a non-malleable encryption scheme is

known [36].6 An efficient (interactive) non-malleable commitment scheme has been given [58]. In

the random oracle model, many efficient chosen-ciphertext-secure encryption schemes are known;

e.g., [12, 14].

Relations among definitions of security for public-key encryption (especially non-malleability vs.

chosen-ciphertext security) are considered in [6, 16]. Similar relations have been established for

private-key encryption [84], where the adversary’s interaction with an encryption oracle must also

be taken into account. Other areas for which a formal approach to man-in-the-middle attacks has

been given include: key exchange and mutual authentication [18, 13, 15, 4, 76, 114, 22, 11, 24, 23, 92,

30, 65], deniable authentication [49, 50, 48], identification [7], and designated-verifier proofs [81, 32].

2.5 Notation and Preliminaries

2.5.1 Notation

We adopt the now-standard notation of Goldwasser, Micali, and Rackoff [70]. The set of n-bit strings

is denoted by {0, 1}n, the set of all binary strings of length at most n is denoted by {0, 1}≤n, and the

set of all finite, binary strings is denoted by {0, 1}∗. Concatenation of two strings x1, x2 is denoted

by x1 ◦ x2 or x1 | x2. The output y of a deterministic function f on input x1, . . . , xn is denoted by

y := f(x1, . . . , xn). Similarly, if random tape r is fixed, the (deterministic) output y of probabilistic

algorithm A on input x1, . . . , xn and random tape r is denoted by y := A(x1, . . . , xn; r). We let

6Very recently, other efficient constructions of non-malleable encryption schemes have been given [37].

15

y ← A(x1, . . . , xn) refer to the (randomized) experiment in which r is chosen uniformly at random

and y is set to the output of A(x1, . . . , xn; r). For a finite set S, the notation x← S means that x

is chosen uniformly at random from S. If p(x1, x2, . . .) is a predicate, the notation

Pr [x1 ← S; x2 ← A(x1, . . .); · · · : p(x1, x2, . . .)]

denotes the probability that p(x1, x2, . . .) is true after ordered execution of the listed experiments.

An important convention is that all appearances of a given variable in a probabilistic statement

refer to the same random variable. If f is a deterministic function, the predicate f(x1, . . . , xn) = y

is true exactly when the output of f(x1, . . . , xn) is equal to y; for a randomized algorithm f , we

write (slightly abusing notation) f(x1, . . . , xn) = y to refer to the predicate f(x1, . . . , xn; r) = y for

randomly chosen r.

A probabilistic, polynomial-time (ppt) ITM M is one for which there exists a polynomial p(·)

such that, for all inputs x1, . . . , xn, all random tapes r, and arbitrary behavior of other machines with

which M is interacting, M(x1, . . . , xn; r) runs in time bounded by p(|x1 ◦ · · · ◦ xn|). An expected-

polynomial-time ITM M is one for which there exists a polynomial p(·) such that, for all inputs

x1, . . . , xn and regardless of the behavior of other machines with which M is interacting, the expected

running time of M(x1, . . . , xn; r) (over choice of r) is bounded by p(|x1 ◦ · · · ◦ xn|). All algorithms

we consider are (at least implicitly) given the security parameter k (in unary) as input; the lengths

of other inputs are always polynomially related to k and therefore, in most cases, running times

are measured as a function of k. All algorithms (including adversarial algorithms) are modeled as

uniform Turing machines (although our results extend to the non-uniform case by modifying the

computational assumptions appropriately).

A function ε : N→ R+ is negligible if for all c > 0 there exists an nc such that, for n > nc we have

ε(n) < 1/nc. In other words, ε(·) is asymptotically bounded from above by any inverse polynomial.

A function f : N → R+ is non-negligible (or noticeable) if there exists a c > 0 and an nc such that,

for n > nc we have f(n) > 1/nc. Note that it is possible for a function to be neither negligible

nor non-negligible. Two distributions Xk, X ′
k (indexed by parameter k ∈ N) are computationally

indistinguishable if, for all ppt distinguishing algorithms D, the following is negligible (in k):

|Pr[x← Xk : D(x) = 1]− Pr[x← X ′
k : D(x) = 1]| .

Two distributions Xk, X ′
k are statistically indistinguishable if the following is negligible (in k):

∑

α

|Pr[x← Xk : x = α]− Pr[x← X ′
k : x = α]| .

In this case, we may also say that Xk, X ′
k have negligible statistical difference. Note that statistical

indistinguishability implies computational indistinguishability.

16

2.5.2 Cryptographic Assumptions

Hardness of factoring. This assumption, one of the most widely known, states that it is infea-

sible for any algorithm to find the factors of a random product of two primes. More formally, let

2-factork
def
= {pq | p and q are prime; |p| = |q| = k}. Then, the factoring assumption states that

for every ppt algorithm A, the following probability is negligible (in k):

Pr[N ← 2-factork; (p, q)← A(N) : p · q = N].

If we restrict ourselves to N of a special form the factoring assumption needs to be appropriately

modified. For example, N is a Blum integer if N = pq with p, q prime and p, q = 3 mod 4; it is

widely believed that factoring Blum integers is intractable.

A result due to Rabin [104] shows that the hardness of inverting the squaring function, defined by

f(x) = x2 mod N , is equivalent to the hardness of factoring. A similar result holds for the function

fi(x) = x2i

mod N (for fixed i). Note this implies that both of these functions can be efficiently

inverted if the factorization of N is known.

The RSA assumption [107]. Informally, for a modulus N = pq which is the product of two

primes, a fixed e which is relatively prime to ϕ(N), and a random r ∈ Z∗
N , the RSA assumption

states that it is infeasible to compute r1/e mod N . More formally, the RSA assumption states that

for all ppt algorithms A, the following probability is negligible (in k):

Pr [N ← 2-factork; r ← Z
∗
N ; x← A(N, e, r) : xe = r mod N] ,

where e is any number relatively prime to ϕ(N). If the factorization of N is known, then for all e

relatively prime to ϕ(N) and for all r ∈ Z∗
N , the value r1/e can be computed efficiently. Thus, the

RSA assumption is at least as strong as the assumption that factoring is hard.

Discrete-logarithm-based assumptions [42]. Assume a finite, cyclic group G such that the

order of G is prime (this condition is not essential for the assumptions below, yet all G used in this

work have this property). For any elements g, h ∈ G with g 6= 1, the value logg h is well-defined

as the unique a ∈ Z|G| for which ga = h. For convenience, we use groups G defined as follows: let

p = 2q + 1, with p, q prime and let G be the (unique) subgroup of Z∗
p with order q.

The discrete logarithm assumption states that, given randomly-chosen elements g, h, computing

logg h is infeasible. More formally, let G be an efficient algorithm which, on input 1k, generates p, q

prime with p = 2q + 1 and |q| = k (thereby defining group G). The discrete logarithm assumption

states that for all ppt algorithms A, the following is negligible (in k):

Pr
[
(p, q)← G(1k); g, h← G; a← A(p, q, g, h) : ga = h

]
.

17

Related (but possibly stronger) assumptions include the computational Diffie-Hellman (CDH) and

decisional Diffie-Hellman (DDH) assumptions. For G defined as above, the CDH assumption states

that for any ppt algorithm A, the following is negligible (in k):

Pr
[
(p, q)← G(1k); g ← G; x, y ← Zq : A(p, q, g, gx, gy) = gxy

]
.

The DDH assumption states that the following distributions are computationally indistinguishable,

where the first distribution is over random tuples and the second is over Diffie-Hellman tuples:

{(p, q)← G(1k); g ← G; x, y, z ← Zq : (p, q, g, gx, gy, gz)}

{(p, q)← G(1k); g ← G; x, y ← Zq : (p, q, g, gx, gy, gxy)}.

Clearly, the DDH assumption implies the CDH assumption which in turn implies the discrete loga-

rithm assumption. It is not known whether the converses hold.

Expected-polynomial-time algorithms. Occasionally, we will need to assume that the above-

mentioned problems are hard even with respect to algorithms which are permitted to run in expected

polynomial time (the assumptions above are stated with respect to ppt algorithms). Although these

represent stronger assumptions, they are still widely believed to hold for the problems listed above.

2.5.3 Cryptographic Tools

Cryptographic hash functions. Two distinct notions of cryptographic hash functions are primar-

ily used.7 The first notion is that of (families of) collision-resistant hash functions (CRFs). These

are functions h for which it is infeasible to find distinct pre-images x, x′ such that h(x) = h(x′)

(typically, h compresses its input). Formally, let H = {Hk}k∈N, where each Hk is a finite family

of efficiently-evaluable functions such that, for each h ∈ Hk, we have h : {0, 1}∗ → {0, 1}≤p(k) for

some polynomial p(·). Such a collection is called collision-resistant if for any ppt algorithm A, the

following is negligible (in k):

Pr[h← Hk; (x, x′)← A(1k, h) : x 6= x′ ∧ h(x) = h(x′)].

Collision-resistant hash families are known to exist based on the hardness of factoring or the discrete

logarithm assumption; see [109] for minimal assumptions on which CRFs may be based.

In practice, very efficient hash functions mapping {0, 1}∗ to a fixed output length are used;

examples include SHA-1 and MD5. Although the security of these hash functions is at best heuristic,

these functions are generally considered to be collision-resistant for all practical purposes.

7A third approach is to model specific cryptographic hash functions as random oracles; see Chapter 1, footnote 1.
As discussed there, this approach represents an idealized view of hash functions which cannot be realized in practice.
Since we do not use this approach in this thesis, we omit further discussion.

18

The second notion is that of (families of) universal one-way hash functions. Here, an adversary

first outputs a value x before receiving a hash function h chosen at random from the family (recall

that for collision-resistant hash functions the adversary may choose both x and x′ after receiving h).

It is then infeasible for the adversary to find an x′ 6= x such that h(x) = h(x′). More formally, let

H = {Hk}k∈N, where each Hk is a finite family of efficiently-evaluable hash functions such that, for

each h ∈ Hk, we have h : {0, 1}∗ → {0, 1}≤p(k) for some polynomial p(·). Such a collection is called

universal one-way if for any ppt algorithm A = (A1, A2), the following is negligible (in k):

Pr[(x, s)← A1(1
k); h← Hk; x′ ← A2(1

k, s, h) : x 6= x′ ∧ h(x) = h(x′)].

Universal one-way hash functions were introduced by Naor and Yung [98], who provide a construction

based on any one-way permutation. Subsequently, it was shown that one-way functions are sufficient

for the construction of universal one-way hash functions [108]. Note that any collision-resistant hash

family is also universal one-way; however, there is evidence that the existence of collision-resistant

hash functions is a strictly stronger assumption [85].

Public- and private-key encryption. An encryption scheme allows one party to send a message

to another such that the contents of the message remain hidden from anyone intercepting the com-

munication. Though the intuition is simple, formalizing this intuition correctly requires care. The

generally-accepted notion of security for encryption is semantic security, introduced by Goldwasser

and Micali [69]; this definition states (informally) that anything which can be efficiently computed

about a plaintext message when given access to the encryption of that message can be efficiently

computed without access to the encryption of the message (in particular, this implies that the mes-

sage itself cannot be determined without the decryption key). A second definition of security is

that of indistinguishability [69]; here, an adversary outputs two messages x0, x1 and is then given an

encryption of one of them (chosen at random). The adversary succeeds if he can determine which

message was encrypted. An encryption scheme is indistinguishable if the success probability of any

ppt adversary is negligibly close to 1/2 (the adversary can always succeed half the time by guessing

randomly).

The basic definition of indistinguishability given above is equivalent to that of semantic security

[69]. Under the basic definition, however, the adversary is given only the ciphertext. Subsequent

work has considered stronger attacks in the public- [99, 105, 6] and symmetric-key [5, 84] settings.

We begin with a generic definition of an encryption scheme:

Definition 2.3 An encryption scheme Π is a triple of algorithms (K, E ,D) such that, for some

polynomial p(·):

19

• The key generation algorithm K is a ppt algorithm that takes as input a security parameter k

(in unary) and returns keys sk and pk.

• The encryption algorithm E is a ppt algorithm that takes as input 1k, key pk, and a message

x ∈ {0, 1}≤p(k) and returns a ciphertext C (we denote this by C ← Epk(x)).

• The decryption algorithm D is a deterministic, poly-time algorithm that takes as input 1k, key

sk, and a ciphertext C and returns either a message x ∈ {0, 1}≤p(k) or a special symbol ⊥ to

indicate that the ciphertext C is invalid (we denote this by x := Dsk(C)).

We require that for all k, for all (sk, pk) which can be output by K(1k), for all x ∈ {0, 1}≤p(k), and

for all C which can be output by Epk(x), we have Dsk(C) = x.

We may define a private-key (also known as symmetric-key) encryption scheme as one in which, for

all (sk, pk) output by K(1k), we have pk = sk. A public-key encryption scheme will have pk 6= sk;

note that this is not implied by the definition above, yet will be implied by the definition of security

given below.

We first present the basic notion of indistinguishability for public-key encryption [69]. Note that

the adversary is explicitly given the public key at all times.

Definition 2.4 Π = (K, E ,D) is a public-key encryption scheme secure in the sense of indistinguisha-

bility (equivalently [69], semantically secure) if for any ppt adversary A = (A1, A2), the following is

negligible (in k):

∣∣Pr[(sk, pk)← K(1k); (m0, m1, s)← A1(1
k, pk); b← {0, 1};

C ← Epk(mb); b
′ ← A2(1

k, pk, C, s) : b′ = b]− 1/2
∣∣ .

One may also consider stronger classes of adversaries which are given access to certain oracles. For an

adversary attacking a public-key encryption scheme, the only oracle of interest is a decryption oracle

Dsk(·) which returns the decryption of any ciphertext C given to it by the adversary. Encryption

schemes which remain secure even against this class of adversaries are termed (adaptive8) chosen-

ciphertext secure [105].

Definition 2.5 Π = (K, E ,D) is a chosen-ciphertext-secure (CCA2) public-key encryption scheme if

for any ppt adversary A = (A1, A2), the following is negligible (in k):

∣∣∣Pr[(sk, pk)← K(1k); (m0, m1, s)← A
Dsk(·)
1 (1k, pk); b← {0, 1};

C ← Epk(mb); b
′ ← A

Dsk(·)
2 (1k, pk, C, s) : b′ = b]− 1/2

∣∣∣ ,
8A definition of non-adaptive chosen-ciphertext security, in which A1 has access to the oracle but A2 does not, is

also possible. In fact, this was the first such definition presented [99]. However, since we do not explicitly use this
weaker definition in this work, we omit further discussion.

20

where we require that A2 not submit C to its decryption oracle.

Semantically-secure public-key encryption schemes may be based on any (family of) trapdoor

functions with polynomial preimage-size [9]; in particular, public-key cryptosystems exist based on

the hardness of factoring [104] and RSA [107] assumptions. Security of the El-Gamal encryption

scheme [51] is based on the DDH assumption. CCA2 public-key encryption schemes may be based

on trapdoor permutations [44]; an efficient construction based on the DDH assumption is also known

[36].

Semantic security for private-key encryption is defined in an analogous manner. Here, one may

also consider adversaries with access to an encryption oracle [84]; however, we will not need such

a notion for the present work. For completeness, we provide the definition for (adaptive) chosen-

ciphertext security here (we omit pk since, for private-key encryption, pk = sk).

Definition 2.6 Π = (K, E ,D) is a chosen-ciphertext-secure private-key encryption scheme if for any

ppt adversary A = (A1, A2), the following is negligible (in k):

∣∣∣Pr[sk ← K(1k); (m0, m1, s)← A
Dsk(·)
1 (1k); b← {0, 1};

C ← Epk(mb); b
′ ← A

Dsk(·)
2 (1k, C, s) : b′ = b]− 1/2

∣∣∣ ,

where we require that A2 not submit C to its decryption oracle.

One-way functions are necessary and sufficient for constructing semantically-secure [78] and chosen-

ciphertext-secure [44] private-key encryption schemes.

Message authentication codes. A message authentication code (mac) allows two parties, who

have shared a secret key in advance, to authenticate their subsequent communication. More formally,

a mac is a key-based algorithm which associates a tag with every valid message. The tag for

a particular message may be efficiently verified by the party sharing the key. Furthermore, an

adversary who sees many message/tag pairs is unable to forge a tag on a new message. We begin

with a definition of a mac algorithm and then define an appropriate notion of security.

Definition 2.7 A message authentication code Π is a triple of algorithms (K,mac, Vrfy) such that,

for some polynomial p(·):

• The key generation algorithm K is a ppt algorithm that takes as input a security parameter k

(in unary) and returns key sk.

• The tagging algorithm mac is a ppt algorithm that takes as input 1k, a key sk, and a message

m ∈ {0, 1}≤p(k) and returns a tag T (we denote this by T ← macsk(m)).

21

• The verification algorithm Vrfy is a deterministic algorithm that takes as input 1k, a key

sk, a message m ∈ {0, 1}≤p(k), and a tag T and returns a single bit (we denote this by

b := Vrfysk(m, T)).

We require that for all k, all sk output by K(1k), all m ∈ {0, 1}≤p(k), and all T output by macsk(m),

we have Vrfysk(m, T) = 1.

A mac is secure if an adversary is unable to forge a valid message/tag pair. Yet we need to specify

the class of adversary we consider (i.e., the type of attack allowed). Following [10], we consider the

strongest type of attack: the adversary may interact — adaptively and polynomially-many times —

with an oracle macsk(·) that returns the correct tag for any message submitted by the adversary.

Definition 2.8 A message authentication code Π = (K,mac, Vrfy) is secure under adaptive chosen

message attack if for all ppt forging algorithms F , the following probability is negligible (in k):

Pr[sk← K(1k); (m, T)← Fmacsk(·)(1k) : Vrfysk(m, T) = 1],

where we require that T not be a tag previously output by macsk(·) on input m.

Since this definition is now standard, the term “secure mac” in this work refers to a mac that is

secure under adaptive chosen message attack. A variety of mac constructions are known, and a

secure mac may be based on any one-way function [63, 77].

Signatures. A formal definition of security for signature schemes was first given by Goldwasser,

Micali, and Rivest [71]. Here, a signer publishes a (public) verification key V K and keeps secret a

signing key SK. A signing algorithm, which takes as additional input a signing key SK, associates

a signature with every valid message; this signature may be validated by anyone who knows the

corresponding verification key. As with a secure mac, an adversary should be unable to forge a

valid signature on a previously-unsigned message. The formal definitions of a signature scheme and

its security under adaptive chosen-message attack exactly parallel those given above for macs. For

completeness, we give the full definitions here (following [71]).

Definition 2.9 A signature scheme Π is a triple of algorithms (K, Sign, Vrfy) such that, for some

polynomial p(·):

• The key generation algorithm K is a ppt algorithm that takes as input a security parameter k

(in unary) and returns verification key V K and signing key SK.

• The signing algorithm Sign is a ppt algorithm that takes as input 1k, a key SK, and a message

m ∈ {0, 1}≤p(k) and returns a signature s (we denote this by s← SignSK(m)).

22

• The verification algorithm Vrfy is a deterministic algorithm that takes as input 1k, a key V K,

a message m ∈ {0, 1}≤p(k), and a signature s and returns a single bit (we denote this by

b = VrfyV K(m, s)).

We require that for all k, all (V K, SK) output by K(1k), all m ∈ {0, 1}≤p(k), and all s output by

SignSK(m), we have VrfyV K(m, s) = 1.

Definition 2.10 A signature scheme Π = (K, Sign, Vrfy) is secure under adaptive chosen message

attack if for all ppt forging algorithms F , the following probability is negligible (in k):

Pr[(V K, SK)← K(1k); (m, s)← FSignSK(·)(1k, V K) : VrfyV K(m, s) = 1],

where we require that s not be a signature previously output by SignSK(·) on input m.

As with macs, the above definition is standard, so that the term “secure signature scheme” in

this work refers to security in the sense of the definition above. Secure signature schemes may be

constructed from any one-way function [98, 108].

A weaker notion is that of a one-time signature scheme [87, 94], in which the adversary is

allowed to request only one signature from the Sign oracle before attempting a forgery. Although

secure signature schemes and one-time signature schemes may both be constructed from one-way

functions, known constructions of one-time signature schemes are more efficient [53, 112].

23

Chapter 3

Password-Authenticated Key
Exchange

3.1 Introduction

Protocols for mutual authentication of two parties and generation of a cryptographically-strong

shared key between them (authenticated key exchange) underly most interactions taking place on

the Internet. Indeed, it would be near-impossible to achieve any level of security over an unau-

thenticated network without mutual authentication and key-exchange protocols. The former are

necessary because you always need to know “with whom you are communicating”; the latter are

required because cryptographic techniques (such as encryption, message authentication, etc.) are

useless without a shared cryptographically-strong key which must be periodically refreshed (e.g., for

each new session). Furthermore, high-level protocols are frequently developed and analyzed using

the assumption of “authenticated channels” (see [4] for discussion); yet, this assumption cannot

be realized without a secure mechanism for implementing such channels using previously-shared

information.

We focus here on password-only protocols in which the information previously-shared between

two parties consists only of a short, easily-memorized password.1 We additionally assume some

public information known to all participants including the adversary attacking the protocol; this

public information may be established by some trusted party or may be generated in some alternate

secure way (e.g., flipping coins publicly). In the password-only setting, it is important to design

protocols which explicitly prevent off-line dictionary attacks in which an adversary enumerates all

possible passwords, one-by-one, in an attempt to determine the correct password based on previously-

recorded transcripts. Consideration of such attacks is crucial if security is to be guaranteed even

when users of the protocol choose passwords “poorly” (say, from a dictionary of English words).

1See Chapter 2 for the distinction between “password” and “key”.

24

One might argue that users should be forced to choose high-entropy passwords which cannot be

easily guessed; indeed, the security of an authentication protocol can only improve as the entropy of

the shared secret increases. This recommendation misses the point. Although good password selec-

tion should be encouraged, it remains true that, in practice, user-selected passwords are weak [118].

This is to be expected since high-entropy passwords are difficult (if not impossible) to remember. It

is preferable to recognize this and design protocols which remain secure despite this limitation.

Previous work on password-based protocols [76, 22] (where, in addition to a shared password, a

public-key infrastructure (PKI) is assumed), are a step in the right direction since they recognize

the weakness of passwords selected in practice. However, password-only protocols (even when public

information is assumed) have many practical advantages over password-based protocols. For one,

the password-only model eliminates the need for secure implementation of a PKI, thereby avoiding

the need to deal with issues like user registration, key management, or key revocation (although

these concerns are somewhat mitigated when only servers need certified public keys). Furthermore,

avoiding the use of a PKI means that an on-line, trusted certification authority (CA) is not needed

throughout the lifetime of the protocol; note that the need to access a CA in the public-key setting is

often a performance bottleneck as the number of users becomes large. In the password-only model,

once public information is established new users may join the network at any time and do not

need to inform anyone else of their presence. Finally, in the password-only model no participants

need to know any “secret key” associated with the public parameters. This eliminates the risk that

compromise of a participant will compromise the security of the entire system.

3.1.1 Previous Work

The importance of key exchange as a cryptographic primitive has been recognized since the influ-

ential paper of Diffie and Hellman [42]. Soon after, the importance of authenticated key exchange

(and mutual authentication) became apparent. Many protocols for these tasks were proposed (see

[23] for an exhaustive bibliography), followed by increased realization that precise definitions and

formalizations were necessary. The first formal treatments [18, 43, 13, 15, 86, 4, 114] were in a model

in which participants had established cryptographically-strong information in advance of protocol

execution: either a shared key [18, 13, 15, 4, 114] which is used for authentication of messages, or

a public key [4, 114] which is used for encryption or digital signatures. Under these strong setup

assumptions, secure protocols for the two-party [18, 13, 4, 114] and two-party assisted [15] case were

designed and proven secure.

The setting arising most often in practice — in which human users generate and share only weak

passwords — has only recently received formal treatment. It is important to note that the known

25

protocols which guarantee security when users share keys are demonstrably insecure when users

share passwords. For example, a challenge-response protocol in which the client sends a nonce r and

the server replies with x = fK(r) (where {fs}s∈{0,1}k is a family of pseudorandom functions and K

is a shared key) prevents a passive eavesdropper from determining K only when the entropy of K

is sufficiently large. When K has low entropy, an eavesdropper who monitors a single conversation

(r, x) can determine (with high probability) the value of K, off-line, by trying all possibilities until

a value K ′ is found such that fK′(r) = x. This example clearly indicates the need for new protocols

in the password-only setting.

In the public-key setting (where, as mentioned above, in addition to sharing a password the client

requires the public key of the server), Lomas et. al [88] were the first to present password-based

authentication protocols resistant to off-line dictionary attacks; these protocols were subsequently

improved [72]. However, formal definitions and proofs of security are not given. Formal definitions

and provably-secure protocols for the public-key setting were given by Halevi and Krawczyk [76],

and extensions of these definitions and protocols to the multi-user setting have also appeared [22].

A protocol for password-only (i.e., where no PKI is assumed) authentication and key exchange

was first introduced by Bellovin and Merritt [17], and many additional protocols have subsequently

been proposed [73, 115, 79, 80, 89, 117]. These protocols have only informal arguments for their

security; in fact, some of these protocols were later broken [102] indicating the need for proofs

of security in a well-defined model. Formal models of security for the password-only setting were

given independently by Bellare, Pointcheval, and Rogaway [11] (building on [13, 15, 89]) and Boyko,

MacKenzie, Patel, and Swaminathan [92, 24, 23] (building on [4, 114]); these works also give protocols

for password-only key exchange which are provably-secure in the ideal cipher and random oracle

models, respectively. A different model of security for the password-only setting was introduced by

Goldreich and Lindell [65]; they also present a provably-secure protocol under standard assumptions

(i.e., without random oracles or ideal ciphers). Subsequent to the work described in this chapter,

other protocols with provable security in the random oracle model have been demonstrated [90, 91].

3.1.2 Our Contribution

Proofs of security in idealized models (random oracle/ideal cipher) do not necessarily translate to

real-world security [29]. In fact, protocols are known which may be proven secure in an idealized

model yet are demonstrably insecure when given any concrete implementation in the standard model

[29]. This illustrates the importance of proofs of security in the standard model, using well-studied

cryptographic assumptions.

The existence of a secure protocol for password-only key exchange in the standard model [65]

26

is remarkable since it was not a priori clear whether a solution was achievable. In contrast to the

present work, the protocol of Goldreich and Lindell [65] does not require public parameters. On the

other hand (unlike the protocol presented here) their solution does not allow concurrent executions

of the protocol between parties using the same password. Most importantly, their protocol is not at

all efficient. The proposed scheme requires techniques from generic multi-party computation (mak-

ing it computationally inefficient) and concurrent zero-knowledge (making the round-complexity

prohibitive); thus, their protocol may be viewed as a plausibility result that does not settle the

important question of whether a practical solution is possible. We note that efficiency is especially

important in the password-only setting since security concerns are motivated by practical consider-

ations (i.e., human users’ inability to remember long keys).

Here, we present a protocol which is provably secure in the standard model under the decisional

Diffie-Hellman assumption, a well-studied cryptographic assumption [42] used in constructing pre-

vious password-only schemes [11, 24]. The construction is secure under both the notion of “basic

security” and the stronger notion of “forward security” (see Section 3.2.1 for definitions). The pro-

tocol is remarkably efficient even when compared to the original key-exchange protocol of Diffie

and Hellman [42] which provides no authentication at all. Only three rounds of communication are

needed, and the protocol requires computation only (roughly) 4 times greater than the aforemen-

tioned schemes [42, 11, 24].

Although our solution relies on public-key techniques (in fact, this is necessary [76]), our protocol

does not use the public-key model. In particular, we do not require any participant to have a public

key but instead rely on one set of common parameters shared by everyone in the system. From a

practical point of view, the requirement of public parameters is not a severe limitation. Previous

password-only protocols [11, 24] require public parameters and the existence of such parameters

seems to be implicitly assumed in most previous work.2 Furthermore, the public parameters can be

hard-coded into any implementation of the protocol. We note, however, that it would be preferable

to rely on public parameters into which no “secret information” can be embedded (e.g., a single

generator g). This makes the problem of generating the public information much easier when no

trusted parties are assumed.

3.2 Definitions and Preliminaries

We begin with an informal description of the adversarial model, followed by a more formal treatment

in Section 3.2.1. Two parties within a larger network who share a weak (low-entropy) password wish

2For example, Diffie and Hellman [42] implicitly assume that both parties know a group G and generator g to use
in the protocol. Although this can be avoided (these may be included in the first message), the public nature of these
parameters has generally been assumed in subsequent work.

27

to authenticate each other and generate a strong session key to secure their future communication.

An adversary controls all communication in the network. The adversary may view, tamper with,

deliver out-of-order, or refuse to deliver messages sent by the honest parties. The adversary may also

initiate concurrent (arbitrarily-interleaved) executions of the protocol between the honest parties;

during these executions, the adversary may attempt to impersonate one (or both) of the parties or

may simply eavesdrop on an honest execution of the protocol. Finally, the adversary may corrupt

the honest parties (in a way we describe below) to expose previous session keys or even the long-term

shared password. The adversary succeeds (informally) if he can distinguish an actual session key

generated by an honest party from a randomly-chosen session key.

A notion of security in this setting must be carefully defined. Indeed, since passwords are chosen

from a small space, an adversary can always try each possibility one at a time in an impersonation

(on-line) attack. We say a password-only protocol is secure (informally) if on-line guessing is the

best an adversary can do. On-line attacks are the hardest to mount, and they are also the easiest to

detect. Furthermore, on-line attacks may be limited by, for example, shutting down a user’s account

after three failed authentication attempts. It is therefore very realistic to assume that the number

of on-line attacks an adversary is allowed is severely limited, while other attacks (eavesdropping,

off-line password guessing) are not.

3.2.1 The Model

Our model is essentially identical to that proposed by Bellare, Pointcheval, and Rogaway [11] with

a few small differences. A formal description of the model follows.

Participants, passwords, and initialization. We have a fixed set of protocol participants (also

called principals or users) each of which is either a client C ∈ Client or a server S ∈ Server, where

Client and Server are disjoint. We let User
def
= Client ∪ Server. Each U ∈ User may be viewed as a

string (of length polynomial in the security parameter) identifying that user.

Each C ∈ Client has a password pwC . Each S ∈ Server has a vector PWS = 〈pwS,C〉C∈Client

which contains the passwords of each of the clients (we assume that all clients share passwords with

all servers). Recall that pwC is what client C remembers for future authentication; therefore, it is

assumed to be chosen from a relatively small space of possible passwords.

Before the protocol is run, an initialization phase occurs during which public parameters are

established and passwords pwC are chosen for each client. We assume that passwords for each client

are chosen independently and uniformly3 at random from the set {1, . . . , N}, where N is a constant

which is fixed independently of the security parameter. The correct passwords are stored at each

3Our analysis extends easily to handle arbitrary distributions, including users with inter-dependent passwords.

28

server so that pwS,C = pwC for all C ∈ Client and S ∈ Server.

It is possible for additional information to be generated during this initialization phase. For

example, in the public-key model [76, 22] public/secret key pairs are generated for each server, with

the secret key given as private input to the appropriate server and the public key provided as public

input for all participants. Here, we use the weaker requirement of a set of parameters provided as

public input to all participants. See Chapter 1 for further discussion of these different models.

Execution of the protocol. In the real world, a protocol determines how principals behave in

response to signals (input) from their environment. In the model, these signals are sent by the

adversary. Each principal is able to execute the protocol multiple times with different partners;

this is modeled by allowing each principal to have an unlimited number of instances with which to

execute the protocol [15]. We denote instance i of user U as Πi
U . A given instance may be used only

once. Each instance Πi
U has associated with it various variables:

• statei
U denotes the state of the instance including any information necessary for execution of

the protocol. During the initialization stage, this variable is set to null for all instances.

• termi
U is a boolean variable denoting whether a given instance has terminated (i.e., is done

sending and receiving messages); during the initialization phase, this variable is set to false

for all instances.

• acci
U is a boolean variable denoting whether a given instance has accepted, where acceptance

is defined by the protocol specification. When an instance accepts, the values of sidi
U , pidi

U ,

and ski
U (see below) are non-null. As an example, acceptance might indicate that instance Πi

U

is convinced of the identity of the user with whom it was interacting. During the initialization

phase, this variable is set to false for all instances.

• usedi
U is a boolean variable denoting whether a given instance has begun executing the protocol;

this variable is used to ensure that a given instance is used only once. During the initialization

phase, this variable is set to false for all instances.

• sidi
U , pidi

U , and ski
U are variables containing the session id, partner id, and session key for an

instance, respectively. Computation of the session key is the goal of the protocol, and this

key will be used to secure future communication between the interacting parties. The precise

function of sidi
U and pidi

U will be explained in more detail below. During the initialization

phase, these variables are set to null for all instances.

The adversary is assumed to have complete control over all communication in the network. The

adversary’s interaction with the principals (more specifically, with the various instances) is modeled

29

via access to oracles which we describe in detail below. Local state (in particular, values for the

variables described above) is maintained for each instance with which the adversary interacts; this

state is not directly visible to the adversary. The state for an instance may be updated during an

oracle call, and the oracle’s output may depend upon this state. The oracle types are:

• Send(U, i, M) — This sends message M to instance Πi
U . The oracle runs this instance according

to the protocol specification, maintaining state as appropriate. The output of Πi
U (i.e., the

message sent by the instance) is given to the adversary, and in addition the adversary receives

the updated values of sidi
U , pidi

U , acci
U , and termi

U .

• Execute(C, i, S, j) — If Πi
C and Πj

S have not yet been used (where C ∈ Client and S ∈ Server),

this oracle executes the protocol between these instances and outputs the transcript of this

execution. This oracle call represents occasions when the adversary passively eavesdrops on a

protocol execution. In addition to the transcript, the adversary receives the values of sid, pid,

acc, and term, for both instances, at each step of protocol execution.

• Reveal(U, i) — This outputs the current value of session key ski
U . This oracle call models

possible leakage of session keys due to, for example, improper erasure of session keys after use,

compromise of a host computer, or cryptanalysis.

• Corrupt(C, (pw, S)) — This oracle call outputs pwC (where C ∈ Client) and, if pw 6=⊥, sets

pwS,C = pw. This represents possible password exposures and also gives the adversary the

ability to install bogus passwords of his choice on the various servers.

• Test(U, i) — This query is allowed only once, at any time during the adversary’s execution. A

random bit b is generated; if b = 1 the adversary is given ski
U , and if b = 0 the adversary is

given a random session key. This oracle call does not correspond to any real-world event, but

will allow us to define a notion of security.

Specification of the Corrupt oracle, above, corresponds to the “weak-corruption” case [11]; in the

“strong-corruption” case the adversary also obtains the state information for all instances associated

with C.

Correctness. Any key-exchange protocol must satisfy the following notion of correctness: Let

C ∈ Client and S ∈ Server. If two instances Πi
C and Πj

S satisfy sidi
C = sidj

S and acci
C = accj

S = true,

and furthermore it was the case that pwC = pwS,C throughout the time these instances were active,

then it must be the case that ski
C = skj

S .

30

Partnering. We say that two instances Πi
U and Πj

U ′ are partnered if: (1) U ∈ Client and U ′ ∈ Server,

or U ∈ Server and U ′ ∈ Client; (2) sidi
U = sidj

U ′ 6= null; (3) pidi
U = U ′ and pidj

U ′ = U ; and (4)

ski
U = skj

U ′ . The notion of partnering will be fundamental in defining the notion of security.

Advantage of the adversary. Informally, the adversary succeeds if it can guess the bit b used by

the Test oracle. Before formally defining the adversary’s success, we define a notion of freshness. The

adversary can succeed only if the Test query was made for an instance which is fresh at the end of the

adversary’s execution. This is necessary for any reasonable definition of security; if the adversary’s

behavior were unrestricted the adversary could always succeed by, for example, submitting a Test

query for an instance for which it had already submitted a Reveal query.

Two notions of freshness may be defined, one for the “basic” case and one for the “forward-secure”

case. An instance Πi
U is fresh (in the basic case) unless one of the following is true:

• At some point, the adversary queried Reveal(U, i).

• At some point, the adversary queried Reveal(U ′, j) where Πj
U ′ and Πi

U are partnered.

• At some point, the adversary queried the Corrupt oracle.

For the case of forward security, an instance Πi
U is fs-fresh unless one of the following is true:

• At some point, the adversary queried Reveal(U, i).

• At some point, the adversary queried Reveal(U ′, j) where Πj
U ′ and Πi

U are partnered.

• The adversary makes the Test query after a Corrupt query and at some point the adversary

queried Send(U, i, M) for some M .

In the basic case, adversary A succeeds if it makes a single query Test(U, i) to the Test oracle,

where acci
U and termi

U are true4 at the time of this query and Πi
U is fresh, outputs a single bit b′,

and b′ = b (where b is the bit chosen by the Test oracle). We denote this event by Succ. For the

forward-secure case, A succeeds if it makes a single query Test(U, i) to the Test oracle, where acci
U

was true at the time of this query and Πi
U is fs-fresh, outputs a single bit b′, and b′ = b. We denote

this event by fsSucc. The advantage of adversary A in attacking protocol P in the basic sense is

defined by:

AdvA,P (k)
def
= 2 · Pr[Succ]− 1.

A similar definition may be given for fsAdvA,P (k) in the forward secure case. Note that probabilities

of success are functions of the security parameter k, and are taken over the random coins used by the

4For the protocol presented here, acci
U

= true automatically implies that termi
U

= true.

31

adversary, random coins used during the initialization phase, and random coins used by the various

oracles during the actual experiment.

We have not yet defined what we mean by a secure protocol. Note that a ppt adversary can

always succeed by trying all passwords one-by-one in an on-line impersonation attack (recall that

the number of possible passwords is constant). Informally, we say a protocol is secure if this is the

best an adversary can do. More formally, an instance Πi
U represents an on-line attack5 if both the

following are true:

• At some point, the adversary queried Send(U, i, M) for some M .

• At some point, the adversary queried Reveal(U, i) or Test(U, i).

In particular, instances with which the adversary interacts via Execute calls are not counted as on-

line attacks. The number of on-line attacks represents a bound on the number of passwords the

adversary could have tested in an on-line fashion. This motivates the following definition (with a

similar definition for the case of forward security):

Definition 3.1 Protocol P is a secure password-only key-exchange protocol (in the basic sense) if,

for all N and for all ppt adversaries A making at most Q(k) on-line attacks, there exists a negligible

function ε(·) such that:

AdvA,P (k) ≤ Q(k)/N + ε(k).

In particular, this indicates that the adversary can (essentially) do no better than guess a single

password during each on-line attempt. Calls to the Execute oracle, which are not included in the

count Q(k), are of no help to the adversary in breaking the security of the protocol; this means that

passive eavesdropping and off-line dictionary attacks are of (essentially) no use.

Some previous definitions of security for password-only key-exchange protocols [11, 65] consider

protocols secure as long as the adversary can do no better than guess a constant number of passwords

in each on-line attempt. We believe the strengthening given by Definition 3.1 (in which the adversary

can guess only a single password per on-line attempt) is an important one. The space of possible

passwords is small to begin with, so any degradation in security should be avoided if possible. This

is not to say that protocols which do not meet this definition of security should never be used;

however, before using such a protocol, one should be aware of the constant implicit in the proof of

security.

An examination of the security proofs for some protocols [11, 24, 92] shows that these protocols

achieve the stronger level of security given by Definition 3.1. However, security proofs for other

5The definition of an on-line attack given here is valid only for key-exchange protocols without explicit authenti-
cation.

32

protocols [65, 91] are inconclusive, and leave open the possibility that more than one password can

be guessed by the adversary in a single on-line attack. In at least one case [117], an explicit attack

is known which allows an adversary to guess two passwords per on-line attack.

3.2.2 Protocol Components

We discuss some cryptographic tools used to construct our protocol.

Basic primitives. The security of our protocol relies on the DDH assumption [42], introduced

in Section 2.5.2. We also use universal one-way hash families [98] and one-time digital signature

schemes, as discussed in Section 2.5.3. It should be noted, however, that these may both be con-

structed from any one-way function [108]; in particular, the DDH assumption (which implies that

group exponentiation is one-way) implies the existence of universal one-way hash families and one-

time signature schemes.

Non-malleable commitment. Our protocol requires a particular non-malleable commitment

scheme that we construct based on the Cramer-Shoup [36] cryptosystem, whose security against

chosen-ciphertext attacks (cf. Definition 2.5) relies on the DDH assumption. It is interesting that

chosen-ciphertext-secure public-key encryption has been used previously to construct authentication

and key exchange protocols [4, 76, 22, 114]. We stress that our protocol differs from these works in

that we use the scheme for commitment only and not for encryption. No party publishes their own

public key and no one need hold any secret key; in fact, “decryption” is never performed during

execution of the protocol.

As we point out in Chapter 4, any CCA2 public-key encryption scheme immediately yields a

non-malleable commitment scheme when public parameters are available to all parties. We may

therefore describe our modified scheme as a public-key encryption scheme since this form is simplest

for the proof of security; we emphasize that it is used only as a commitment scheme in the actual

key-exchange protocol. Key generation proceeds by running G(1k) to yield primes p, q defining

group G in which the DDH assumption is assumed to hold. Random values g1, g2 ∈ G are selected,

along with random z, x1, x2, y1, y2 ∈ Zq. Additionally, sets Client and Server of polynomial size (in

k) are fixed; these sets contain strings which will be necessary for the key-exchange protocol but

whose exact structure is unimportant here. Finally, a random hash function H is chosen from a

family of universal hash functions Hk. The public key is pk = (G, g1, g2, h = gz
1 , c = gx1

1 gx2

2 , d =

gy1

1 gy2

2 , H, Client, Server).

Ciphertexts are of the form 〈A|B|C|D|E|F 〉, where C, D, E, F ∈ G and the purpose of A, B will

be described below. The actions of the decryption oracle Dsk(·) are as in the original scheme [36]:

33

first, α = H(A, B, C, D, E) is computed, and the following condition is checked:

Cx1+y1αDx2+y2α ?
= F.

If this fails, the output is ⊥. (We also output ⊥ if any of C, D, E, F are not in G; note that this

may be efficiently verified.) Otherwise, output the plaintext E/Cz.

The central modification we introduce is in the definition of encryption, and more precisely in the

definition of the encryption oracle to which the adversary will have access. Besides sending messages

m0, m1 ∈ G to the encryption oracle, the adversary also includes a bit t specifying an encryption-type

which is either client-encryption or server-encryption. Depending on the encryption-type selected,

the adversary also submits some additional information which is used in the encryption. For a client-

encryption, the adversary includes a value Client ∈ Client; for a server-encryption, the adversary

includes values Server ∈ Server and α ∈ Zq. The encryption oracle chooses a random bit b and

encrypts message mb according to the requested encryption-type. The encryption oracle outputs

the resulting ciphertext along with some additional information. Formally, the encryption oracle is

defined as follows:

O1k,pk,b(m0, m1, t, input)
if t = 0 and input ∈ Client then

Client-encryption(1k, pk, mb, input)
if t = 1 and input ∈ Server × Zq then

Server-encryption(1k, pk, mb, input)

where Client-encryption and Server-encryption are defined by:

Client-encryption(1k, pk, m,Client)
(VK, SK)← K(1k)
A := Client; B := VK
r ← Zq

C := gr
1 ; D := gr

2; E := hrm
α := H(A|B|C|D|E)
F := (cdα)r

return(〈A|B|C|D|E|F 〉, SK)

Server-encryption(1k, pk, m, (Server, α))
x, y, z, w, r← Zq

A := Server; B := gx
1gy

2hz(cdα)w

C := gr
1; D := gr

2; E = hrm
β := H(A|B|C|D|E)
F := (cdβ)r

return(〈A|B|C|D|E|F 〉, (x, y, z, w))

(here, K is a key-generation algorithm for a secure one-time signature scheme).

Let Gen denote the key-generation algorithm for this scheme. For any adversary A = (A1,A2),

define the adversary’s advantage Advnm
A (k) in guessing the bit b used by the encryption oracle as

Advnm
A (k)

def
=

∣∣∣Pr[pk← Gen(1k); b← {0, 1}; (m0, m1, t, input, s)← A
Dsk(·)
1 (pk);

(C, info)← O1k,pk,b(m0, m1, t, input) : A
Dsk(·)
2 (C, info, s) = b]− 1/2

∣∣∣ ,

where A2 may not submit C to the decryption oracle.

Lemma 3.1 Under the DDH assumption, Advnm
A (k) is negligible for any ppt adversary A.

34

Sketch of Proof The proof of security exactly follows that given by Cramer and Shoup [36], and

it can be verified easily that the additional information info given to the adversary does not improve

her advantage. One point requiring careful consideration is the adversary’s probability of finding a

collision for the hash function H included in the public key. If H is chosen from a collision-resistant

hash family (a stronger assumption than being universal one-way), there is nothing left to prove. If

H is universal one-way, the value t and an appropriate value of Client or Server can be guessed by

the encryption oracle in advance of the adversary’s query; an appropriate value for B, based on the

guess for t, can also be generated in advance (in one case by running the key-generation algorithm

K(1k) for the one-time signature scheme and in the other case by choosing random x ∈ Zq and

setting B = gx
1). In particular, these values may all be determined before the encryption oracle is

given the function H . Although the encryption oracle cannot guess the value α in advance, this

will not present a problem since the encryption oracle can provide a random representation of B

with respect to (g1, g2, h, (cdα)) for any value α output by the adversary as long as the encryption

oracle knows the discrete logarithms of g2, h, c, d with respect to g1. This can be ensured during key

generation.

The encryption oracle finds a collision for H if (1) the oracle correctly guesses the values t and

Client/Server (depending on t); and (2) the adversary finds a collision for H . The probability of

guessing the adversary’s choices correctly is at least 1
2·max{|Client|,|Server|} ; since |Client| and |Server| are

polynomial in k, this probability is an inverse polynomial in k. Thus, if the adversary’s advantage

in finding a collision in the experiment is non-negligible, this implies a non-negligible advantage in

finding a collision in H .

Using a standard hybrid argument, Lemma 3.1 implies that Advnm
A (k) is negligible for any ppt

adversary A that queries the encryption oracle polynomially-many times (with arbitrary values of

m0, m1, t, input), as long as the adversary may not submit any of the returned ciphertexts to the

decryption oracle.

Since we use the scheme for commitment within our protocol, we refer to Client-commitment

and Server-commitment of a message m. The mechanism for this is exactly as sketched above (and

decommitment is not needed in the present context).

3.3 Protocol Details

A high-level description of the protocol is given in Figure 3.1, and a more detailed description follows

here. A formal specification of the protocol appears in Section 3.4.

During the initialization phase, public information is established. Given a security parameter k,

primes p, q are chosen such that |q| = k and p = 2q + 1 using algorithm G; these values define a

35

Public: G, g1, g2, h, c, d ∈ G; H : {0, 1}∗ → Zq

Client Server

(VK, SK)← K(1k)

r1 ← Zq

A := gr1

1 ; B := gr1

2

C := hr1 · pwC

α := H(Client |VK|A|B|C)

D := (cdα)r1 Client | VK | A | B | C | D
-

x2, y2, z2, w2, r2 ← Zq

α′ := H(Client |VK|A|B|C)

E := gx2

1 gy2

2 hz2(cdα′

)w2

F := gr2

1 ; G := gr2

2

I := hr2 · pwC

β := H(Server |E|F |G|I)

J := (cdβ)r2Server | E | F | G | I | J
�

x1, y1, z1, w1 ← Zq

β′ := H(Server |E|F |G|I)

K := gx1

1 gy1

2 hz1(cdβ′

)w1

Sig← SignSK(β′ | K) K | Sig
-

I ′ := I/pwC

skC := Er1F x1Gy1(I ′)z1Jw1

if VrfyVK(β | K, Sig) = 1

C′ := C/pwC

skS := Ax2By2(C′)z2Dw2Kr2

else skS := null

Figure 3.1: A password-only key-exchange protocol.

group G as discussed previously. Values g1, g2, h, c, d ∈ G are selected at random, and additionally

a function H : {0, 1}∗ → Zq is chosen at random from a universal one-way hash family. The

public information consists of a description of G (typically, p and q), the values g1, g2, h, c, d, and (a

description of) the hash function H . We do not require that any party know any secret information

associated with these values.

As part of the initialization phase, passwords are chosen randomly for each client and stored

with each server (see Section 3.2.1). We assume that all passwords lie in (or can be mapped in a

one-to-one fashion to) G. As an example, if passwords lie in the range {1, . . . , N} (as we assume

here), password pw can be mapped to gpw
1 ∈ G; this will be a one-to-one mapping for reasonable

values of N and |q| whenever g1 is a generator (which occurs with all but negligible probability).

When a client Client ∈ Client wants to connect to a server Server ∈ Server, the client computes

a random Client-commitment (see Section 3.2.2) of pwC , where pwC ∈ G is the client’s password.

36

In more detail, the client begins by running the key-generation algorithm for the one-time signature

scheme, giving VK and SK. The client chooses random r1 ∈ Zq and computes A = gr1

1 , B = gr1

2 ,

and C = hr1 · pwC . The client then computes α = H(Client|VK|A|B|C) and sets D = (cdα)r1 . The

resulting commitment (which includes the client’s name) is sent to the server as the first message of

the protocol.

Upon receiving the first message, the server computes a Server-commitment to pwS,C, where pwS,C

is the password stored at the server corresponding to the client named in the incoming message.

In more detail, let the received message be 〈Client|VK|A|B|C|D〉. The server first chooses random

x2, y2, z2, w2 ∈ Zq, computes α′ = H(Client|VK|A|B|C), and sets E = gx2

1 gy2

2 hz2(cdα′

)w2 . Addition-

ally, a random r2 ∈ Zq is chosen and the server computes F = gr2

1 , G = gr2

2 , and I = hr2 · pwC . The

server then computes β = H(Server|E|F |G|I) and sets J = (cdβ)r2 . The resulting commitment is

sent to the client as the second message of the protocol.

Upon receiving the second message 〈Server|E|F |G|I|J〉, the client chooses random x1, y1, z1, w1 ∈

Zq, computes β′ = H(Server|E|F |G|I), and sets K = gx1

1 gy1

2 hz1(cdβ′

)w1 . The client then signs β′|K

using SK. The value K and the resulting signature are sent as the final message of the protocol. At

this point, the client accepts and determines the session key by first computing I ′ = I/pwC and then

setting skC = Er1F x1Gy1(I ′)z1Jw1 .

Upon receiving the final message K|Sig, the server checks that Sig is a valid signature of β|K

under VK (where β is the value previously used by the server). If so, the server accepts and determines

the session key by first computing C′ = C/pwS,C and then setting skS = Ax2By2(C′)z2Dw2Kr2 . If

the received signature is not valid, the server does not accept and the session key is set to null.

Although omitted in the above description, we assume that the client and server always check

that incoming messages are well-formed. In particular, when the server receives the first message, it

verifies that Client ∈ Client, that VK is a valid public key for the one-time signature scheme being

used, and that A, B, C, D ∈ G (note that membership in G can be efficiently verified). When the

client receives the second message, it verifies that Server ∈ Server, that Server is indeed the name

of the server to whom the client desired to connect, and that E, F, G, I, J ∈ G. Finally, when the

server receives the last message, it verifies correctness of the signature (as discussed above) and

that K ∈ G. If an ill-formed message is ever received, the receiving party terminates immediately

without accepting and the session key remains null.

Correctness. In an honest execution of the protocol (when all messages are received correctly),

the client and the server calculate identical session keys. To see this, first note that pwC = pwS,C,

α = α′, and β = β′ in an honest execution. We thus have

Er1 = (gx2

1 gy2

2 hz2(cdα)w2)r1

37

= (gr1

1)x2(gr1

2)y2(hr1)z2((cdα)r1)w2

= Ax2By2(C′)z2Dw2

and

Kr2 = (gx1

1 gy1

2 hz1(cdβ)w1)r2

= (gr2

1)x1(gr2

2)y1(hr2)z1((cdβ)r2)w1

= F x1Gy1(I ′)z1Jw1 ;

therefore:

Er1(F x1Gy1(I ′)z1Jw1) = (Ax2By2(C′)z2Dw2)Kr2

and the session keys are equal.

Efficiency considerations. In practice, a collision resistant hash function like SHA-1 may be

used instead of a universal one-way hash function. Even from a theoretical point of view, the DDH

assumption implies the existence of collision resistant hash functions [109], so a stronger assumption

is not necessarily required. One-time signatures are much more efficient than known signature

schemes secure against adaptive (polynomially-many) chosen message attacks [53], and may be

based on any presumed one-way function like SHA-1 or a block cipher. Efficiency can be improved

by using an on-line/off-line signature scheme [53, 112], where the off-line computation is done while

the client is waiting for the server to respond. Clearly, the values K and β which are signed could

be hashed before signature computation.

If the key-generation phase of the signature scheme is computationally prohibitive (for example,

when the client algorithm is run on a smart card), key generation may be done once per client at

the outset of the protocol and the same values of VK and SK may be used throughout the lifetime

of the client. In fact, key generation need not be done by the client/smart card itself; instead, these

keys may be generated on and downloaded from a “master” computer. In this case, the signature

scheme must be secure even after polynomially-many messages have been signed; this tradeoff might

be acceptable for certain applications.

When passwords pw typed by users lie between 1 and N , they must be converted (as discussed

above) to a group element pwC = gpw
1 via exponentiation. The server, however, may store pwS,C =

pwC directly and avoid performing the exponentiation each time. Furthermore, although the number

of exponentiations in Figure 3.1 seems high, algorithms for simultaneous multiple exponentiation

[93, Chapter 14] may be used to vastly speed up the computation. If this is done, the computation

for each user is (roughly) equivalent to 7 exponentiations in G; this may be compared to the 2

exponentiations required (per user) in previous key-exchange protocols [42, 24, 11].

38

Mutual authentication. The protocol of Figure 3.1 does not achieve mutual authentication;

however, this may be accomplished with one additional message using standard techniques (see,

e.g., [13, 86, 4, 76, 11]). In particular, let {fs}s∈{0,1}k be a pseudorandom function family with

output length k. After successful completion of the key-exchange protocol, mutual authentication

can be achieved by having the client send V0 = fskC
(0) to the server (this may be included with the

final message) and having the server (after verifying V0) reply with V1 = fskS
(1). Parties do not

accept until receiving (and verifying) the appropriate message. The session key used for the parties’

future communication is then sk′
C

= sk′
S

= fskC
(2).

3.4 Proofs of Security

We first provide a formal specification of the initialization process and the oracles to which the

adversary has access. During the initialization phase (cf. Figure 3.2), algorithm Initialize is run to

generate public parameters G, g1, g2, h, c, d, H as discussed previously. Furthermore, the sets Client

and Server, whose sizes are polynomial k, are determined using some (arbitrary) algorithm UserGen.6

Passwords for each client are chosen at random from the set {1, . . . , N} (for some constant N) and

are then mapped to G as discussed earlier; the passwords for each client are stored at each server.

We require N < q − 1; note that for typical values of q this is not a severe limitation. We stress

that the assumption of a uniform and independent distribution on the passwords is not necessary;

the proof of security given below can be easily modified to accommodate arbitrary distributions.

A formal specification of the Execute, Reveal, and Test oracles appears in Figure 3.3. The descrip-

tion of the Execute oracle matches the high-level protocol description of Figure 3.1, but additional

details (for example, the updating of the global state information) are included. We let statusiU

denote the vector of values 〈sidi
U , pidi

U , acci
U , termi

U 〉 associated with instance Πi
U . A formal specifi-

cation of the Send oracle appears in Figure 3.4. Although the model technically has only one type

of Send oracle (see Section 3.2.1), the adversary’s queries to this oracle can easily be replaced with

queries to four different oracles Send0, . . . , Send3 representing the four different types of messages

which may be sent as part of the protocol (this includes the three message types shown in Figure 3.1

as well as an “initiate” message). The third argument to each oracle is denoted by msg-in. In the

figure, all variables are local to each oracle query and are erased following the oracle query unless

explicitly stored in a global variable. Following a Send oracle query, the adversary receives both an

outgoing message as well as the current status of the instance (i.e., the values of sid, pid, acc, and

term).

6One could augment the model to allow the adversary to dynamically add new users during the course of protocol
execution via queries to an additional oracle; the protocol would remain secure in this case, and a proof of security is
substantially similar to that given below.

39

Initialize(1k) —
(p, g)← G(1k)
g1, g2, h, c, d← G

H ← UOWH(1k)
(Client, Server)← UserGen(1k)
for each C ∈ Client

pw′
C
← {1, . . . , N}

pwC := g
pw′

C

1

for each S ∈ Server
pwS,C := pwC

return Client, Server, G, g1, g2, h, c, d, H

Figure 3.2: Specification of protocol initialization.

Execute(Client, i,Server, j) —
if Client /∈ Client or Server /∈ Server or usedi

Client or usedj
Server

return ⊥
usedi

Client := true; usedj
Server := true

(VK, SK)← K(1k)
x1, x2, y1, y2, z1, z2, w1, w2, r1, r2 ← Zq

A := gr1

1 ; B := gr1

2 ; C := hr1 · pwClient; α := H(Client|VK|A|B|C)
D := (cdα)r1 ; msg-out1 := 〈Client|VK|A|B|C|D〉
statusiClient,1 := 〈null,Server, false, false〉

F := gr2

1 ; G := gr2

2 ; I := hr2 · pwServer,Client ; E := gx2

1 gy2

2 hz2(cdα)w2

β := H(Server|E|F |G|I); J := (cdβ)r2

msg-out2 := 〈Server|E|F |G|I|J〉
statusjServer,1 := 〈null,Client, false, false〉

K := gx1

1 gy1

2 hz1(cdβ)w1 ; Sig← SignSK(β|K); msg-out3 := 〈K|Sig〉

sidi
Client := sidj

Server := 〈msg-out1|msg-out2|msg-out3〉

pidi
Client := Server; pidj

Server := Client

acci
Client := termi

Client := accj
Server := termj

Server := true

ski
Client := Er1F x1Gy1(I/pwClient)

z1Jw1

skj
Server := Ax2By2(C/pwServer,Client)

z2Dw2Kr2

return msg-out1,msg-out2,msg-out3,
statusiClient,1, statusjServer,1, statusi

Client, statusjServer

Reveal(U, i) —
return ski

U

Test(U, i) —
b← {0, 1}; sk′ ← G

if b = 0 return sk′ else return ski
U

Figure 3.3: Specification of the Execute, Reveal, and Test oracles.

40

Send0(Client, i,Server) —
if Client /∈ Client or Server /∈ Server or usedi

Client

return ⊥
usedi

Client := true; (VK, SK)← K(1k); r← Zq

A := gr
1; B := gr

2; C := hr · pwClient; α := H(Client|VK|A|B|C)
D := (cdα)r; msg-out := 〈Client|VK|A|B|C|D〉
statusiClient := 〈null,Server, false, false〉
statei

Client := 〈SK, r,msg-out〉
return msg-out, statusiClient

Send1(Server, j, 〈Client|VK|A|B|C|D〉) —
if Server /∈ Server or usedj

Server

return ⊥
usedj

Server := true

if A, B, C, D /∈ G or Client /∈ Client
statusjServer := 〈null,null, false,true〉; return statusj

Server

x, y, z, w, r← Zq; α := H(Client|VK|A|B|C)
F := gr

1 ; G := gr
2; I := hr · pwServer,Client ; E := gx

1gy
2hz(cdα)w

β := H(Server|E|F |G|I); J := (cdβ)r; msg-out := 〈Server|E|F |G|I|J〉
statusjServer := 〈null,Client, false, false〉

statej
Server := 〈msg-in, x, y, z, w, r, β,msg-out, pwServer,Client〉

return msg-out, statusjServer

Send2(Client, i, 〈Server|E|F |G|I|J〉) —
if Client /∈ Client or not usedi

Client or termi
Client

return ⊥
if Server 6= pidi

Client or E, F, G, I, J /∈ G

statusiClient := 〈null,null, false,true〉; return statusiClient

〈SK, r,first-msg-out〉 := statei
Client

x, y, z, w← Zq; β := H(Server|E|F |G|I)
K := gx

1gy
2hz(cdβ)w; Sig← SignSK(β|K); msg-out := 〈K|Sig〉

sidi
Client := 〈first-msg-out|msg-in|msg-out〉

acci
Client := termi

Client := true

ski
Client := ErF xGy(I/pwClient)

zJw

return msg-out, statusiClient

Send3(Server, j, 〈K|Sig〉) —
if Server /∈ Server or not usedj

Server or termj
Server

return ⊥
〈first-msg-in, x, y, z, w, r, β,first-msg-out, pw〉 := statej

Server

〈Client|VK|A|B|C|D〉 := first-msg-in
if K /∈ G or VrfyVK(β|K, Sig) 6= 1

statusjServer := 〈null,null, false,true〉; return statusj
Server

sidj
Server := 〈first-msg-in|first-msg-out|msg-in〉

accj
Server := termj

Server := true

skj
Server := AxBy(C/pw)zDwKr

return statusjServer

Figure 3.4: Specification of the Send oracle.

41

Theorem 3.1 Assuming (1) the hardness of the DDH problem for groups G defined by the output

of G; (2) the security of (K, Sign, Vrfy) as a one-time signature scheme; and (3) the security of

UOWH as a universal one-way hash family, the protocol of Figure 3.1 is a secure, password-only,

key-exchange protocol.

Proof We refer to the first assumption of the theorem as “the DDH assumption”. A formal

specification of the protocol appears in Figures 3.2–3.4. Note that in the basic case dealt with

by this Theorem (where no Corrupt queries are allowed), we always have pwServer,Client = pwClient

for all Client ∈ Client and Server ∈ Server; furthermore, during execution of the Send3 oracle it

is always the case that pw = pwClient. Given an adversary A, we imagine a simulator that runs

the protocol for A. More precisely, the simulator begins by running algorithm Initialize(1k) (which

includes choosing passwords for clients) and giving the public output of the algorithm to A. When

A queries an oracle, the simulator responds by executing the appropriate algorithm as in Figures 3.3

and 3.4; we may further assume that the simulator records all state information defined during the

course of the experiment. In particular, when the adversary queries the Test oracle, the simulator

chooses (and records) the random bit b. When the adversary completes its execution and outputs a

bit b′, the simulator can tell whether the adversary succeeds by checking whether (1) a single Test

query was made on instance Πi
U ; (2) acci

U was true at the time of the Test query; (3) instance Πi
U

is fresh; and (4) b′ = b. Success of the adversary is denoted by event Succ.

For any experiment P we define AdvA,P (k)
def
= 2·PrA,P [Succ]−1, where PrA,P [·] denotes the prob-

ability of an event when the simulator interacts with the adversary in accordance with experiment

P . We refer to the real execution of the experiment, as described above, as P0. We will introduce a

sequence of transformations to the original experiment and bound the effect of each transformation

on the adversary’s advantage. We then bound the adversary’s advantage in the final experiment;

this immediately yields a bound on the adversary’s advantage in the original experiment.

In experiment P ′
0, the simulator interacts with the adversary as before except that the adversary

does not succeed when any of the following occur:

1. Any of g1, g2, h, c, d are not generators of G (i.e., they are equal to 1).

2. At any point during the experiment, a verification key VK used by the simulator in responding

to a Send0 query is repeated.

3. At any point during the experiment, the adversary forges a new, valid message/signature pair

for any verification key used by the simulator in responding to a Send0 query.

4. At any point during the experiment, a value β used by the simulator in responding to Send1

queries is repeated.

42

5. At any point during the experiment, a value β used by the simulator in responding to a

Send1 query (with msg-out = 〈Server|E|F |G|I|J〉) is equal to a value β used by the simulator

in responding to a Send2 query (with msg-in = 〈Server′|E′|F ′|G′|I ′|J ′〉) and furthermore

〈Server|E|F |G|I〉 6= 〈Server′|E′|F ′|G′|I ′〉.

Since the adversary, by definition, cannot succeed once any of these events occur, we assume that

the simulator immediately halts execution when any of these events occur.

Claim 3.1 Assuming the security of (K, Sign, Vrfy) as a one-time signature scheme and the security

of UOWH as a universal one-way hash family, AdvA,P0
(k) ≤ AdvA,P ′

0
(k) + ε(k) for some negligible

function ε(·).

Let Bad denote the event that case 1 or 2 occurs, let Forge denote the event that case 3 occurs, and

let Collision denote the event that case 4 or 5 occurs. Then

PrA,P0
[Succ] ≤ PrA,P0

[Succ ∧ Bad ∧ Forge ∧ Collision] + PrA,P0
[Bad] + PrA,P0

[Forge]

+ PrA,P0
[Collision]

≤ PrA,P ′
0
[Succ] + PrA,P0

[Bad] + PrA,P0
[Forge] + PrA,P0

[Collision].

It is clear that PrA,P0
[Bad] is negligible. Also, PrA,P0

[Forge] is negligible assuming the security of

the one-time signature scheme (details omitted). Finally, PrA,P0
[Collision] is negligible assuming

the security of the universal one-way hash family. To see this, first note that the probability that

β repeats because the values E, F, G, I repeat during two different queries to the Send1 oracle is

negligible. So, assume that β repeats because H(Server|E|F |G|I) = H(Server′|E′|F ′|G′|I ′) but

〈Server|E|F |G|I〉 6= 〈Server′|E′|F ′|G′|I ′〉, where 〈Server|E|F |G|I|J〉 (for some J) represents a msg-

out for a Send1 query. In other words, a collision has been found in H . The simulator can “guess”

which query to the Send1 oracle will result in a collision, “guess” appropriate values for Server and

Client, choose r ∈ Zq to use for this oracle query, and choose E ∈ G to use for this oracle query;

furthermore, this may all be done at the outset of the experiment, before the simulator has chosen

hash function H . If the simulator knows the discrete logarithms of g2, h, c, d with respect to g1 (this

can be ensured during the initialization phase), the simulator can provide a random representation

x, y, z, w of E with respect to g1, g2, h, (cdα) for any value α defined by the adversary’s query to the

Send1 oracle. Hence, the adversary’s view during this experiment is exactly the same as in P0. With

inverse polynomial probability, the simulator correctly guesses both the query at which a collision

occurs and the values of Server and Client used by the adversary; this follows since A makes only

polynomially-many queries to the Send1 oracle and since |Server| and |Client| are polynomial in k.

Therefore, if PrA,P0
[Collision] were not negligible, the simulator’s probability of finding a collision in

H would not be negligible, contradicting the security of the universal one-way hash family.

43

In experiment P1, the simulator interacts with the adversary as in P ′
0 except that the adversary’s

queries to the Execute oracle are handled differently. In particular, for each Execute query the values

C and I are chosen independently at random from G. Furthermore, the session keys are computed

as

ski
Client := skj

Server := Ax2By2(C/pwClient)
z2Dw2F x1Gy1(I/pwClient)

z1Jw1 . (3.1)

The following bounds the effect this transformation can have on the adversary’s advantage.

Claim 3.2 Under the DDH assumption, |AdvA,P ′
0
(k)−AdvA,P1

(k)| ≤ ε(k) for some negligible func-

tion ε(·).

We show how the simulator can use A as a subroutine in order to distinguish Diffie-Hellman (DH)

tuples from random tuples. The simulator is given primes p, q (which define a group G) generated

using G(1k) and is additionally given a tuple (g, h, s, t) chosen at random from either from the set of

DH tuples or from the set of random tuples. The simulator begins by running the following modified

initialization protocol:

Initialize′(1k, G, g, h, s, t) —
γ, δ, ζ ← Zq

g1 := g; g2 := gγ ; c := gδ; d := gζ

H ← UOWH(1k)
(Client, Server)← UserGen(1k)
for each C ∈ Client

pw′
C
← {1, . . . , N}

pwC := g
pw′

C

1

for each S ∈ Server
pwS,C := pwC

return Client, Server, G, g1, g2, h, c, d, H

The simulator responds to Execute queries as shown in Figure 3.5. The simulator responds to

Send, Reveal, and Test queries as in experiments P ′
0, P1. Recall that pwClient is always equal to

pwServer,Client since no Corrupt oracle queries are allowed in the basic case. This also implies that

ski
Client and skj

Server are always equal in P ′
0. When A terminates, the simulator outputs 1 if and

only if A succeeds (using the definition of success for experiments P ′
0 and P1).

The remainder of the proof relies on a random self-reducibility property of the DDH problem

that has been observed and used previously [114, 3]. When the tuple (g, h, s, t) is a DH tuple, the

distribution on the view of A throughout this experiment is equivalent to the distribution on the view

of A during experiment P ′
0. The public output of the modified initialization protocol is identically

distributed to the public output of the initialization protocol for experiment P ′
0. As for queries to

the Execute oracle, if (g, h, s, t) is a DH tuple we may write h = ga, s = gb and t = gab for some

a, b ∈ Zq. In a particular query to the Execute oracle, one can check that A = g
br1+r′

1

1 , B = g
br1+r′

1

2 ,

44

Execute(Client, i,Server, j) —
if Client /∈ Client or Server /∈ Server or usedi

Client or usedj
Server

return ⊥
usedi

Client := true; usedj
Server := true

(VK, SK)← K(1k)
x1, x2, y1, y2, z1, z2, w1, w2, r1, r

′
1, r2, r

′
2 ← Zq

A := sr1g
r′

1

1 ; B := Aγ ; C := tr1hr′

1 · pwClient; α := H(Client|VK|A|B|C)
D := Aδ+αζ ; msg-out1 := 〈Client|VK|A|B|C|D〉
statusiClient,1 := 〈null,Server, false, false〉

F := sr2g
r′

2

1 ; G := F γ ; I := tr2hr′

2 · pwClient ; E := gx2

1 gy2

2 hz2(cdα)w2

β := H(Server|E|F |G|I); J := F δ+βζ

msg-out2 := 〈Server|E|F |G|I|J〉
statusjServer,1 := 〈null,Client, false, false〉

K := gx1

1 gy1

2 hz1(cdβ)w1 ; Sig← SignSK(β|K); msg-out3 := 〈K|Sig〉

sidi
Client := sidj

Server := 〈msg-out1|msg-out2|msg-out3〉

pidi
Client := Server; pidj

Server := Client

acci
Client := termi

Client := accj
Server := termj

Server := true

ski
Client := skj

Server := Ax2By2(C/pwClient)
z2Dw2F x1Gy1(I/pwClient)

z1Jw1

return msg-out1,msg-out2,msg-out3,
statusiClient,1, statusjServer,1, statusi

Client, statusjServer

Figure 3.5: The modified Execute oracle for the proof of Claim 3.2.

C = hbr1+r′

1pwClient, and D = (cdα)br1+r′

1 where br1 + r′1 is uniformly distributed in Zq independent

of the remainder of the experiment. Similarly, F = g
br2+r′

2

1 , G = g
br2+r′

2

2 , I = hbr2+r′

2pwClient, and

J = (cdβ)br2+r′

2 where br2 + r′2 is uniformly distributed in Zq independent of the remainder of the

experiment. One can also check that the values of the session keys are as they would be in P ′
0.

On the other hand, when the tuple (g, h, s, t) is a random tuple, the distribution on the view of

A throughout the experiment has negligible statistical difference from the distribution on the view

of A during experiment P1. The public output of the modified initialization protocol is identically

distributed to the public output of the initialization protocol for experiment P1. As for queries to

the Execute oracle, if (g, h, s, t) is a random tuple we may write s = ga and t = hb for uniformly

distributed a, b ∈ Zq, where a 6= b except with negligible probability 1/q. In a particular query to the

Execute oracle, we have A = g
ar1+r′

1

1 , B = g
ar1+r′

1

2 , C = hbr1+r′

1pwClient, and D = (cdα)ar1+r′

1 , where

r1, r
′
1 are independently and uniformly distributed in Zq. Thus, when a 6= b the joint distribution

on (ar1 + r′1, br1 + r′1) is uniform over Z2
q, independent of the remainder of the experiment; this

follows from the linear independence of ar1 + r′1 and br1 + r′1 as non-zero equations in r1, r
′
1. In

other words (assuming h is a generator), C is uniformly distributed in G independent of the rest of

45

the experiment. One can analogously verify that I is uniformly distributed in G independent of the

rest of the experiment. Furthermore, the values of the session keys are as they would be in P1.

The simulator’s advantage in solving the DDH problem is therefore

∣∣∣PrA,P ′
0
[Succ]− q−1

q · PrA,P1
[Succ]− 1

q · PrA,P ′
0
[Succ]

∣∣∣

(if the random tuple satisfies logg s = logh t, the distribution on the view of A in the above experiment

is equivalent to the distribution on the view of A in experiment P ′
0; for a random tuple, this occurs

with probability 1/q). The claim follows from the observation that this advantage is negligible under

the DDH assumption and from the fact that 1/q is negligible.

In experiment P2, the simulator interacts with the adversary as in P1 except that during queries

Execute(Client, i,Server, j) the session key ski
Client is chosen uniformly at random from G; session

key skj
Server is set equal to ski

Client.

Claim 3.3 |AdvA,P1
(k)− AdvA,P2

(k)| ≤ ε(k) for some negligible function ε(·).

The claim follows from the negligible statistical difference between the distributions on the adver-

sary’s view in the two experiments. In P1, elements C and I are chosen at random and the session

keys are computed as in (3.1). Assuming that h is a generator, we may write C = hr′

1pwClient and

I = hr′

2pwClient for some r′1, r
′
2 ∈ Zq. With all but negligible probability 1/q2, we have either r′1 6= r1

or r′2 6= r2. Assume the former. For any µ, ν ∈ G and fixing the random choices for the remainder

of experiment P1, the probability over choice of x2, y2, z2, w2 that E = µ and ski
Client = ν is exactly

the probability that

logg1
µ = x2 + y2 · logg1

g2 + z2 · logg1
h + w2 · logg1

(cdα) (3.2)

and

logg1
ν − logg1

(F x1Gy1(I/pwClient)
z1Jw1) =

x2 · r1 + y2 · r1 logg1
g2 + z2 · r

′
1 logg1

h + w2 · r1 logg1
(cdα) (3.3)

where we assume g1 is a generator (if this is not the case the experiment is aborted). Viewing (3.2)

and (3.3) as equations in x2, y2, z2, w2 we see that they are linearly independent and not identically

zero whenever r′1 6= r1 (here, we use the fact that h is a generator and therefore logg1
h 6= 0), the

desired probability is 1/q2. In other words, when r′1 6= r1 the value of ski
Client is independent of the

value of E and hence independent of the remainder of experiment P1. A similar argument shows

that when r′2 6= r2, the value of ski
Client is independent of K and hence independent of the rest of

experiment P1.

46

Initialize(1k) —
(p, g)← G(1k)
g1, g2 ← G

χ1, χ2, ξ1, ξ2, κ← Zq

h := gκ
1 ; c := gχ1

1 gχ2

2 ; d := gξ1

1 gξ2

2

H ← UOWH(1k)
(Client, Server)← UserGen(1k)
for each C ∈ Client

pw′
C
← {1, . . . , N}

pwC := g
pw′

C

1

for each S ∈ Server
pwS,C := pwC

return Client, Server, G, g1, g2, h, c, d, H

Figure 3.6: Modified initialization procedure.

Thus, the adversary’s view in P1 is distributed identically to the adversary’s view in P2 assuming

that, for all Execute queries, either r′1 6= r1 or r′2 6= r2. For a particular Execute query, this condition

holds except with negligible probability 1/q2. Since the adversary is permitted to query the Execute

oracle only polynomially-many times, the claim follows.

Before continuing, we introduce some notation. For a query Send1(Server, j,msg-in), where

msg-in = 〈Client|VK|A|B|C|D〉, we say that msg-in is previously-used if it was ever previously

output by a Send0 oracle. Similarly, when the adversary queries Send2(Client, i,msg-in), where

msg-in = 〈Server|E|F |G|I|J〉, we say that msg-in is previously-used if it was ever previously output

by a Send1 oracle. A msg-in for either a Send1 or Send2 oracle query which is not previously-used

is called new.

In experiment P3, the simulator runs the modified initialization procedure shown in Figure 3.6,

where the values χ1, χ2, ξ1, ξ2, κ are stored for future use. Furthermore, queries to the Send2 oracle

are handled differently. Upon receiving query Send2(Client, i, 〈Server|E|F |G|I|J〉), the simulator

examines msg-in. If msg-in is previously-used, the query is answered as in experiment P2. If msg-in

is new, the simulator checks whether Fχ1+βξ1Gχ2+βξ2
?
= J and I/pwClient

?
= Fκ. If not, the query

is said to appear invalid and is answered as in experiment P2. Otherwise, msg-in is said to appear

valid ; the query is answered as in experiment P2 except that if ski
Client is to be assigned a value, it

is assigned the special value ∇.

Queries to the Send3 oracle are also handled differently. Upon query Send3(Server, j,msg-in),

the simulator examines first-msg-in = 〈Client|VK|A|B|C|D〉, the message sent to the Send1 oracle

for the same instance; note that if first-msg-in is not defined, the query to Send3 simply returns

⊥ as in experiment P2. If first-msg-in is previously-used, the query is answered as in experiment

47

P2. If first-msg-in is new, the simulator computes α = H(Client|VK|A|B|C) and checks whether

Aχ1+αξ1Bχ2+αξ2
?
= D and C/pwClient

?
= Aκ. If not, first-msg-in is said to appear invalid and the

query is answered as in experiment P2. Otherwise, first-msg-in is said to appear valid and the query

is answered as in experiment P2 except that if skj
Server is to be assigned a value, it is assigned the

special value ∇.

Finally, the definition of the adversary’s success is changed. If the adversary ever queries

Reveal(U, i) or Test(U, i) where ski
U = ∇, the simulator halts execution and the adversary immedi-

ately succeeds. Otherwise, the adversary’s success is determined as in experiment P2.

Claim 3.4 AdvA,P2
(k) ≤ AdvA,P3

(k).

The probability that g1 and g2 are both generators is the same in experiments P2 and P3. Condi-

tioned on the event that g1 and g2 are generators (if not, the experiment is aborted), the distribu-

tions on the adversary’s views in experiments P2 and P3 are identical until the adversary queries

Reveal(U, i) or Test(U, i) where ski
U = ∇; if such a query is never made, the distributions on the

views are identical. The claim follows immediately since there are more ways for the adversary to

succeed in experiment P3.

In experiment P4, queries to the Send3 oracle are handled differently. First, whenever the sim-

ulator responds to a Send2 query, the simulator stores the values (K, β, x, y, z, w), where K =

gx
1gy

2hz(cdβ)w. Upon receiving query Send3(Server, j, 〈K|Sig〉), the simulator checks the value of

first-msg-in = 〈Client|VK|A|B|C|D〉 (if first-msg-in is not defined the query to Send3 simply re-

turns ⊥ as in experiment P3). If first-msg-in is new, the query is answered as in experiment P3. If

first-msg-in is previously-used and VrfyVK(β|K, Sig) 6= 1, the query is answered as in experiment P3

and the session key is not assigned a value. If first-msg-in is previously-used, VrfyVK(β|K, Sig) = 1,

and the experiment is not aborted, the simulator first checks whether there exists an i such that

sidi
Client = sidj

Server (if such an i exists it must be unique since the experiment is aborted if a ver-

ification key VK repeats during the experiment). If so, skj
Server (if it is assigned a value at all) is

assigned the value ski
Client. Otherwise, let first-msg-out = 〈Server|E|F |G|I|J〉. The simulator must

have stored values x′, y′, z′, w′ such that K = gx′

1 gy′

2 hz′

(cdβ)w′

(this is true since the experiment is

aborted if Sig is a valid signature on β|K that was not output by the simulator following a Send2

query). The session key (assuming it is assigned a value at all) is then assigned the value:

skj
Server := AxBy(C/pwClient)

zDwF x′

Gy′

(I/pwClient)
z′

Jw′

.

Claim 3.5 AdvA,P4
(k) = AdvA,P3

(k).

The distribution on the adversary’s view is identical in experiments P3 and P4. Indeed, when first-

msg-in is previously used, VrfyVK(β|K, Sig) = 1, and there exists an i as described above, it is always

48

the case that skj
Server = ski

Client. When first-msg-in is previously used, VrfyVK(β|K, Sig) = 1, and

an i such that sidj
Server = sidi

Client does not exist, then as long as skj
Server is to be assigned a value

it is the case that Kr = F x′

Gy′

(I/pwClient)
z′

Jw′

, where x′, y′, z′, w′ are as above. Therefore, the

session key computed in P4 matches the session key that would have been computed in P3.

In experiment P5, queries to the Send3 oracle are handled differently. Upon receiving query

Send3(Server, j, 〈K|Sig〉), the simulator checks the value of first-msg-in (if first-msg-in is not defined

the simulator returns ⊥ as in experiment P4). If first-msg-in is new and appears invalid and the

session key is to be assigned a value, the session key is assigned a value randomly chosen in G.

Otherwise, the query is answered as in experiment P4.

Claim 3.6 AdvA,P5
(k) = AdvA,P4

(k).

The claim will follow from the equivalence of the distributions on the adversary’s view in the two

experiments. For a given query Send3(Server, j,msg-in) where first-msg-in = 〈Client|VK|A|B|C|D〉

is new and appears invalid, let first-msg-out = 〈Server|E|F |G|I|J〉 and α = H(Client|VK|A|B|C).

Since first-msg-in appears invalid, it must be the case that either Aχ1+αξ1Bχ2+αξ2 6= D or else

C/pwClient 6= Aκ (or possibly both). For any µ, ν ∈ G and fixing the randomness used in the rest of

experiment P4, the probability over choice of x, y, z, w that E = µ and skj
Server = ν is exactly the

probability that

logg1
µ = x + y · logg1

g2 + z · logg1
h + w · logg1

(cdα) (3.4)

and

logg1
ν − r logg1

K = x · logg1
A + y · logg1

B + z · logg1
(C/pwClient) + w · logg1

D, (3.5)

where we use the fact that g1 is a generator (if not, the experiment is aborted). If logg1
A = 0, it can

be verified immediately that (3.4) and (3.5) are linearly independent and not identically zero (this

last fact follows by noting that logg1
A = 0 implies logg1

(C/pwClient) 6= 0). If logg1
A 6= 0, it can

be similarly verified that (3.4) and (3.5) are linearly independent and not identically zero. In either

case, then, the desired probability is 1/q2. In other words, the value of skj
Server is independent of

the value of E and hence independent of the remainder of the experiment.

In experiment P6, queries to the Send1 oracle are handled differently. Now, I is computed as

hrgN+1
1 , where the dictionary of legal passwords is {1, . . . , N}; note that gN+1

1 represents an invalid

password since N < q − 1.

Claim 3.7 Under the DDH assumption, |AdvA,P5
(k) − AdvA,P6

(k)| ≤ ε(k), for some negligible

function ε(·).

49

The claim follows from the non-malleability of the commitment scheme used (i.e., the Cramer-Shoup

encryption scheme). We show that the simulator can use A as a subroutine in order to distinguish

encryptions of the correct client password(s) from encryptions of gN+1
1 . The simulator is given a

public key pk = 〈G, g1, g2, h, c, d, H〉 for an instance of the Cramer-Shoup encryption scheme and

may repeatedly query an encryption oracle O1k,pk,̃b(·, ·, ·, ·) where b̃ is a randomly-chosen bit. The

simulator may also query a decryption oracle Dsk(·) using any ciphertext except those received from

its encryption oracle. The advantage of the simulator is half the absolute value of the difference

between the probability the simulator outputs 1 when b̃ = 1 and the probability the simulator

outputs 1 when b̃ = 0.

The simulator begins by running the following modified initialization protocol:

Initialize′(1k, G, g1, g2, h, c, d, H) —
(Client, Server)← UserGen(1k)
for each C ∈ Client

pw′
C
← {1, . . . , N}

pwC := g
pw′

C

1

for each S ∈ Server
pwS,C := pwC

return Client, Server, G, g1, g2, h, c, d, H

The simulator responds to Send0, Send2, Execute, Reveal, and Test oracle queries as in experiments

P5, P6. The simulator responds to Send1 and Send3 queries as shown in Figure 3.7 (the simulator’s

response to Send3 queries is the same as in experiments P5, P6, but is included in Figure 3.7 for

convenience). In particular, when a response to a Send1 query is needed, the simulator queries the

encryption oracle, requesting a server-encryption of either the correct password or the value gN+1
1 .

To respond to a Send3 query, the simulator checks whether first-msg-in is previously-used or new. If

first-msg-in is new, the server determines whether it appears valid or appears invalid by submitting

first-msg-in to the decryption oracle. Note that the simulator never need submit to the decryption

oracle a ciphertext that it received from the encryption oracle. The simulator outputs 1 if and only

if A succeeds.

Examination of Figure 3.7 shows that when b̃ = 0 the distribution on the view of A throughout

the experiment is equivalent to the distribution on the view of A in experiment P5. On the other

hand, when b̃ = 1 the distribution on the view of A throughout the experiment is equivalent to the

distribution on the view of A in experiment P6. The simulator’s advantage is therefore

1

2
· |PrA,P5

[Succ]− PrA,P6
[Succ]|.

The claim follows from the observation that this advantage is negligible under the DDH assumption

(cf. Lemma 3.1).

50

Send1(Server, j, 〈Client|VK|A|B|C|D〉) —
if Server /∈ Server or usedj

Server

return ⊥
usedj

Server := true

if A, B, C, D /∈ G or Client /∈ Client
statusjServer := 〈null,null, false,true〉; return statusj

Server

α := H(Client|VK|A|B|C)
(〈Server|E|F |G|I|J〉, (x, y, z, w))← O1k,pw,̃b(pwClient, g

N+1
1 , 1, (Server, α))

β := H(Server|E|F |G|I); msg-out := 〈Server|E|F |G|I|J〉
statusjServer := 〈null,Client, false, false〉

statej
Server := 〈msg-in, x, y, z, w, β,msg-out, pwServer,Client〉

return msg-out, statusjServer

Send3(Server, j, 〈K|Sig〉) —
if Server /∈ Server or not usedj

Server or termj
Server

return ⊥
〈first-msg-in, x, y, z, w, β,first-msg-out, pw〉 := statej

Server

〈Client|VK|A|B|C|D〉 := first-msg-in
if K /∈ G or VrfyVK(β|K, Sig) 6= 1

statusjServer := 〈null,null, false,true〉; return statusj
Server

sidj
Server := 〈first-msg-in|first-msg-out|msg-in〉

accj
Server := termj

Server := true

if first-msg-in is previously-used
if there exists an i such that sidi

Client = sidj
Server

skj
Server := ski

Client

else
retrieve x′, y′, z′, w′ such that K = gx′

1 gy′

2 hz′

(cdβ)w′

(if such values are not stored, abort the experiment)
skj

Server := AxBy(C/pw)zDwF x′

Gy′

(I/pw)z′

Jw′

else
pw′ := Dsk(first-msg-in)
if pw′ = pwClient then skj

Server := ∇

if pw′ 6= pwClient then skj
Server ← G

return statusjServer

Figure 3.7: The modified Send1 and Send3 oracles for the proof of Claim 3.7.

51

In experiment P7, queries to the Send2 oracle are handled differently. Whenever msg-in is new and

appears invalid or is previously-used, the session key (if it is assigned a value at all) is assigned a value

chosen randomly from G. Queries to the Send3 oracle are also handled differently. If first-msg-in is

previously-used, VrfyVK(β|K, Sig) = 1, and there does not exist an i such that sidi
Client = sidj

Server ,

then the session key is assigned a value chosen randomly from G.

Claim 3.8 AdvA,P7
(k) = AdvA,P6

(k).

The claim follows from the equivalence of the distributions on the adversary’s views in the two experi-

ments. First consider a particular query Send2(Client, i,msg-in) where msg-in = 〈Server|E|F |G|I|J〉

is previously-used. Let β = H(Server|E|F |G|I) and r = logg1
E. Since msg-in is previously-used,

it was output in response to some query to the Send1 oracle; therefore, regardless of Client we have

F = gr
1, F = gr

2, J = (cdβ)r, and I = hr′

· pwClient for some r′ 6= r. In particular, I/pwClient 6= Fκ.

A proof similar to that of Claim 3.6 indicates that ski
Client is uniformly distributed independent of

the rest of the experiment.

If the simulator responds to a query Send2(Client, i,msg-in) and msg-in = 〈Server|E|F |G|I|J〉

is new and appears invalid, let 〈K|Sig〉 be the message output by the simulator in responding to

this query. There are two cases to consider. In the first case, the values x, y, z, w used by instance

Πi
Client are used to compute only K and ski

Client (and, in particular, are never used to compute a

session key skj
Server during a Send3 query). In this case, an argument exactly as in the proof of

Claim 3.6 shows that the value of ski
Client is independent of the value K and hence independent of

the remainder of the experiment. In the second case, the values x, y, z, w are used at some point

to compute a session key skj
Server when the simulator responds to a Send3 query. Note that these

values can be used at most once to compute a session key during a Send3 query, since the session

key is assigned a value only if VrfyVK(β|K, Sig) = 1 and the experiment is aborted if a value β used

by the simulator in responding to a Send1 query is used twice. We show that in this case the joint

distribution on (K, ski
Client, sk

j
Server) is uniform, independent of the rest of the experiment.

Let

sidi
Client = 〈Client|VK|A|B|C|D|Server|E|F |G|I|J |K|Sig〉

and

sidj
Server = 〈Client′|VK′|A′|B′|C′|D′|Server′|E′|F ′|G′|I ′|J ′|K|Sig〉,

where the same randomly-chosen values x, y, z, w are used during computation of K, ski
Client, and

skj
Server . Since verification keys used by the simulator in responding to Send0 queries do not repeat

and 〈Client′|VK′|A′|B′|C′|D′〉 is previously-used (if not, x, y, z, w are not used to compute skj
Server),

it must be the case that 〈Client|VK|A|B|C|D〉 = 〈Client′|VK′|A′|B′|C′|D′〉. Furthermore, we must

52

have 〈Server|E|F |G|I〉 = 〈Server′|E′|F ′|G′|I ′〉 (otherwise a collision in H has been found and the

experiment is aborted) and J 6= J ′ (otherwise sidj
Server = sidi

Client and x, y, z, w are not used

to compute skj
Server). Denote pwClient by pwC and let log(·) denote logg1

(·) (recall that g1 is a

generator). For any µ, ν1, ν2 ∈ G and fixing the randomness used in the rest of experiment P6,

the probability over choice of x, y, z, w that K = µ, ski
Client = ν1, and skj

Server = ν2 is exactly the

probability that

log µ = x + y · log g2 + z · log h + w · log(cdβ)

log ν1 − r log E = x · log F + y · log G + z · log(I/pwC) + w · log J

and

log ν2 − log(Ax′

By′

(C/pwC)z′

Dw′

) = x · log F + y · log G + z · log(I/pwC) + w · log J ′.

Letting R
def
= log F and γ denote Ax′

By′

(C/pwC)z′

Dw′

, and using the fact that 〈Server|E|F |G|I|J〉

was output by the simulator in response to a Send1 query, we may re-write these equations as

log µ = x + y · log g2 + z · log h + w · log(cdβ) (3.6)

log ν1 − r log E = x ·R + y · R log g2 + z · R′ log h + w · R log(cdβ) (3.7)

log ν2 − log γ = x ·R + y · R log g2 + z · R′ log h + w · R′′ log(cdβ), (3.8)

for some values R′, R′′ ∈ Zq such that R 6= R′ and R 6= R′′. If R = 0 then R′, R′′ 6= 0 and it is easy to

verify that (3.6)–(3.8) are linearly independent and not identically zero. If R 6= 0 one can similarly

verify that (3.6)–(3.8) are linearly independent and not identically zero. In either case, the joint

distribution of (K, ski
Client, sk

j
Server) is uniform independent of the remainder of the experiment.

In experiment P8, queries to the Send0 oracle are handled differently. In particular, C is computed

as hrgN+1
1 , where {1, . . . , N} is the dictionary of legal passwords.

Claim 3.9 Under the DDH assumption, |AdvA,P8
(k)−AdvA,P7

(k)| ≤ ε(k) for some negligible func-

tion ε(·).

The proof exactly follows that of Claim 3.7. In particular, in responding to Send2 queries, the

simulator never requires the value r to compute a session key: if msg-in is previously-used, the

session key (if it is assigned a value) is assigned a randomly-chosen value; if msg-in is new and

appears invalid (which can be verified using the decryption oracle), the session key (if it is assigned

a value) is assigned a random value; finally, if msg-in is new and appears valid (which can be verified

using the decryption oracle), the session key (if it is assigned a value) is assigned ∇.

The adversary’s view in experiment P8 is independent of the passwords chosen by the simulator,

until one of the following occurs:

53

• The adversary queries Reveal(Client, i) or Test(Client, i), where the adversary had previously

queried Send2(Client, i,msg-in) and msg-in was new and appeared valid.

• The adversary queries Reveal(Server, j) or Test(Server, j), where the adversary had previously

queried Send3(Server, j,msg-in) and first-msg-in was new and appeared valid.

The probability that one of these events occurs is therefore at most Q(k)/N , where Q(k) is the

number of on-line attacks made by A. The adversary succeeds when one of the above events occurs

or else by guessing the value of b. Assuming neither of the above events occur and the adversary

queries Test(U, i) where Πi
U is fresh and acci

U = true, then ski
U is randomly-distributed in G

independent of the rest of the experiment. Thus, the adversary’s probability of success in this case

is at most 1/2. Therefore

PrA,P8
[Succ] ≤ Q(k)/N + 1

2 · (1−
Q(k)

N)

and the adversary’s advantage in experiment P8 is at most Q(k)/N . Claims 3.1–3.9 show that

AdvA,P0
(k) ≤ Q(k)/N + ε(k)

for some negligible function ε(·) and therefore the original P0 is a secure, password-only, key-exchange

protocol.

Theorem 3.2 Assuming (1) the hardness of the DDH problem for groups G defined by the output of

G; (2) the security of (K, Sign, Vrfy) as a one-time signature scheme; and (3) the security of UOWH

as a universal one-way hash family, the protocol of Figure 3.1 is a forward-secure, password-only,

key-exchange protocol.

Proof We refer to the formal specification of the protocol in Figures 3.2–3.4. Here, however, the

adversary also has access to a Corrupt oracle as specified in Figure 3.8. As in the proof of Theorem 3.1,

Corrupt(Client, pw,Server) —
if Client /∈ Client or Server /∈ Server

return ⊥
if pw 6=⊥

pwServer,Client := pw
return pwClient

Figure 3.8: Specification of the Corrupt oracle.

we imagine a simulator that runs the protocol for any adversary A. When the adversary completes

its execution and outputs a bit b′, the simulator can tell whether the adversary succeeds by checking

54

whether (1) a single Test query was made on instance Πi
U ; (2) acci

U was true at the time of the

Test query; (3) instance Πi
U is fs-fresh; and (4) b′ = b. Success of the adversary is denoted by event

fsSucc. We refer to the real execution of the experiment as P0.

In experiment P ′
0, the simulator interacts with the adversary as before except that the adversary

does not succeed when any of the following occur:

1. Any of g1, g2, h, c, d are not generators of G (i.e., they are equal to 1).

2. At any point during the experiment, a verification key VK used by the simulator in responding

to a Send0 query is repeated.

3. At any point during the experiment, the adversary forges a new, valid message/signature pair

for any verification key used by the simulator in responding to a Send0 query.

4. At any point during the experiment, a value β used by the simulator in responding to Send1

queries is repeated.

5. At any point during the experiment, a value β used by the simulator in responding to a

Send1 query (with msg-out = 〈Server|E|F |G|I|J〉) is equal to a value β used by the simulator

in responding to a Send2 query (with msg-in = 〈Server′|E′|F ′|G′|I ′|J ′〉) and furthermore

〈Server|E|F |G|I〉 6= 〈Server′|E′|F ′|G′|I ′〉.

Since the adversary, by definition, cannot succeed once any of these events occur, we assume that

the simulator immediately halts execution if any of these events occur. Using the same proof as for

Claim 3.1, it is clear that fsAdvA,P0
(k) ≤ fsAdvA,P ′

0
(k) + ε(k) for some negligible function ε(·).

In experiment P1, queries to the Execute oracle are handled differently. Upon receiving oracle

query Execute(Client, i,Server, j), the simulator checks whether pwClient = pwServer,Client. If so, the

values C and I used in responding to Execute queries are chosen independently at random from G

and the session keys are computed as

ski
Client := skj

Server := Ax2By2(C/pwServer,Client)
z2Dw2F x1Gy1(I/pwClient)

z1Jw1 .

On the other hand, if pwClient 6= pwServer,Client (i.e., as the result of a Corrupt oracle query), the

values C and I are chosen independently at random from G and the session keys are computed as

ski
Client := Ax2By2(C/pwClient)

z2Dw2F x1Gy1(I/pwClient)
z1Jw1

skj
Server := Ax2By2(C/pwServer,Client)

z2Dw2F x1Gy1(I/pwServer,Client)
z1Jw1 .

Using a similar proof as for Claim 3.2, it can be shown that, under the DDH assumption, we have

|fsAdvA,P ′
0
(k)− fsAdvA,P1

(k)| ≤ ε(k) for some negligible function ε(·).

55

In experiment P2, queries to the Execute oracle are again handled differently. Upon receiving

query Execute(Client, i,Server, j), the simulator checks whether pwClient = pwServer,Client. If so,

ski
Client is chosen randomly from G and skj

Server is set equal to ski
Client. Otherwise, both ski

Client

and skj
Server are chosen independently at random from G.

Claim 3.10 |fsAdvA,P1
(k)− fsAdvA,P2

(k)| ≤ ε(k) for some negligible function ε(·).

The claim follows from the negligible statistical difference between the distributions on the adver-

sary’s view in the two experiments. The case of pwClient = pwServer,Client exactly parallels the proof

of Claim 3.3. So, consider an invocation of the Execute oracle when pwClient 6= pwServer,Client (for

brevity, denote pwClient by pwC and pwServer,Client by pwS,C). We may write C = hr′

1pwC = hr′′

1 pwS,C

and I = hr′

2pwC = hr′′

2 pwS,C where r′1 6= r′′1 and r′2 6= r′′2 . With all but negligible probability, we

also have r1 6= r′1, r
′′
2 and r2 6= r′2, r

′′
2 . Now, for any µ1, µ2, ν1, ν2 ∈ G and fixing the random choices

for the remainder of experiment P1, the probability over choice of x1, y1, z1, w1, x2, y2, z2, w2 that

E = µ1, K = µ2, ski
Client = ν1, and skj

Server = ν2 is exactly the probability that

logg1
µ1 = x2 + y2 · logg1

g2 + z2 · logg1
h + w2 · logg1

(cdα) (3.9)

logg1
µ2 = x1 + y1 · logg1

g2 + z1 · logg1
h + w1 · logg1

(cdβ) (3.10)

logg1
ν1 = x1 · r2 + y1 · r2 logg1

g2 + z1 · r
′
2 logg1

h + w1 · r2 logg1
(cdβ)

+x2 · r1 + y2 · r1 logg1
g2 + z2 · r

′
1 logg1

h + w2 · r1 logg1
(cdα) (3.11)

logg1
ν2 = x1 · r2 + y1 · r2 logg1

g2 + z1 · r
′′
2 logg1

h + w1 · r2 logg1
(cdβ)

+x2 · r1 + y2 · r1 logg1
g2 + z2 · r

′′
1 logg1

h + w2 · r1 logg1
(cdα). (3.12)

Since (3.9)–(3.12) are linearly independent and not identically zero when r1 6= r′1, r
′′
2 and r2 6= r′2, r

′′
2 ,

the values E, K, ski
Client, and skj

Server are independently and uniformly distributed, independent of

the rest of the experiment.

In experiment P3, the simulator runs the modified initialization procedure shown in Figure 3.6,

with the values χ1, χ2, ξ1, ξ2, κ stored as before. Define the terms previously-used and new as in

the proof of Theorem 3.1. As before, a new msg-in for a query Send2(Client, i, 〈Server|E|F |G|I|J〉)

is said to appear valid only if Fχ1+βξ1Gχ2+βξ2 = J and I/pwClient = Fκ. Otherwise, it appears

invalid. A new msg-in for a query Send1(Server, j, 〈Client|VK|A|B|C|D〉) appears valid only if

Aχ1+αξ1Bχ2+αξ2 = D and C/pwServer,Client = Aκ, where the value of pwServer,Client is that at the

time of the Send1 query (this is an important point to bear in mind, since the value of pwServer,Client

may change as a result of Corrupt queries).

In experiment P3, queries to the Send2 oracle are handled differently before any Corrupt queries

have been made (after a Corrupt query is made, the behavior of the Send2 oracle is as in experiment

56

P2). Upon receiving query Send2(Client, i,msg-in), the simulator examines msg-in. If msg-in is new

and appears invalid, the query is answered as in experiment P2. If msg-in is new and appears valid,

the query is answered as in experiment P2 but the simulator stores the value (∇, ski
Client) as the

“session key”. If msg-in is previously-used, the simulator checks for the Send1 query following which

msg-in was output (note that this query will be unique, since the experiment is aborted if a value

β used by the Send1 oracle repeats). Say this query was Send1(Server, j,msg-in′). If msg-in′ is new

and appears invalid, the Send2 query is answered as in experiment P2. If msg-in′ is new and appears

valid, the query is answered as in experiment P2 but the simulator stores the value (∇, ski
Client) for

ski
Client.

Queries to the Send3 oracle are also handled differently. Upon receiving a query of the form

Send3(Server, j,msg-in) and assuming usedj
Server is true, the simulator first checks when the query

Send1(Server, j,first-msg-in) was made. If this Send1 query was made after any Corrupt query was

made, the behavior of the Send3 oracle is unchanged. Otherwise, the simulator checks first-msg-in

and responds as in experiment P2 unless first-msg-in is new and appears valid. When first-msg-

in is new and valid the query is answered as in experiment P2 but the simulator stores the value

(∇, skj
Server) as the “session key”.

The Test and Reveal oracle queries are also handled differently. If the adversary queries Test(U, i)

or Reveal(U, i) before any Corrupt queries have been made and the session key stored is of the form

(∇, ski
U), the adversary is given ∇. If the Test or Reveal query is made after any Corrupt query

has been made, the adversary is given the value ski
U . Test or Reveal queries where the session key

is not stored along with ∇ are answered as in experiment P2. Finally, the definition of success

is changed. If the adversary ever receives the value ∇ in response to a Reveal or Test query, the

adversary succeeds and the experiment is aborted (note that this can only occur before a Corrupt

query has been made). Otherwise, the adversary may succeed, as before, by correctly guessing the

bit b.

As in the proof of Theorem 3.1, we clearly have fsAdvA,P2
(k) ≤ fsAdvA,P3

(k) since the number

of ways the adversary can succeed is increased.

In general, the actions of the Send2 oracle will be modified only when the Send2 query is

made before any Corrupt queries have been made. Similarly, actions of the Send3 oracle on query

Send3(Server, j,msg-in) will be modified only if the query Send1(Server, j,first-msg-in) was made

before any Corrupt queries were made (if no Send1 query of this form was made, the query to Send3

simply returns⊥). For clarity, however, we will still explicitly mention this condition when describing

the modified experiments.

In experiment P4, queries to the Send3 oracle are handled differently. First, whenever the sim-

57

ulator responds to a Send2 query, the simulator stores the values (K, β, x, y, z, w), where K =

gx
1gy

2hz(cdβ)w. Upon receiving query Send3(Server, j, 〈K|Sig〉) (as before, this assumes that query

Send1(Server, j,first-msg-in) was made before any Corrupt queries), the simulator checks the value

of first-msg-in = 〈Client|VK|A|B|C|D〉 (if first-msg-in is not defined the query to Send3 simply re-

turns ⊥ as in experiment P3). If first-msg-in is new, the query is answered as in experiment P3. If

first-msg-in is previously-used and VrfyVK(β|K, Sig) = 0, the query is answered as in experiment P3

and the session key is not assigned a value. If first-msg-in is previously-used, VrfyVK(β|K, Sig) = 1,

and the experiment is not aborted, the simulator first checks whether there exists an i such that

sidi
Client = sidj

Server (if such an i exists, it must be unique since verification keys VK are not re-

peated during Send0 queries). If so, skj
Server (if it is assigned a value at all) is assigned the value

ski
Client. Otherwise, let first-msg-out = 〈Server|E|F |G|I|J〉. The simulator must have stored values

x′, y′, z′, w′ such that K = gx′

1 gy′

2 hz′

(cdβ)w′

(this is true since the experiment is aborted if Sig is a

valid signature on β|K that was not output by the simulator following a Send2 query). The session

key (assuming it is assigned a value at all) is assigned the value:

skj
Server := AxBy(C/pw)zDwF x′

Gy′

(I/pw)z′

Jw′

.

Claim 3.11 fsAdvA,P4
(k) = fsAdvA,P3

(k).

The distribution on the adversary’s view is identical in experiments P3 and P4; the proof is as for

Claim 3.5. It is crucial here that the value pwServer,Client used when responding to a Send1 query is

stored as part of the state and thus the same value is used subsequently when responding to a Send3

query (cf. Figure 3.4). If this were not the case, the value of pwServer,Client could change (as a result

of a Corrupt query) sometime between the Send1 and Send3 queries.

In experiment P5, queries Send3(Server, j,msg-in) are handled differently (again, this assumes

that the query Send1(Server, j,first-msg-in) was made before any Corrupt queries). Upon receiving

query Send3(Server, j, 〈K|Sig〉), the simulator checks the value of first-msg-in (if first-msg-in is not

defined the simulator returns ⊥ as in experiment P4). If first-msg-in is new and appears invalid and

the session key is to be assigned a value, the session key is assigned a value randomly chosen in G.

Otherwise, the query is answered as in experiment P4.

Claim 3.12 fsAdvA,P5
(k) = fsAdvA,P4

(k).

The proof exactly follows the proof of Claim 3.6. Again, it is crucial that the same value pwServer,Client

is used during both the Send1 and Send3 queries for a given instance (this is achieved by storing

pwServer,Client as part of the state).

58

In experiment P6, queries to the Send1 oracle are handled differently when a Send1 query is made

before any Corrupt queries (Send1 queries are responded to as in experiment P5 when they are made

after a Corrupt query). Upon receiving query Send1(Server, j,msg-in), if msg-in is new and appears

valid the query is answered as before. Otherwise, component I is computed as hrgN+1
1 , where the

dictionary of legal passwords is {1, . . . , N}; note that gN+1
1 represents an invalid password since

N < q − 1.

Claim 3.13 Under the DDH assumption, |fsAdvA,P5
(k)− fsAdvA,P6

(k)| ≤ ε(k), for some negligible

function ε(·).

The proof of this claim exactly follows the proof of Claim 3.7. In particular, the claim follows from

the non-malleability of the commitment scheme used. When a query Send1(Server, j,first-msg-in) is

made before any Corrupt queries and first-msg-in is not both new and valid, the simulator will not

require r in order to respond to the (subsequent) query Send3(Server, j,msg-in) in case this query

is ever made.

In contrast to the basic case when no Corrupt queries are allowed, the simulator does require r

in case first-msg-in is both new and appears valid. The reason is the following: Assume the ad-

versary queries Send1(Server, j, 〈Client|VK|A|B|C|D〉) (before any Corrupt queries have been made)

where 〈Client|VK|A|B|C|D〉 is new and appears valid. Assume the adversary subsequently learns

pwServer,Client = pw from a Corrupt query. The adversary might then query Send3(Server, j, 〈K|Sig〉)

followed by Reveal(Server, j). In this case, the simulator must give the adversary the correct session

key skj
Server — but this will be impossible without r.

In experiment P7, queries to the Send2 oracle are handled differently (when they are made before

any Corrupt queries). Whenever msg-in is new and appears invalid, the session key (if it is assigned a

value at all) is assigned a value chosen randomly from G. If msg-in is previously-used, the simulator

checks for the Send1 query after which msg-in was output (note that this query will be unique,

since values β used by the Send1 oracle do not repeat). Say this query was Send1(Server, j,msg-in′).

If msg-in′ is new and appears valid, the Send2 query is answered as before. If msg-in′ is new

and appears invalid, the session key (if it is assigned a value at all) is assigned a value chosen

randomly from G. Queries Send3(Server, j,msg-in) are also handled differently (assuming query

Send1(Server, j,first-msg-in) was made before any Corrupt queries). If first-msg-in is previously-

used, VrfyVK(β|K, Sig) = 1, and there does not exist an i such that sidi
Client = sidj

Server, the session

key is assigned a value chosen randomly from G.

Claim 3.14 fsAdvA,P7
(k) = fsAdvA,P6

(k).

The proof exactly follows that of Claim 3.8.

59

Let fsSucc1 denote the event that the adversary succeeds by receiving a value ∇ following a Test

or Reveal query (note that this event can only occur before any Corrupt queries have been made).

We have

PrA,P7
[fsSucc] = PrA,P7

[fsSucc1] + PrA,P7
[fsSucc|fsSucc1] · PrA,P7

[fsSucc1].

Event fsSucc ∧ fsSucc1 can occur in one of two ways (by definition of fs-freshness): either (1) the

adversary queries Test(U, i) before any Corrupt queries and does not receive ∇ in return; or (2)

the adversary queries Test(U, i) after a Corrupt query and acci
U = true but the adversary has

never queried Sendn(U, i, M) for any n, M . In either case, ski
U is randomly chosen from G indepen-

dent of the remainder of the experiment; therefore (assuming PrA,P7
[fsSucc1] 6= 0) we must have

PrA,P7
[fsSucc|fsSucc1] = 1/2. In other words

PrA,P7
[fsSucc] = 1/2 + 1/2 · PrA,P7

[fsSucc1],

where we assume PrA,P7
[fsSucc1] 6= 0. Below, we give an upper bound on PrA,P7

[fsSucc1] which, in

particular, will show that PrA,P7
[fsSucc1] 6= 0.

We define experiment P ′
7 in which the adversary succeeds only if it receives a value ∇ in response

to a Reveal or Test query. Clearly PrA,P ′
7
[fsSucc] = PrA,P7

[fsSucc1] by definition of event fsSucc1.

Since the adversary cannot succeed in experiment P ′
7 once a Corrupt query is made, the simulator

aborts the experiment if this is ever the case. For this reason, whenever the simulator would

previously store values (∇, sk) as a “session key” (with sk being returned only in response to a Test

or Reveal query after a Corrupt query), the simulator now need store only ∇.

In experiment P8, queries to the Send1 oracle are handled differently. Now, the simulator always

computes I as hrgN+1
1 (i.e., even when msg-in is new and valid). That |fsAdvA,P8

(k)−fsAdvA,P ′
7
(k)| ≤

ε(k) for some negligible function ε(·) (under the DDH assumption) follows from a proof similar to

that of Claim 3.7 (see also Claim 3.13). A key point is that when msg-in is new and appears valid,

the simulator no longer need worry about simulating the adversary’s view following a Corrupt query.

In experiment P9, queries to the Send0 are handled differently. Now, the simulator always

computes C as hrgN+1
1 . That |fsAdvA,P9

(k) − fsAdvA,P8
(k)| ≤ ε(k) for some negligible function

ε(·) (under the DDH assumption) follows from a proof similar to that of Claim 3.9. In particular,

since session keys computed during a Send2 query are always either ∇ or are chosen randomly from

G, the value r is not needed by the simulator and hence we can use the simulator to break the

Cramer-Shoup encryption scheme as in the proofs of Claims 3.7, 3.9, and 3.13.

The adversary’s view in experiment P9 is independent of the passwords chosen by the simulator

until the adversary receives ∇ in response to a Reveal or Test query (in which case the adversary

60

succeeds). Thus, the probability that the adversary receives ∇ (which is exactly PrA,P9
[fsSucc]) is

at most Q(k)/N . When Q(k) < N (which is the only interesting case), we have PrA,P7
[fsSucc1] < 1

for k large enough. Therefore, for large enough values of k and for some negligible function ε(·), we

have

PrA,P0
[fsSucc] ≤ PrA,P7

[fsSucc] + ε(k)

≤ 1/2 + 1/2 · PrA,P7
[fsSucc1] + ε(k)

≤ 1/2 +
Q(k)

2N
+ ε(k)

and fsAdvA,P0
(k) ≤ Q(k)/N +2 · ε(k). In other words, the original P0 is a forward-secure, password-

only, key-exchange protocol.

61

Chapter 4

Non-Interactive and
Non-Malleable Commitment

4.1 Introduction

Consider a setting in which two parties must each choose a course of action (by declaring their choice

to a receiver), yet neither party should have the advantage of moving second and thereby basing

their choice on the other player’s selection. How can this be achieved? There are several natural

solutions to this problem. One is to force both players to announce their choices to the receiver

at exactly the same time. Clearly, this will achieve the desired result if absolute simultaneity can

be achieved; in practice, however, guaranteeing this level of synchrony is difficult if not impossible.

Another suggestion is to involve an “escrow agent” to whom each party communicates his choice.

This escrow agent should not reveal either player’s choice to the receiver until both players have

communicated with him. Although this approach accomplishes the desired task, it involves an

additional party who must be highly trusted by all others involved. This solution also places a

heavy burden on the agent in case many parties want to use his services at the same time.

A particularly simple and elegant solution is to have both parties “commit” to their choice

such that the following holds: (1) a commitment should reveal no information about the choice

being committed to, yet (2) once a commitment is made, the committing party should be unable

to change their committed value. A straightforward way to achieve this is to have a committing

party write their choice on a piece of paper, seal it inside an envelope, and send the envelope to

the receiver. This approach satisfies both requirements given above: the second party (even if he

observes all communication between the other party and the receiver) sees only the envelope and

gets no information about the contents inside; furthermore, the first party cannot change what is

inside the envelope once it is sealed.

The preceding solution works when the parties and the receiver are physically close (and can

62

S (input m ∈ Zq)

Commitment phase:

g, h← G∗
g, h

�

r ← Zq

com := gmhr com
-

R

Decommitment phase:

m, r
-

Verify: com
?
= gmhr

Figure 4.1: The Pedersen commitment scheme.

therefore quickly pass an envelope back and forth), but is not feasible in many other situations.

A commitment protocol may be viewed as the cryptographic implementation of a secure envelope.

Here, we can guarantee that the committed value is not revealed (secrecy) and that the committing

party cannot change his mind (binding) under assumptions about the computational power of the

parties.

An example will be instructive. In Figure 4.1, we illustrate the Pedersen commitment scheme

[103] whose security is based on the hardness of computing discrete logarithms in group G of prime

order q. First, the receiver R chooses two random generators g, h ∈ G and sends these to the sender

S. To commit to a message m ∈ Zq, S chooses a random value r ∈ Zq, computes com = gmhr,

and sends com to R. To decommit, the sender simply reveals m, r. Note that com is uniformly

distributed in G, independently of m, and therefore the commitment reveals no information about

the committed message. On the other hand, assuming the hardness of computing discrete logarithms

in G, the Pedersen scheme is binding. To see this, note that given two legal decommitments 〈m, r〉

and 〈m′, r′〉 to com, we have gmhr = gm′

hr′

. Thus, we may compute gm−m′

= hr′−r and logg h =

(m−m′)/(r′ − r) mod q.

Two types of commitment schemes are primarily considered in the literature: perfectly-binding

and perfectly-hiding (following [62] we refer to the former as standard and the latter as perfect). In

a standard commitment scheme, each commitment is information-theoretically linked to only one

possible (legal) decommitment value; on the other hand, the secrecy of the commitment is guaranteed

only with respect to a computationally-bounded receiver. In a perfect commitment scheme, the

secrecy of the commitment is information-theoretic while the binding property guarantees only that

63

S (input m ∈ Zq)

Commitment phase:

g, h← G∗
g, h

�

g, h
�

r ← Zq

com := gmhr com
-

g · com
-

R

Decommitment phase:

m, r
-

m + 1, r
-

Verify: g · com
?
= gm+1hr

Figure 4.2: Man-in-the-middle attack on the Pedersen commitment scheme.

a computationally-bounded sender cannot find a commitment which can be opened in two possible

ways. The type of commitment scheme to be used depends on the application; it may also depend on

assumptions regarding the computational power of the participants. Furthermore, in some protocols

(e.g., zero-knowledge proofs) certain commitments are never opened; information-theoretic privacy

ensures that the committed data will remain hidden indefinitely.

Commitment protocols have become one of the most fundamental cryptographic primitives, and

are used as sub-protocols in such applications as zero-knowledge proofs [67, 62], secure multi-party

computation [66], and many others. Commitment protocols can also be used directly, for example,

in remote (electronic) bidding. In this setting, parties bid by committing to a value; once bidding is

complete, parties reveal their bids by decommitting.

In many situations, however, the secrecy and binding properties outlined previously do not fully

capture everything one might expect from a secure envelope. For example, we do not expect a party

to be able to commit to a value which is related in any way to a previously committed (and as yet

unopened) value. Schemes in which commitment to a related value is possible are called malleable;

schemes in which this is impossible are called non-malleable. As an illustration, in the bidding

scenario it is unacceptable if one party can generate a valid commitment to m + 1 upon viewing a

commitment to m. Note that the value of the original commitment may remain unknown (and thus

secrecy need not be violated); in fact, the second party may only be able to decommit his bid after

viewing a decommitment of the first.

Unfortunately, most known commitment protocols are easily susceptible to these types of man-

in-the-middle attacks. For example, Figure 4.2 demonstrates the malleability of the Pedersen com-

64

mitment scheme. Here, the adversary changes the commitment com of S to com′ = g · com. At this

point, the adversary has no idea what S has committed to, nor what he himself has committed to.

In fact, the adversary will only be able to decommit after viewing the decommitment of S. When

S decommits to m, the adversary simply decommits to m′ = m + 1. The receiver cannot even tell

that a man-in-the-middle attack is taking place.1

One natural measure of efficiency for a commitment protocol is the communication complexity.

The number of rounds is one measure of the communication complexity. Optimally, the commitment

phase of a commitment protocol should consist of a single message from the sender to the receiver;

such schemes are termed non-interactive. A second measure of the communication complexity is the

bit complexity (i.e., size) of a commitment. This is particularly important when committing to a

very large message such as the contents of a (large) database. Unfortunately, standard commitment

schemes (even malleable ones) require commitment size at least |M | + ω(log k), where |M | is the

message size and k is the security parameter. Perfect commitment schemes, on the other hand, offer

the opportunity to achieve much shorter commitment lengths.

4.1.1 Previous Work

The commitment primitive has been extensively studied. Standard commitment has been shown

to exist if and only if one-way functions exist [96, 77]. A perfect commitment scheme has been

constructed assuming the existence of one-way permutations [97]. Both schemes have been designed

in the interactive model (where no public information is available to the parties); the former, how-

ever, may be adapted to run in the public-parameters model (cf. Section 2.1.1). Efficient perfect

commitment protocols, based on specific number-theoretic assumptions, are also known [103, 100].

Non-malleability of commitments was first explicitly considered by Dolev, Dwork, and Naor

[44]. They also provided the first construction of a standard commitment scheme which is provably

non-malleable. Although their protocol is constructed from the minimal assumption of a one-way

function (in particular, without assuming any public parameters), it requires a poly-logarithmic

number of rounds of interaction.2 Assuming a public random string available to all participants,

Di Crescenzo, Ishai, and Ostrovsky [40] construct the first non-interactive, non-malleable standard

commitment scheme. Interestingly, their construction can be modified to give a non-interactive,

non-malleable perfect commitment scheme. Unfortunately, the resulting commitments are large (i.e.,

O(|M | · k)), thus motivating the search for more efficient protocols. Furthermore, their protocol is

1In the present example, a receiver who obtains commitments and decommitments from both S and the adversary
can tell that something unusual happened since the decommitments are correlated (for example, they both use the
same r). However, it is possible for an adversary to prevent this detection by re-randomizing his commitment.

2Furthermore, their protocol allows an adversary to generate a different commitment to an identical value (unless
user identities are assumed). The protocols we present do not have this drawback.

65

not computationally practical.

Efficient non-malleable commitment schemes, based on stronger (but standard) assumptions,

have been given by Fischlin and Fischlin [58]. Like the construction of [40], these protocols require

publicly-available parameters generated by a trusted party (in some cases this can be weakened to the

assumption of a public random string). They describe non-malleable perfect commitment schemes

based on either the discrete logarithm or RSA assumptions. Though efficient, these protocols require

interaction between the sender and receiver.

Subsequent to the present work, a definition of “universally composable” commitment protocols

(which implies, in particular, non-malleability) was introduced, and a provably-secure construction

satisfying this definition was given in the common-random-string model [28]. Unfortunately, the

given protocol is inefficient for commitment to more than a single bit. Other subsequent work,

building on the paradigm described here, has demonstrated an efficient non-malleable commitment

scheme based on the factoring assumption [59].

4.1.2 Our Contributions

We present the first efficient (in both computation and communication) constructions of non-

interactive, non-malleable, perfect commitment schemes. We work in the setting in which public

parameters are available to all participants (our discrete logarithm construction can be implemented

in the public random string model using standard techniques). Previous constructions are either for

the case of standard commitment [44, 40] or require interaction [44, 58]. Our constructions are based

on the discrete logarithm or the RSA assumptions, and allow efficient, perfectly-hiding commitment

to arbitrarily-large messages. The size of the resulting commitment is essentially optimal. The

schemes described in [58], while able to handle large messages, require modifications which render

them less efficient and result in statistical secrecy.

We also discuss the case of non-interactive, non-malleable, standard commitment and prove

secure a construction based on trapdoor permutations that achieves commitment size |M |+poly(k).

The large commitment size of this construction (though near-optimal for standard commitment)

serves as motivation for our consideration of perfect commitment schemes. Indeed, for arbitrarily-

large messages, our perfect commitment schemes yield commitments of size O(k), where k is the

security parameter (the commitment size is further improved in Section 4.5). All our schemes require

only poly(k) bits of public information, independent of the size of the committed message.

66

4.2 Definitions

Commitment schemes. A non-interactive commitment scheme3 [40] in the public-parameters

model is defined by a triple of probabilistic, polynomial-time algorithms (T T P,S,R) which describe

a two-phase protocol between a sender S and a receiver R such that the following is true. In the

first phase (the commitment phase), the sender S, given a public string σ output by a trusted

third party T T P , commits to a message m by computing a pair of strings (com, dec) and sending

the commitment com to receiver R. Given only σ and com, the receiver cannot determine any

information about m (this is the hiding property). In the second phase (the decommitment phase)

S reveals the decommitment dec to R and R checks whether the decommitment is valid. If it is

not, R outputs a special string ⊥, meaning that he rejects the decommitment from S; otherwise, R

can efficiently compute the message m and is convinced that m was indeed chosen by S in the first

phase. It should be infeasible for S to generate a commitment which S can later decommit in more

than one possible way (this is the binding property).

In a perfect commitment scheme, the committed message is hidden from the receiver in an

information-theoretic sense. Thus, even an infinitely-powerful receiver cannot determine the message

to which S has committed at the end of the first phase. On the other hand, the binding property

only holds with respect to a computationally-bounded sender. Thus, a given commitment has

possible (legal) decommitments to many messages, but a polynomial-time sender cannot explicitly

find more than one such decommitment. In contrast, a standard commitment scheme prevents

even an infinitely-powerful sender from decommitting a commitment in more than one possible way;

however, at the end of the commitment phase the message is hidden only from a computationally-

bounded receiver. Formal definitions follow:

Definition 4.1 Let (T T P ,S,R) be a triple of probabilistic, polynomial time algorithms, k a security

parameter, and {Mσ}σ∈T T P(1k),k∈N a collection of message spaces such that membership in Mσ is

efficiently testable given σ output by T T P(1k). We say that (T T P,S,R) is a non-interactive, perfect

(resp. standard) commitment scheme over {Mσ} if the following conditions hold:

1. (Meaningfulness) For all k ∈ N, all σ output by T T P(1k), and all m ∈Mσ:

Pr[(com, dec)← S(σ, m); m′ ←R(σ, com, dec) : m′ = m] = 1.

2. (Perfect (resp. computational) secrecy) For all computationally-unbounded (resp. ppt)

distinguishing algorithms D, the following is identically zero (resp. negligible in k):

∣∣Pr
[
σ ← T T P(1k); (m0, m1, s)← D1(σ); b← {0, 1};

3Because our constructions are non-interactive, we provide definitions for the non-interactive case only.

67

(com, dec)← S(σ, mb) : D2(com, s) = b]− 1/2|

3. (Computational (resp. perfect) binding) For all ppt (resp. computationally unbounded)

algorithms S′, the following is negligible in k:

Pr
[
σ ← T T P(1k); (com, dec1, dec2)← S

′(σ); m1 ←R(σ, com, dec1);

m2 ←R(σ, com, dec2) : m1 6=⊥ ∧ m2 6=⊥ ∧ m1 6= m2] .

Note. The symbol ⊥ is reserved for an invalid decommitment (which includes a refusal to decom-

mit). In particular, for all σ we have ⊥ /∈ Mσ.

Non-malleable commitment schemes. Two definitions of non-malleable commitment have ap-

peared in the literature, both seeking to capture the following intuition of security: for any adversary

who, after viewing a commitment to m, produces a commitment to a value m′ which bears some

relation to m, there exists a simulator performing at least as well in producing an m′ related to m

but without viewing a commitment to m (and thus having no information about the value of m).

The difference between the two definitions lies in what it means for an adversary to“produce a com-

mitment”. In the original definition [44] (non-malleability with respect to commitment), generating

a valid commitment to m′ is sufficient. However, this definition does not apply to perfectly-hiding

commitment schemes since for such schemes the value committed to by a commitment string is not

well-defined. In the definition of [40, 58] (non-malleability with respect to opening), the adversary

must also give a valid decommitment to m′ after viewing the decommitment to m. Note that in the

case of standard commitment, non-malleability with respect to commitment is a stronger notion of

security.

Definition 4.2 A non-interactive commitment scheme (T T P,S,R) over {Mσ} is ε-non-malleable

with respect to opening if, for all ε > 0 and every ppt algorithm A, there exists a simulator A′ run-

ning in probabilistic, poly(k, 1/ε) time, such that for all polynomial-time computable, valid relations

R (see note below), we have:

SuccNM
A,R(k)− S̃uccA′,R(k) ≤ ε + negl(k),

for some negligible function negl(·); where:

SuccNM
A,R(k)

def
=

Pr
[
σ ← T T P(1k); (D, s)← A0(σ); m1 ← D; (com1, dec1)← S(σ, m1);

(com2, s
′)← A1(σ, com1, s); dec2 ← A2(σ, com1, dec1, s

′);

m2 ←R(σ, com2, dec2) : com1 6= com2 ∧ R(σ,D, m1, m2) = 1]

68

and:

S̃uccA′,R(k)
def
=

Pr
[
(σ,D, m2)← A

′(1k); m1 ← D : R(σ,D, m1, m2) = 1
]
.

(D represents an efficiently sampleable distribution over Mσ.)

Note. The definition of security above allows the simulator to do arbitrarily better than the adver-

sary. The technical reason for this is that the adversary may simply refuse to decommit, even when

it would have otherwise succeeded. In any case, if a simulator who has no information about m1

can do better than an adversary who gets to see a commitment to m1, the scheme still satisfies our

intuitive notion of non-malleability.

Valid relations. Typically, we view a relation R as being defined on pairs of messages. However,

there are a number of subtleties which need to be addressed. First, the adversaryA should be allowed

to choose the distribution D, possibly depending upon the public parameters σ. Any reasonable

definition of security thus requires the simulator to output a distribution as well. The simulator,

however, must be prevented from choosing some “trivial” distribution for which it can always succeed.

To handle this, we allow the relation R to take the public parameters σ and (a description of) a

distribution D as additional parameters. To ensure that the distribution is defined with respect to

the correct message space, we require that a valid relation satisfy R(σ,D, ∗, ∗) = 0 if D is not a

distribution over Mσ. Furthermore, we require R(σ, ∗, m1, m2) = 0 if m1 /∈ Mσ or m2 /∈ Mσ. In

particular, this implies that R(σ,D, m,⊥) = R(σ,D,⊥, m) = 0 for all σ,D, m.

We now turn to the definition of non-malleability with respect to commitment. For any standard

commitment scheme, we may define the function Decommit(σ, ·) which takes a commitment as its

second argument and returns the (unique) committed value in Mσ (or ⊥, if the commitment is

invalid). The perfect binding of the scheme implies that the function is well-defined (although not

polynomial-time computable) except with negligible probability over choice of σ.

Definition 4.3 A non-interactive, standard commitment scheme (T T P ,S,R) over message space

{Mσ} is non-malleable with respect to commitment if, for every ppt algorithm A, there exists a ppt

simulator A′, such that for all polynomial-time, valid relations R (see note above), we have:

∣∣∣SuccNM−commit
A,R (k)− S̃uccA′,R(k)

∣∣∣ ≤ negl(k),

for some negligible function negl(·); where:

SuccNM−commit
A,R (k)

def
=

69

Pr
[
σ ← T T P(1k); (D, s)← A0(σ); m1 ← D;

(com1, dec1)← S(σ, m1); com2 ← A(σ, com1, s);

m2 = Decommit(σ, com2) : com1 6= com2 ∧ R(σ,D, m1, m2) = 1]

and S̃uccA′,R(k) is defined as above.

Equivocable commitment schemes. Our constructions of non-malleable, perfect commitment

schemes use equivocable commitment schemes [2] as a building block; such schemes have been used

previously in designing non-malleable commitment protocols [40]. Informally, an equivocable com-

mitment scheme in the public-parameter model is one for which there exists an efficient equivocation

algorithm Equiv, substituting for the trusted third party, which outputs public parameters σ and

a commitment such that: (a) the distribution of σ, the commitment, and a decommitment to any

message is exactly equivalent to their distribution in a real execution of the protocol; and (b) the

commitment can be opened by Equiv in more than one possible way. We give a formal definition for

the case of perfect commitment.

Definition 4.4 A non-interactive, perfect commitment scheme (T T P ,S,R) over message space

{Mσ} is perfectly equivocable if there exists a probabilistic, polynomial time equivocable commitment

generator Equiv such that:

1. Equiv1(1
k) outputs (σ, com, s) (where s represents state information).

2. For all k ∈ N, the following distributions are equivalent:

{σ ← T T P(1k); m←Mσ; (com, dec)← S(σ, m) : (σ, com, dec, m)}

{(σ, com, s)← Equiv1(1
k); m←Mσ; dec← Equiv2(s, m) : (σ, com, dec, m)}.

In particular, for all k ∈ N, all (σ, com, s) output by Equiv1(1
k), all m ∈Mσ, and all dec output by

Equiv2(s, m) we have R(σ, com, dec) = m.

4.3 Non-Malleable Standard Commitment

We first examine the case of non-interactive, standard commitment. Note that the size of a standard

commitment (even for malleable schemes) must be at least |M |+ω(log k), where |M | is the message

length and k is the security parameter. Perfect binding implies that the size must be at least |M |,

and semantic security requires that each message have 2ω(log k) = ω(poly(k)) possible commitments

associated with it.

70

The theorem below indicates that we can achieve roughly this bound for non-interactive, non-

malleable standard commitment, assuming the existence of trapdoor permutations4 (in the model

with public parameters). The key realization is that a non-malleable public-key encryption scheme

can also be used as a non-malleable standard commitment scheme. This connection between non-

malleable public-key encryption and non-malleable commitment seems not to have been noticed

before. Following Blum and Goldwasser [21, 68] (who consider the case of semantic security for

public-key encryption), we construct a communication-efficient, non-malleable standard commitment

scheme from the following components: first, we use a public-key encryption scheme (Gen, E ,D) that

is indistinguishable under an adaptive chosen-ciphertext attack (and hence non-malleable) [44, 6, 16].

Such a scheme can be based on any family of trapdoor permutations [44, 110, 38]. Next, we use a

symmetric-key cryptosystem (K, E∗,D∗) which is indistinguishable under adaptive chosen-ciphertext

attack; this can be based on any one-way function [44]. The commitment scheme works as follows:

public parameters σ consist of a public key pk for the public-key cryptosystem. Commitment is

done by choosing a random secret key K for the symmetric-key cryptosystem, encrypting K using

the public-key cryptosystem, and then encrypting the committed message using the symmetric-key

cryptosystem and key K. A commitment to M is thus

Epk(K) ◦ E∗K(M). (4.1)

Decommitment consists of revealing M and the random bits used to form the commitment. Com-

mitment verification is done in the obvious way. Note that the commitment is actually a public-key

encryption of the message M , although the receiver does not have the associated secret key (indeed,

no party has it because σ was generated by T T P). Furthermore, |σ| = |pk| = poly(k) independent

of the size of the committed message. We now prove the following:

Theorem 4.1 Construction (4.1) is a non-interactive, standard commitment scheme (in the public-

parameters model) that is non-malleable with respect to commitment and has commitment size

|M | + poly(k), where |M | is the size of the committed message and k is the security parameter.

Furthermore, (4.1) may be based on the existence of trapdoor permutations.

Proof First note that for (4.1) to be perfectly binding we require that the decryption algorithms

for both the public-key and symmetric-key cryptosystems have zero probability of decryption error.

This is achieved, in particular, by the public-key and symmetric-key cryptosystems given in [44],

which may be based on any family of trapdoor permutations. Thus, revealing the randomness used

to generate the commitment perfectly binds the sender to the message.

4Recall that [40] achieves non-interactive, non-malleable, standard commitment assuming the existence of one-way
functions. However, their scheme requires commitment size O(k · |M |).

71

A proof of non-malleability with respect to commitment will immediately imply that the scheme

is computationally hiding (this has been noted previously for the case of encryption [6, 16] and it

is clear that a similar result holds for the case of commitment). Since any commitment to M using

the scheme outlined above may also be viewed as an encryption of M under public key pk = σ, if we

can prove that (4.1) constitutes a non-malleable public-key encryption scheme, we are done. Using

the results of [6], it suffices to prove that (4.1) is secure under adaptive chosen-ciphertext attack.

Consider an adversaryA attacking construction (4.1) under an adaptive chosen-ciphertext attack.

Define adversary B using A as a black box to attack E under an adaptive chosen-ciphertext attack

as follows (D̃sk(·) denotes the decryption oracle for hybrid scheme (4.1)):

Algorithm B
Dsk(·)
1 (pk)

(M0, M1, s)← A
D̃sk(·)
1 (pk)

K ← K(1k)
M ′

0 := K; M ′
1 := 0k

return (M ′
0, M

′
1, (K, M0, M1, s))

Algorithm B
Dsk(·)
2 (y, (K, M0, M1, s))

b← {0, 1}
C ← E∗K(Mb)

b′ ← A
D̃sk,y→K(·)
2 (y ◦ C, s)

if b′ = b return 0
else return 1

Decryption oracle queries of A1 are handled by B1 in the obvious way. The notation D̃sk,y→K(·)

means that decryption oracle queries of A2 are handled by B2 as follows: if A2 requests decryption

of ciphertext y′ ◦ C′, with y′ 6= y, B2 submits y′ to its decryption oracle, receives key K ′ in return,

then computes M ′ := D∗
K′(C′) and returns this answer to A2. If A2 submits ciphertext y ◦C′, note

that B2 would not be allowed to submit y to its decryption oracle since B2 cannot ask for decryption

of the challenge ciphertext. Instead, B2 “assumes” that y is an encryption of K, and computes the

response M := D∗
K(C′). Adaptive chosen-ciphertext security of E implies that the advantage of B

is negligible; formally:

AdvB,E(k)
def
=

∣∣∣2 · Pr
[
(pk, sk)← Gen(1k); (M0, M1, s)← B

Dsk(·)
1 (pk); b← {0, 1};

y ← Epk(Mb) : B
Dsk(·)
2 (y, s) = b

]
− 1
∣∣∣ ≤ ε1(k), (4.2)

where Gen is the algorithm which generates public and private keys for E and ε1(·) is a negligible

function.

We now consider adversary C using A as a black box to attack E∗ under an adaptive chosen-

ciphertext attack.

Algorithm C
D∗

K(·)
1 (1k)

(pk, sk)← Gen(1k)

(M0, M1, s)← A
D̃sk(·)
1 (pk)

y ← Epk(0k)
return (M0, M1, (y, sk, s))

Algorithm C
D∗

K(·)
2 (C, (y, sk, s))

b′ ← A
D̃sk,y→K(·)
2 (y ◦ C, s)

return b′

72

Decryption oracle queries of A1 are answered by C1 in the obvious way. The notation D̃sk,y→K(·),

as before, means that decryption oracle queries of A2 are handled by C2 as follows: if A2 submits

ciphertext y′ ◦ C′ to its decryption oracle with y′ 6= y, C2 decrypts y′ using key sk to get K ′ and

then returns M ′ := D∗
K′(C′) to A2. On the other hand, if A2 submits ciphertext y ◦ C′, then C2

submits C′ to its decryption oracle D∗
K(·) and returns the result to A2 (we emphasize that C does

not know the value of K). Adaptive chosen-ciphertext security of E∗ implies that the advantage of

C is negligible; formally:

AdvC,E∗(k)
def
=

∣∣∣2 · Pr
[
K ← K(1k); (M0, M1, s)← C

D∗

K(·)
1 (1k); b← {0, 1};

C ← E∗K(Mb) : C
D∗

K(·)
2 (C, s) = b

]
− 1
∣∣∣ ≤ ε2(k) (4.3)

for some negligible function ε2(·).

Define the following probabilities, parameterized by the security parameter k:

pb,real(k)
def
=

Pr
[
(pk, sk)← Gen(1k); (M0, M1, s)← A

D̃sk(·)
1 (pk); K ← K(1k);

y ← Epk(K); C ← EK(Mb) : A
D̃sk(·)
2 (y ◦ C, s) = 0

]

pb,fake(k)
def
=

Pr
[
(pk, sk)← Gen(1k); (M0, M1, s)← A

D̃sk(·)
1 (pk); K ← K(1k);

y ← Epk(0k); C ← EK(Mb) : A
D̃sk,y→K(·)
2 (y ◦ C, s) = 0

]
.

The crux of the proof is to note that when Dsk(y) = K, oracle D̃sk,y→K(·) is equivalent to the real

decryption oracle D̃sk(·) for the hybrid encryption scheme. With this in mind, we may re-write

(4.2) and (4.3) as AdvB,E(k) = 1/2 · |p0,real(k) − p0,fake(k) + p1,fake(k) − p1,real(k)| and AdvC,E∗(k) =

|p0,fake(k)− p1,fake(k)|. Then:

AdvA(k)
def
= |p0,real(k)− p1,real(k)|

= |p0,real(k)− p1,real(k) + p0,fake(k)− p1,fake(k)− p0,fake(k) + p1,fake(k)|

≤ |p0,real(k)− p1,real(k)− p0,fake(k) + p1,fake(k)|+ |p0,fake(k)− p1,fake(k)|

= 2 · AdvB,E(k) + AdvC,E∗(k)

≤ 2 · ε1(k) + ε2(k),

and this last quantity is negligible.

To complete the proof, we note that |K| = poly(k) and therefore |Epk(K)| = poly(k). Further-

more, we can achieve |E∗K(M)| = |M | + k using a stream cipher and a secure mac (see [44]). The

73

total length of the commitment given by (4.1) is then |M |+ poly(k).

This theorem immediately implies the security (under the decisional Diffie-Hellman assumption)

of construction (4.1) when using the efficient public-key cryptosystem of [36] and any adaptive

chosen-ciphertext-secure symmetric-key cryptosystem (K, E∗,D∗). We note that the security re-

quirements for the public- and private-key encryption schemes can be relaxed: (Gen, E ,D) is only

required to be non-malleable under a chosen-plaintext attack (i.e., secure in the sense of NM-CPA)

and (K, E∗,D∗) need only be indistinguishable under a P0 plaintext attack and an adaptive chosen-

ciphertext attack (i.e., secure in the sense of IND-P0-C2); see [6, 84] for formal definitions. This

is so because (4.1) is a non-malleable commitment scheme whenever it is secure in the sense of

NM-CPA when viewed as a public-key encryption scheme (in the proof above, we show that (4.1) is

secure in the sense of NM-CCA2). This allows for much greater efficiency since NM-CPA public-key

cryptosystems can be constructed more efficiently than IND-CCA2 schemes [47] and IND-P0-C2

symmetric-key schemes may be deterministic.

We remark that the result in the theorem applies in the public random string model when

chosen-ciphertext-secure dense [39] public-key encryption schemes are used.

4.4 Non-Malleable Perfect Commitment

The computationally-hiding commitment scheme presented above achieves commitment size |M |+

poly(k). This cannot be improved very much, since computationally-hiding commitments have size at

least |M |. In this section (see also Section 4.5) we present perfectly-hiding commitment schemes that

improve significantly on the commitment length, achieving commitment size O(k) for arbitrarily-

large messages.

Both of our perfectly-hiding commitment schemes build on the paradigm established in [40],

with modifications which substantially improve the efficiency. A commitment consists of three

components 〈A, B,Tag〉. The first component A is a commitment to a random key r1 for a one-time

message authentication code (mac). The second component B contains the actual commitment

to the message m, using public parameters which depend upon the first component A. Finally,

Tag = macr1
(B). An adversary who wishes to generate a commitment to a related value has two

choices: he can either re-use A or use a different A′. If he re-uses A, with high probability he will

be unable to generate a correct Tag for a different B′, since he does not know the value r1. On the

other hand, if he uses a different A′, the public parameters he is forced to use for his commitment

B′ will be different from those used for the original commitment; thus, the adversary will be able

to decommit in only one way, regardless of how the original B is decommitted. In particular, if

it is possible for a simulator to equivocate B for a particular choice of A, an adversary who uses

74

Public: G, g1, g2, g3; H : G→ Zq

S (input m ∈ Zq)

Commitment phase:

r1, r2, r3 ← Zq

A := gr1

1 gr2

3 ; α := H(A)

B := (gα
1 g2)

mgr3

3

Tag = macr1
(B)

A, B,Tag
-

R

Decommitment phase:

m, r1, r2, r3
-

Verify: A
?
= gr1

1 gr2

3

B
?
= (g

H(A)
1 g2)

mgr3

3

Vrfyr1
(B,Tag)

?
= 1

Figure 4.3: A non-malleable commitment scheme based on the discrete logarithm problem.

a different A′ will be unable to equivocate B′ (without breaking some computational assumption).

We refer the reader to [40] for further discussion.

In [40], the dependence (upon A) of the public parameters used for commitment B was achieved

via a “selector function,” which results in public parameters whose size is dependent on the length

of the committed message. Here, we exploit algebraic properties to drastically reduce the size of the

public parameters and obtain a more efficient scheme, even in the case of large messages.

4.4.1 Construction Based on the Discrete Logarithm Assumption

The scheme discussed in this section works over any cyclic group G of prime order in which extracting

discrete logarithms is hard but multiplication is easy. For concreteness, we assume an algorithm G

that, on input 1k, outputs primes p, q with p = 2q + 1 and |q| = k; we then take G ⊆ Z∗
p to be the

unique subgroup of order q.

Our starting point is the perfect commitment scheme of Pedersen5 [103], shown in Figure 4.1

(see also the discussion in Section 4.1). The public parameters in our scheme are generated as

follows. First, T T P(1k) runs algorithm G(1k) to generate primes p, q, thereby defining group G

as discussed above. Next, T T P selects random generators g1, g2, g3 of G. Additionally, a random

function H : G → Zq is chosen from a family of universal one-way hash functions [98] according to

5Note that the Pedersen scheme can be made non-interactive by having generators g, h published as part of the
public parameters.

75

algorithm UOWH(1k). The output of T T P is (p, q, g1, g2, g3, H).

To commit to a message m ∈ Zq (cf. Figure 4.3), the sender first chooses random r1, r2, r3 ∈ Zq.

The sender forms the first component A by using g1, g3 to “commit” to r1. The sender then computes

α = H(A). The second component B is a Pedersen commitment to m with one important difference:

the first generator used for the commitment depends upon α. That is, the sender uses Pedersen

commitment with generators (gα
1 g2) and g3. Finally, a Tag of B is computed, using a secure mac

with key r1. The security of the commitment scheme is described in the following Theorem:

Theorem 4.2 Assuming (1) the hardness of the discrete logarithm problem for groups G defined

by the output of G, (2) the security of (K,mac, Vrfy) as a message authentication code, and (3)

the security of UOWH as a universal one-way hash family, the protocol of Figure 4.3 is an ε-non-

malleable perfect commitment scheme over {Zq} in the public-parameters model.

Proof It is clear that the protocol is perfectly-hiding since B is uniformly distributed in group G

independently of the message m. We now consider the question of computational binding. Say an

adversary A exists which, when given the public parameters, can output a commitment 〈A, B,Tag〉

and two legal decommitments 〈m, r1, r2, r3〉 and 〈m′, r′1, r
′
2, r

′
3〉, with m 6= m′. Then we can construct

a second adversary A′ which, given oracle access to A, violates the computational binding of the

standard Pedersen scheme (which holds assuming the discrete logarithm problem is hard [103]). On

input G, g1, g2, adversary A′ chooses random s ∈ Z∗
q , computes g3 = gs

1, selects a random H , and

runs A(G, g1, g2, g2, H) to generate commitment 〈A, B,Tag〉 and decommitments 〈m, r1, r2, r3〉 and

〈m′, r′1, r
′
2, r

′
3〉. Note that A is run on exactly the same distribution of inputs as it would receive in

a real execution of the protocol. Now, A′ computes α = H(A), and outputs B as its commitment

along with decommitments 〈αm + sr3, m〉 and 〈αm′ + sr′3, m
′〉. If the decommitments produced

by A are legal decommitments to different values, then the decommitments output by A′ are legal

decommitments to different values. This proves the computational binding of the original protocol.

The proof of non-malleability is more involved, and we first provide some intuition. The simulator

(which will do as well as the adversary without seeing any commitment) first generates public

parameters which are distributed identically to the real experiment, but for which the simulator

knows some trapdoor information allowing the simulator to perfectly equivocate its commitment

(cf. Definition 4.4). The simulator generates a commitment com to a random message, gives this

commitment to the adversary, and receives the commitment com2 in return. The simulator now tries

to get the adversary to decommit com2 as some message; this is the message that will be output

by the simulator. To get the adversary to open its commitment, the simulator decommits com to

a random message and gives the decommitment to the adversary, repeating this step (rewinding

76

the adversary each time) a bounded number of times until the adversary opens6 com2. Since the

simulator can perfectly equivocate its commitment, the adversary’s view is equivalent to its view in

the original experiment. Furthermore, we show that the adversary cannot equivocate its commitment

com2 without contradicting the discrete logarithm assumption. A complete proof follows.

We begin by describing an equivocable commitment generator Equiv that will be used as a

subroutine by our simulator A′:

Equiv1(1
k)

p, q ← G(1k)
g1, g3 ← G; H ← UOWH(1k)
r1, r2, t, u← Zq

A := gr1

1 gr2

3 ; α := H(A)
g2 := g−α

1 gt
3

σ := 〈p, q, g1, g2, g3, H〉
B := gu

3 ; Tag := macr1
(B)

com := 〈A, B,Tag〉
s := 〈p, q, r1, r2, t, u〉
Output (σ, com, s)

Equiv2(〈p, q, r1, r2, t, u〉, m)
if m /∈ Zq output ⊥
r3 := u− tm mod q
dec := 〈m, r1, r2, r3〉
Output dec

Note that Equiv satisfies Definition 4.4. Furthermore, p, q, g1, g3 can be chosen at random and given

to Equiv; knowledge of logg1
g3 is not necessary. This will be crucial for the proof of security.

We now describe the simulator A′ in more detail. Fix ε, R. Let com = 〈A, B,Tag〉 be the

commitment output by Equiv, and com2 = 〈A′, B′,Tag′〉 be a commitment output by A1. Say event

Collision occurs if H(A) = H(A′). The simulator runs Equiv1 to generate public parameters σ and

a commitment com. The adversary, given these values, outputs some commitment com2. If event

Collision occurs, the simulator simply outputs ⊥. Otherwise, the simulator repeatedly “opens” com

a bounded number of times until the adversary de-commits, in some legal way, to a message m2.

If this occurs, message m2 (along with σ and D) is then output by the simulator. If the adversary

never de-commits in a legal way, the simulator simply outputs ⊥. A formal description follows:

A′(1k)
(σ, com, s)← Equiv1(1

k)
(D, s′)← A0(σ)
(com2, s

′′)← A1(σ, com, s′)
if Collision then output (σ,D,⊥)
Fix random coins ωinΩ
Repeat at most 2ε−1 ln 2ε−1 times:

m← D
dec := Equiv2(s, m)
dec2 := A2(σ, com, dec, s′′; ω)
m2 := R(σ, com2, dec2)
if m2 6=⊥ break

output (σ,D, m2)
6If the adversary never opens its commitment, the simulator outputs ⊥.

77

We will show that the difference SuccNM
A,R(k)− S̃uccA′,R(k) (cf. Definition 4.2) is less than ε+negl(k).

The simulator cannot succeed whenever Collision occurs since it outputs m2 =⊥ in this case.

This is not a problem, however, since the the probability that both Collision and a success for the

adversary occur must be negligible. To see this, note that event Collision can occur in three ways:

1. 〈A, B,Tag〉 = 〈A′, B′,Tag′〉. In this case, the adversary cannot succeed by definition.

2. 〈A, B,Tag〉 6= 〈A′, B′,Tag′〉 but A = A′. Say the adversary later gives legal decommitment

〈m′, r′1, r
′
2, r

′
3〉 for com2 following legal decommitment 〈m, r1, r2, r3〉 for com. There are two

possibilities: either 〈r1, r2〉 = 〈r′1, r
′
2〉 or not. If they are not equal, then A has violated the

computational binding property of the Pedersen scheme with generators g1, g3. If they are equal

then the fact that Vrfyr1
(B,Tag) = 1 and 〈B′,Tag′〉 6= 〈B,Tag〉 implies that A has violated

the security of the mac (note that r1 is information-theoretically hidden from the adversary

when com2 is output). Either of these events can occur with only negligible probability. Thus,

the adversary can give a legal decommitment to com2 (and hence succeed) with only negligible

probability.

3. A 6= A′ but H(A) = H(A′). In this case, A has violated the security of the universal one-way

hash family (note that A may be computed by Equiv1 before H is chosen). This can only occur

with negligible probability.

From now on, assume that event Collision does not occur, since this can only contribute a neg-

ligible quantity to the difference of interest. Without loss of generality, we further assume that D

output by A0(σ) is always a valid distribution overMσ
def
= Zq since the adversary cannot succeed,

by definition, when this is not the case. Straightforward manipulation, using the fact that Equiv is

a perfectly equivocable commitment generator and (T T P,S,R) is a perfect commitment scheme

gives

SuccNM
A,R(k) =

Pr
[
(σ, com, s)← Equiv1(1

k); (D, s′)← A0(σ); (com2, s
′′)← A1(σ, com, s′);

m1 ← D; ω ← Ω; dec := Equiv2(s, m1); dec2 := A2(σ, com, dec, s′′; ω);

m2 := R(σ, com2, dec2) : R(σ,D, m1, m2) = 1]

and

S̃uccA′,R(k) =

Pr
[
(σ, com, s)← Equiv1(1

k); (D, s′)← A0(σ); (com2, s
′′)← A1(σ, com, s′);

78

m1 ← D; ω ← Ω; dec∗ ← Equiv2(s, m
∗); dec∗2 ← A2(σ, com, dec∗, s′′; ω);

m∗
2 := R(σ, com2, dec

∗
2) : R(σ,D, m1, m

∗
2) = 1] ,

where the notation m∗, dec∗ represents the fact that the decommitment given to A2 was produced

according to algorithm A′. In particular, dec∗ represents either the first decommitment given to A

which resulted in m∗
2 6=⊥, or the (2ε−1 ln 2ε−1)th decommitment given to A (if all decommitments

up to then had m∗
2 =⊥).

Define the tuple (σ, com, s;D; com2, s
′′; ω) as good if the following holds:

Pr [m1 ← D; dec := Equiv2(s, m1); dec2 := A2(σ, com, dec, s′′; ω) :

R(σ, com2, dec2) 6=⊥] ≥ ε/2

(note that the above probability is over choice of m1 only). Furthermore, define event Good as

occurring when a good tuple is generated. For brevity, we denote by γ ← Γ(1k) generation of a

random tuple via the following experiment:

(σ, com, s)← Equiv1(1
k); (D, s′)← A0(σ); (com2, s

′′)← A1(σ, com, s′); w ← Ω.

With respect to a particular tuple γ, denote by m2 ← A(σ, com, m) the sequence of events

dec← Equiv2(s, m); dec2 ← A2(σ, com, dec, s′′; ω); m2 := R(σ, com2, dec2)

(the outputs of Equiv2 and A2, above, are random variables because we may have m = m∗ as

discussed previously). We now have

SuccNM
A,R(k)− S̃uccA′,R(k) =

Pr
[
γ ← Γ(1k); m1 ← D; m2 := A(σ, com1, m1) : R(σ,D, m1, m2) ∧ Good

]

+ Pr
[
γ ← Γ(1k); m1 ← D; m2 := A(σ, com1, m1) : R(σ,D, m1, m2) ∧ Good

]

−Pr
[
γ ← Γ(1k); m1 ← D; m∗

2 ← A(σ, com1, m
∗) : R(σ,D, m1, m

∗
2) ∧ Good

]

−Pr
[
γ ← Γ(1k); m1 ← D; m∗

2 ← A(σ, com1, m
∗) : R(σ,D, m1, m

∗
2) ∧ Good

]
.

Since relation R cannot be true when m2 =⊥, definition of event Good shows that

SuccNM
A,R(k)− S̃uccA′,R(k) ≤

Pr
[
γ ← Γ(1k); m1 ← D; m2 := A(σ, com1, m1) : R(σ,D, m1, m2) ∧ Good

]

+ ε/2

− Pr
[
γ ← Γ(1k); m1 ← D; m∗

2 ← A(σ, com1, m
∗) : R(σ,D, m1, m

∗
2) ∧ Good

]
.

79

This, in turn, implies that

SuccNM
A,R(k)− S̃uccA′,R(k) ≤

Pr
[
γ ← Γ(1k); m1 ← D; m2 := A(σ, com1, m1); m

∗
2 ← A(σ, com1, m

∗) :

R(σ,D, m1, m2) ∧ R(σ,D, m1, m∗
2) ∧ Good

]
+ ε/2,

which can be re-written as

SuccNM
A,R(k)− S̃uccA′,R(k) ≤

Pr
[
γ ← Γ(1k); m1 ← D; m2 := A(σ, com1, m1); m

∗
2 ← A(σ, com1, m

∗) :

R(σ,D, m1, m2) ∧ R(σ,D, m1, m∗
2) ∧ m∗

2 =⊥ ∧ Good
]

(4.4)

+ Pr
[
γ ← Γ(1k); m1 ← D; m2 := A(σ, com1, m1); m

∗
2 ← A(σ, com1, m

∗) :

R(σ,D, m1, m2) ∧ R(σ,D, m1, m∗
2) ∧ m∗

2 6=⊥ ∧ Good
]

(4.5)

+ ε/2.

Note that if Pr[γ ← Γ(1k) : Good] = 0 we are done, since the above expression is then equal to

ε/2. Assuming that event Good occurs with non-zero probability, we now bound (4.4) and (4.5).

First, notice that expression (4.4) is bounded from above by the probability that m∗
2 =⊥. However,

definition of event Good and a straightforward probability calculation show that:

Pr
[
γ ← Γ(1k); m∗

2 ← A(σ, com1, m
∗) : m∗

2 =⊥ ∧ Good
]

≤ Pr
[
γ ← Γ(1k); m∗

2 ← A(σ, com1, m
∗) : m∗

2 =⊥ |Good
]

< (1 − ε/2)2ε−1 ln 2ε−1

≤ eln ε/2

= ε/2.

Finally, notice that for the event in expression (4.5) to occur, we must have m2 6=⊥ and m2 6= m∗
2.

But this then gives a Pedersen commitment com2 (using generators g3 and gα′

1 g2 = g
(α′−α)
1 gt

3)

which is decommitted in two different ways. This allows determination of logg1
g3 as follows (recall

that ∆
def
= α′ − α 6= 0): run Equiv using given generators g1, g3 to generate σ and com (recall

that knowledge of logg1
g3 is not necessary to run Equiv). The adversary A1 then produces a

commitment com2. Following the description of A′, run A2 to obtain a decommitment to message

m∗
2. Then, decommit once more to a randomly selected m1 and give this as input to A2 to obtain a

decommitment to m2. If m2 6=⊥ and m∗
2 6=⊥ and m2 6= m∗

2 (which we call event Success), then we

have 〈m2, r3〉 and 〈m∗
2, r

∗
3〉 such that:

(g∆
1 gt

3)
m2gr3

3 = (g∆
1 gt

3)
m∗

2g
r∗

3

3

80

⇒ g∆m2

1 gtm2+r3

3 = g
∆m∗

2

1 g
tm∗

2+r∗

3

3

⇒ logg1
g3 =

∆(m2 −m∗
2)

t(m∗
2 −m2) + r∗3 − r3

,

and we have then computed the desired discrete logarithm (the denominator in the above expression

is non-zero as long as ∆ 6= 0). The probability of Success is bounded from below by expression (4.5);

by assumption, however, the discrete logarithm problem is intractable and thus:

(4.5) ≤ Pr [Success] ≤ negl(k).

Putting everything together gives the desired result.

A slightly stronger security guarantee is possible. Let event Collision be defined as above. Let

pA(k) be the probability that the adversary in the original experiment succeeds and event Collision

does not occur (note that for any ppt adversary, the probability that the adversary succeeds and

Collision does occur is negligible as argued in the proof of Theorem 4.2). For a given simulator A′,

let p̃A′(k) denote the simulator’s success probability; i.e., p̃A′(k) = S̃uccA′,R(k). We will construct

a simulator A′ which has expected running time polynomial in 1
pA(k) , such that pA(k) − p̃A′(k) ≤

ε(k) · 1
pA(k) for some negligible function ε(·). In particular, if there exists some constant c such that

pA(k) > 1/kc for all k, our simulator does (essentially) at least as well as the original adversary and

runs in expected polynomial time.

The simulator A′ is simple: it runs the adversary until the adversary succeeds and event Collision

does not occur; it then outputs the values of (σ,D, m2) at that time.

A′(1k)

Repeat until R(σ,D, m, m2) = 1 and Collision :
(σ, com, s)← Equiv1(1

k)
(D, s′)← A0(σ)
(com2, s

′′)← A1(σ, com, s′)
m← D
dec := Equiv2(s, m)
Choose random coins ω
dec2 := A2(σ, com, dec, s′′; ω)
m2 := R(σ, com2, dec2)

output (σ,D, m2)

(Algorithm Equiv is as defined previously.)

Our analysis proceeds assuming pA(k) > 1/kc for some constant c. In this case, the simulator

clearly runs in expected polynomial time.

As in the proof of Theorem 4.2, we denote the generation of a tuple γ = (σ, com, s;D; com2, s
′′; ω)

by the shorthand γ ← Γ(1k). We denote by m2 := A(γ, m) the sequence of events:

dec := Equiv2(s, m); dec2 ← A2(σ, com, dec, s′′; ω); m2 := R(σ, com2, dec2),

81

and, slightly abusing notation, denote by (m2, m
′
2) := A(γ, m, m′) the sequence of events:

m2 := A(γ, m); m′
2 := A(γ, m′).

We also write R(m, m2) instead of R(σ,D, m, m2) and assume that σ and D are implicitly defined

during the course of the experiment. Finally, we abbreviate Collision by Coll.

The adversary’s success probability may be expressed as

pA(k) = Pr[γ ← Γ(1k); m← D; m2 := A(γ, m) : R(m, m2) ∧ Coll],

while the success probability of the simulator may be written as

p̃A′(k) = Pr[γ ← Γ(1k); m, m′ ← D; m2 := A(γ, m) : R(m′, m2)|R(m, m2) ∧ Coll]

=
Pr[γ ← Γ(1k); m, m′ ← D; m2 := A(γ, m) : R(m′, m2) ∧R(m, m2) ∧ Coll]

pA(k)

Intuitively, we expect that for any given γ the adversary can only decommit in one (legal) way.

This intuition is captured by the following lemma:

Lemma 4.1 For all A such that pA(k) > 1/kc for some constant c, there exists some negligible ε(·)

such that:

Pr[γ ← Γ(1k); m, m′ ← D; (m2, m
′
2) := A(γ, m, m′) : R(m, m2) ∧R(m′, m′

2) ∧ Coll] <

Pr[γ ← Γ(1k); m, m′ ← D; m2 := A(γ, m) : R(m, m2) ∧R(m′, m2) ∧ Coll] + ε(k).

Proof For any two events A and B, we have Pr[A ∧B] ≥ Pr[A]− Pr[B]. Thus

Pr[γ ← Γ(1k); m, m′ ← D; (m2, m
′
2) := A(γ, m, m′) : R(m, m2) ∧R(m′, m′

2) ∧R(m′, m2) ∧ Coll] ≥

Pr[γ ← Γ(1k); m, m′ ← D; (m2, m
′
2) := A(γ, m, m′) : R(m, m2) ∧R(m′, m′

2) ∧ Coll]

− Pr[γ ← Γ(1k); m, m′ ← D; m2 := A(γ, m) : R(m, m2) ∧R(m′, m2) ∧ Coll].

Event R(m, m2) ∧ R(m′, m′
2) ∧ R(m′, m2) occurs only when m2 6= m′

2 yet m2 6=⊥ and m′
2 6=⊥. As

in the proof of Theorem 4.2, however, such an event allows extraction of the discrete logarithm of

g3 with respect to g1 in case event Coll does not occur. Since the entire experiment may be run in

polynomial time, this probability must be negligible in k.

Therefore, for some negligible function ε(·) we have:

p̃A′(k) ≥

Pr[γ ← Γ(1k); m, m′ ← D; (m2, m
′
2) := A(γ, m, m′) : R(m, m2) ∧R(m′, m′

2) ∧ Coll]− ε(k)

pA(k)
.

82

We may re-write this as:

p̃A′(k) ≥(∑
γ,m,m′ Pr[γ = Γ(1k) ∧ (m, m′) = D2] ·

(
Pr[m2 := A(γ, m) : R(m, m2) ∧ Coll]

)2)
− ε(k)

pA(k)
.

Using the fact that for any random variable X we have E(X2) ≥ (E(X))2, this gives:

p̃A′(k) ≥
(∑

γ,m,m′ Pr[γ = Γ(1k) ∧ (m, m′) = D2] · Pr[m2 := A(γ, m) : R(m, m2) ∧ Coll]
)2

− ε(k)

pA(k)
,

But this immediately yields

p̃A′(k) ≥ pA(k)−
ε(k)

pA(k)

and therefore pA(k)− p̃A′(k) ≤ negl(k) which is the desired result.

4.4.2 Construction Based on the RSA Assumption

Here, our starting point is the RSA-based perfect commitment scheme of Okamoto [100]. Let N

be a product of two primes, and let g ∈ Z∗
N and e a prime number be given. Then, a commitment

to a message m ∈ Ze is generated by choosing a random u ∈ Z∗
N and forming the commitment

gmue mod N . It is easy to see that this scheme achieves information-theoretic secrecy. We use the

following lemma to show that the scheme is computationally binding under the RSA assumption.

Lemma 4.2 Fix N . For any g ∈ Z∗
N and non-zero e and m such that gcd(|m|, |e|) = 1, given

u ∈ Z
∗
N such that gm = ue mod N , we may efficiently compute g1/e mod N .

Proof Without loss of generality, we may assume that e, m > 0; if, for example, m < 0 we can

re-write the above equation as (g−1)−m = ue mod N . Since e and m are relatively prime, we may

efficiently compute (using the extended Euclidean algorithm) integers a, b such that am + be = 1.

But then:

g1 = gamgbe

= uaegbe mod N

=
(
uagb

)e
mod N,

and therefore uagb = g1/e mod N .

This immediately gives the following corollary:

Corollary 4.1 ([100]) The Okamoto scheme is computationally binding under the RSA assumption.

83

Public: N, g, h, prime e; H : Z∗

N → Ze

S (input m ∈ Ze)

Commitment phase:

r1 ← Ze; u1, u2 ← Z∗
N

A := gr1u1
e; α := H(A)

B := (gαh)mu2
e

Tag := macr1
(B)

A, B,Tag
-

R

Decommitment phase:

m, r1, u1, u2
-

Verify: A
?
= gr1u1

e

B
?
= (gH(A)h)mu2

e

Vrfyr1
(B,Tag)

?
= 1

Figure 4.4: A non-malleable commitment scheme based on the RSA problem.

Proof Assume public parameters N, e, g as discussed above. Assume further that a given commit-

ment can be opened to two messages m1, m2 ∈ Ze. Thus, we have gm1ue
1 = gm2ue

2 mod N for some

u1, u2 ∈ Z∗
N . Re-writing this gives gm1−m2 = (u2/u1)

e mod N . Since |m1 −m2| < e and e is prime,

|m1 −m2| and e are relatively prime. Lemma 4.2 shows that we may then compute g1/e mod N .

A complete description of our protocol appears in Figure 4.4. The intuition for the protocol

is exactly the same as that for the discrete logarithm-based protocol given previously. The public

parameters consist of N , a product of two large primes with |N | = k, along with a prime e with

|e| = Θ(k) and two random elements g, h ∈ Z∗
N . Also included is a function H : Z∗

N → Ze chosen

from a family of universal one-way hash functions. To commit to a message m ∈ Ze, the sender

first chooses random r1 ∈ Ze. The sender forms the first component A by “committing” to r1

using the Okamoto scheme; this value will later be used to authenticate the second component.

The sender calculates α = H(A), and then commits to message m using the Okamoto scheme,

with one important difference: the element used for this commitment depends on α. That is, the

sender performs Okamoto commitment with prime e and random element gαh. As before, this will

be essential to the proof of security. Finally, a Tag of B is computed using r1 from before. The

following theorem describes the security of this construction:

Theorem 4.3 Assuming (1) the hardness of the RSA problem for N generated by T T P; (2) the

security of (K,mac, Vrfy) as a message authentication code; and (3) the security of UOWH as a

84

universal one-way hash family, the protocol of Figure 4.4 is an ε-non-malleable perfect commitment

scheme in the public-parameters model.

Proof The proof is substantially similar to that of Theorem 4.2; therefore, only the key differences

are highlighted here. As before, we need to provide a perfectly equivocable commitment generator

for our scheme (here, Gen represents the algorithm used by the trusted party to generate N and e):

Equiv1(1
k)

N, e← Gen(1k)
g ← Z

∗
N ; H ← UOWH(1k)

r1 ← Ze; u1, w1, w2 ← Z∗
N

A := gr1ue
1; α := H(A)

h := g−αwe
1

σ := 〈N, e, g, h; H〉
B := we

2; Tag := macr1
(B)

com := 〈A, B,Tag〉
s := 〈N, e, r1, u1, w1, w2〉
Output (σ, com, s)

Equiv2(〈N, e, r1, u1, w1, w2〉, m)
if m /∈ Ze output ⊥
u2 = w2/wm

1 mod N
dec := 〈m, r1, u1, u2〉
Output dec

Note that Equiv satisfies Definition 4.4. Furthermore, N, e, g can be chosen at random and given to

Equiv; knowledge of g1/e mod N is not necessary. This will be crucial for the proof of security.

A simulator may be constructed as in the proof of Theorem 4.2, and the remainder of the proof

essentially follows. In particular, we may define event Collision in an analogous manner as before

and note that consideration of this event has only negligible effect on the difference of interest.

Now, if the adversary can equivocate and open his commitment to two different messages when

∆
def
= α′ − α 6= 0, then we may extract an eth root of g as follows: upon obtaining 〈m2, u2〉 and

〈m∗
2, u

∗
2〉 such that (gα′

h)m2ue
2 = (gα′

h)m∗

2 (u∗
2)

e, we derive (using the fact that h = g−αwe
1 for known

w1):

(
g∆we

1

)m2
ue

2 =
(
g∆we

1

)m∗

2 (u∗
2)

e

⇒ g∆m2 (wm2

1 u2)
e

= g∆m∗

2 (wm2

1 u∗
2)

e

⇒ g∆(m2−m∗

2) =

(
w

m∗

2

1 u∗
2

wm2

1 u2

)e

.

Since |∆| < e, |(m2 −m∗
2)| < e, and e is prime, we have that ∆ · (m2 −m∗

2) and e are relatively

prime. Application of Lemma 4.2 shows that we can then compute g1/e.

4.5 Extensions

Arbitrarily-long messages. Theorems 4.2 and 4.3 hold even if the message is hashed before

commitment (note that hashing the message before commitment is not known to be secure for an

85

arbitrary non-malleable commitment scheme; in fact, evidence to the contrary is given by the con-

struction of [58]). To see this, note that Equiv can still perfectly equivocate to any (random) message

M by first computing m = H(M) and then running the identical Equiv2 algorithm. The simulator

A′ is also identical. The hash function H must be collision resistant for the binding property to

hold, but no other assumptions about the hash function are necessary, and the scheme maintains

perfect secrecy.7. The present schemes therefore give practical and provably-secure methods for

non-malleable, perfect commitment to arbitrarily long messages.

Reducing the commitment size. Our schemes produce commitments com = (A, B, Tag) of

size (roughly) 2k, where k is the length of a string representing a group element. However, one

can replace this commitment with any string that uniquely binds the sender to com. At least two

modifications in this vein seem useful:

• Using a collision-resistant hash-function h, we can replace the commitment com with h(com).

The decommitment phase is the same as before. This does not increase the computational

cost of the protocol by much. The resulting commitment size is equal to the output length

of a hash function believed to be collision-resistant. In particular, this allows us to achieve

optimal commitment size ω(log k), assuming an appropriate hash function. Note that hashing

the commitment is not known to give provable security for general non-malleable commitment

schemes, yet it does work (as can be seen by careful examination of the proof) for the particular

constructions given here.

• By adding one more public parameter and making appropriate (small) modifications, we can

(for example, in Figure 4.3) set the commitment to the product of A, B and Tag (assuming

A is an extended-Pedersen commitment to r1, r2 and Tag is computed as Br1gr2

3 , which is an

information-theoretically secure mac of B). This reduces the commitment length to k.

Unique identifiers. As mentioned in [44], in many situations there is a unique identifier associated

with each user and using this can improve the efficiency of non-malleable primitives. This is also true

of our perfect commitment schemes. For example, in our discrete-logarithm construction, if each

user in the system has identifier id ∈ Zq, we can simplify the scheme by replacing α with id. An

adversary who attempts to generate related commitments must do so with respect to his identifier

id′ 6= id. The commitment is now simply B, as the components A and Tag are no longer needed

(their only role in the original protocol was to force an adversary to change α).

7This can be compared to [58] which requires added complications when using an arbitrary hash function and
achieves only statistical secrecy.

86

Chapter 5

Non-Malleable and Concurrent
(Interactive) Proofs of Knowledge

5.1 Introduction

A proof of knowledge, introduced by Goldwasser, Micali, and Rackoff [70], represents a formalization

of the deceptively simple notion of “proving that you know something” to someone else. More

formally, consider an arbitrary relation R which is computable in polynomial time. Say a prover P

and a verifier V have common input x, and P additionally knows a value w such that R(x, w) = 1.

How can P prove to V that he indeed knows such a w? Of course, P can simply send w to V , but,

in many cases, this will reveal more information than P would like. One can try to construct other

interactive protocols for accomplishing this task, but without a precise definition it is unclear how

to proceed.

Indeed, defining the notion correctly has been difficult [70, 54, 116]. The effort to obtain the

“right” definition culminated in the work of Bellare and Goldreich [8] which contains the now-

standard definitional approach. Informally, and omitting many details, the definition states that

an interactive protocol Π constitutes a proof of knowledge if, for any Turing machine P which

successfully convinces a verifier V with “high” probability (where V executes Π), the value w may

be extracted from P by an explicitly-given extraction algorithm (the knowledge extractor).1

We illustrate the above discussion with an example [111]. Let the common input to P and V

be a finite, cyclic group G of prime order q, a generator g of G, and a value y ∈ G. Additionally,

assume P has as input a value x ∈ Zq such that y = gx. Figure 5.1 shows an interactive protocol by

which P can convince V that P in fact knows the discrete logarithm x of the common input y. To

begin, P chooses a random value r ∈ Zq, computes A = gr, and sends A to V . Then, V chooses a

1Non-interactive proofs of knowledge are possible if the prover and verifier share a common random string [39];
however, since we do not require this notion here we omit further details.

87

Common input: G, g, y

P (input x ∈ Zq) V

r ← Zq

A := gr

A
-

c← Zqc
�

z := cx + r mod q
z

-

Verify: gz ?
= ycA

Figure 5.1: Proof of knowledge of a discrete logarithm.

random challenge c ∈ Zq and sends c to P . To respond, P computes z = cx + r mod q and sends z

back to the verifier. V checks that gz ?
= ycA. Note that if P is honest (and really knows the correct

value x) verification will always succeed since gz = gcx+r = gxcgr = ycA.

To see intuitively why this is a proof of knowledge, note that there are two possibilities once P

has sent A: either P is able to respond correctly to only one or fewer possible challenges, or P can

respond correctly to two or more challenges. In the former case, P ’s probability of “fooling” V (who

picks a random challenge) is at most 1/q. In particular, if |q| = k (where k is a security parameter)

this probability is negligible. On the other hand, if P “knows” correct responses z1, z2 to the two

distinct challenges c1, c2, this implies that gz1 = yc1A and gz2 = yc2A. But then gz1−z2 = yc1−c2

and hence P “could” efficiently compute logg y = (z1 − z2)/(c1 − c2) mod q himself. In other words,

if P has the ability to convince V with non-negligible probability, then P , in some sense, already

must be able to compute x himself. A formal proof that the protocol satisfies the formal definition

of a proof of knowledge [8] is also possible.

Often, a protocol like that of Figure 5.1 is more useful than having P simply send x, since the

protocol is in fact a zero-knowledge protocol as long as V is honest. To see this (informally), note

that a random transcript of an execution of the protocol for any y can be efficiently simulated even

without knowledge of logg y. To simulate, first pick random c, z ∈ Zq. Then, set A = gz/yc. The

simulated transcript, which is distributed identically to a real transcript, is (A, c, z). Thus, the

protocol reveals no information about x (beyond what can be computed in polynomial time from y

alone) to an honest verifier V .

Proofs of knowledge have a wide range of applications. They are crucial for secure two-party and

multi-party computation [66], and have also been used to build interactive commitment protocols

[44, 59] and identification schemes [56, 74, 111]. They may also be used to construct encryption

88

P (input x) M V

r ← Zq

y := gx; A := gr
y, A

-

r′ ← Zq

y′ := ygr′

y′, A
-

c← Zqc
�

c
�

z := cx + r
z

-

z′ := z + cr′ z′
-

Verify: gz′ ?
= (y′)cA

Figure 5.2: Man-in-the-middle attack on a proof of knowledge.

schemes with strong security properties [99, 44, 110, 38].

Unfortunately, the standard definition of a proof of knowledge is not sufficient in a network-based

setting such as that considered in this work. More precisely, if an adversary M acts as a man-in-

the-middle between P and V , where P proves knowledge of x toM whileM proves knowledge of x′

to V , the standard definition does not precludeM convincing V even when M does not really know

x′. Proofs of knowledge in which such man-in-the-middle attacks are possible are called malleable.

As an example, we demonstrate in Figure 5.2 that the protocol of Figure 5.1 is malleable. In Figure

5.2, we assume that P , M, and V all share the same group G and generator g as common input.

Furthermore, for simplicity, the element y for which knowledge of logg y is proved is included with

the first message. In the figure, P proves knowledge of x = logg y toM, whileM successfully proves

knowledge of x′ = logg y′ to V ; note, however, thatM does not actually know x′!

For many suggested applications of proofs of knowledge, preventing such attacks is essential.

To give just one example, it has been suggested [60, 75, 62] (following [99]) to use interactive

(zero-knowledge) proofs of knowledge to achieve chosen-ciphertext-secure (interactive) public-key

encryption via the following construction: to encrypt a message m using public key pk, the sender

computes C = Epk(m; r) for random r, and then executes an interactive proof-of-knowledge (with

the receiver) of m and r. Unfortunately, while this construction is sufficient to achieve non-adaptive

chosen-ciphertext security, it does not guarantee adaptive chosen-ciphertext security when the proof

of knowledge is malleable.

The standard definition of a proof of knowledge is also not sufficient when multiple proofs are

executed by multiple provers in a concurrent and asynchronous setting. To see why this is the

89

case, note that extraction of a valid witness from the prover typically requires the knowledge ex-

tractor to rewind the prover. However, if many proofs are being conducted simultaneously in an

arbitrarily-interleaved manner, extracting all witnesses from all provers at the appropriate points

of the execution2 may require exponential time due to the nested rewindings. A similar problem

arises in the simulation of concurrent zero-knowledge proofs; in that case, however, interaction with

multiple verifiers is the source of the problem.

5.1.1 Our Contributions

We focus on proofs of plaintext knowledge (PPKs) in which a sender S proves knowledge of the

contents m of a ciphertext C (a more formal definition is given below). However, it is clear that our

definitions and constructions may be extended to proofs of knowledge for more general NP-relations.

We give the first definition of non-malleability for interactive proofs of (plaintext) knowledge, and

show efficient, non-malleable PPKs for the RSA [107], Rabin [104], Paillier [101], and El-Gamal [51]

cryptosystems. We then highlight important applications of these PPKs to (1) chosen-ciphertext-

secure, interactive encryption, (2) password-based authentication and key-exchange in the public-

key model, (3) deniable authentication, and (4) identification. We construct efficient and practical

protocols for each of these tasks, improving and extending previous work. Our results include:

• The first practical and non-malleable interactive encryption schemes based on the RSA, fac-

toring, or (computational) composite residuosity assumptions.

• The first practical protocols for password-based authentication and key-exchange (in the

public-key model) based on the RSA, factoring, or (computational) composite residuosity

assumptions.

• The first practical protocols for deniable authentication based on the RSA, factoring, CDH, or

(computational) composite residuosity assumptions. The round-complexities of our protocols

are the same as in the only previous efficient solution based on DDH.

• The first 3-round identification scheme secure against man-in-the-middle attacks.

Of additional interest, our techniques provide a general methodology for constructing efficient,

non-malleable (zero-knowledge) proofs of knowledge when shared parameters are available. Note that

for the applications listed above, these parameters can simply be included as part of users’ public

keys. Furthermore, this work is the first to consider the issues arising in concurrent executions

2In our applications, a simulator will be required to extract the ith witness from prover Pi as soon as Pi successfully
completes his proof. Indeed, this is the source of the problem, since extraction of all witnesses at the end of the entire
interaction (i.e., after all provers have completed their proofs) can be done in expected polynomial time.

90

of proofs of knowledge; previous work (e.g., [49]) considered concurrency only in the context of

zero-knowledge.

5.1.2 Previous Work

Proofs of plaintext knowledge are explicitly considered by Aumann and Rabin [1] who provide an

elegant solution for any public-key encryption scheme. Our solutions improve upon theirs in many

respects: (1) by working with specific, number-theoretic assumptions we vastly improve the efficiency

and round-complexity of our schemes; (2) we explicitly consider malleability and ensure that our

solutions are non-malleable; (3) our protocols are secure even against a dishonest verifier, whereas

[1] only considers security against an honest verifier (i.e., the intended recipient); (4) we explicitly

handle concurrency and our protocols remain provably-secure under concurrent composition. More

generally, every NP-relation has a (zero-knowledge) argument of knowledge assuming the existence

of one-way functions [54]; furthermore, once public information is assumed (as we assume here) and

assuming the existence of trapdoor permutations and dense cryptosystems, non-interactive zero-

knowledge (NIZK) proofs of knowledge are also possible [39].

None of the above-mentioned solutions are non-malleable. Dolev, Dwork, and Naor [44] intro-

duce definitions and constructions for non-malleable, zero-knowledge, interactive proofs. Sahai [110]

subsequently considers the case of non-malleable, non-interactive, zero-knowledge proofs and proofs

of knowledge; he provides definitions and constructions for the “single-theorem” case and shows ex-

tensions to the case of a bounded-polynomial number of proofs. De Santis, et al. [38] give definitions

and constructions for robust non-interactive zero-knowledge proofs and proofs of knowledge (which

are, in particular, non-malleable), improving upon previous work. Our definitions extend those of De

Santis, et al. [38] to the interactive setting; interestingly, ours is the first work to explicitly consider

non-malleability for interactive proofs of knowledge.

The above-mentioned works [44, 110, 38] show that, in principal, solutions to our problem ex-

ist. These solutions, however, are impractical. In particular, known non-malleable interactive proofs

[44] require a poly-logarithmic number of rounds, while in the non-interactive setting practical NIZK

proofs — let alone non-malleable ones — are not currently known for number-theoretic problems of

interest (i.e., without reducing the problem to a general NP-complete language). The techniques out-

lined in this paper serve as a general method for achieving practical non-malleable (zero-knowledge)

proofs of knowledge when public parameters are available, a problem which has not been previously

considered.

We discuss previous work relating to non-malleable encryption, password-based key exchange,

deniable authentication, and identification in the appropriate sections of this chapter.

91

5.1.3 Outline of the Chapter

We introduce definitions for proofs of plaintext knowledge (PPKs) and non-malleable PPKs in Sec-

tion 5.2. As mentioned previously, the latter is the first definition of non-malleability for interactive

proofs of knowledge. Sections 5.3.1–5.3.4 describe very efficient constructions of non-malleable PPKs

based on the RSA assumption, the hardness of factoring, the composite residuosity assumption, and

the DDH assumption, respectively. We then consider applications of our non-malleable PPKs.

Sections 5.4.1–5.4.5 introduce definitions for non-malleable interactive encryption, password-based

authentication and key exchange, deniable (message) authentication, and identification schemes se-

cure against man-in-the-middle attacks. These sections also describe practical constructions (based

on our non-malleable PPKs) for these tasks.

5.2 Definitions and Preliminaries

This section includes definitions specifically related to PPKs and non-malleable PPKs only. Other

definitions appear in the relevant sections of this chapter.

Non-malleable proofs of plaintext knowledge. The definitions given in this section focus on

proofs of plaintext knowledge, yet they may be easily extended to proofs of knowledge for general NP-

relations. We assume a non-interactive public-key encryption scheme (K, E ,D). The encryption of

message m under public key pk using randomness r to give ciphertext C is denoted as C := Epk(m; r).

In this case, we say that tuple (m, r) is a witness to the decryption of C under pk. For convenience,

we assume that |pk| = k, where k is the security parameter. We let the notation 〈A(a), B(b)〉(c)

be the random variable denoting the output of B following an execution of an interactive protocol

between A (with private input a) and B (with private input b) on joint input c, where A and B have

uniformly-distributed random tapes.

A proof of plaintext knowledge (PPK) allows a sender S to prove knowledge of a witness to

the decryption of some ciphertext C to a receiver R. Both S and R have an additional joint

input σ; in practice, this may be published along with R’s public key pk.3 To be useful, a PPK

should additionally ensure that no information about m is revealed, either to the receiver (which is

important if the receiver does not have the secret key) or to an eavesdropper. So that no information

about m is revealed, a PPK is required to be zero-knowledge in the following sense: as mentioned

above, our PPKs use parameters σ (known to all parties); these parameters will be generated by an

algorithm G(pk). We require the existence of a simulator SIM which takes pk as input and outputs

parameters σ whose distribution will be equivalent to the output of G(pk). Furthermore, given any

3It is important to note that there is no incentive for R to cheat when choosing σ.

92

valid ciphertext C (but no witness to its decryption), SIM must be able to perfectly simulate a

PPK of C with any (malicious) receiver R′ using parameters σ.

Our definitions build on the standard one for proofs of knowledge [8], except that our protocols

are technically arguments of knowledge and we therefore restrict ourselves to consideration of provers

running in probabilistic, polynomial time.

Definition 5.1 Let Π = (G,S,R) be a tuple of ppt algorithms. We say Π is a proof of plaintext

knowledge (PPK) for encryption scheme (K, E ,D) if the following conditions hold:

(Completeness) For all pk output by K(1k), all σ output by G(pk), and all C with witness w to

the decryption of C under pk we have 〈S(w),R〉(pk, σ, C) = 1 (when R outputs 1 we say it accepts).

(Perfect zero-knowledge) There exists a ppt simulator SIM such that, for all pk output by

K(1k), all computationally-unbounded R′, and all m, r, the following distributions are equivalent:

{σ ← G(pk); C := Epk(m; r) : 〈S(m, r),R′〉(pk, σ, C)}

{(σ, s)← SIM1(pk); C := Epk(m; r) : 〈SIM2(s),R
′〉(pk, σ, C)}.

(Witness extraction) There exists a function κ : {0, 1}∗ → [0, 1], a negligible function ε(·), and

an expected-polynomial-time knowledge extractor KE such that, for all ppt algorithms S′, with all

but negligible probability over pk output by K(1k), σ output by G(pk), and uniformly-distributed r,

machine KE satisfies the following:

Denote by ppk,σ,r the probability that R accepts when interacting with S′ (using random

tape r) on joint input pk, σ, C (where C is chosen by S′). On input pk, σ, and access to

S′r, the probability that KE outputs a witness to the decryption of C under pk is at least:

ppk,σ,r − κ(pk)− ε(|pk|).

The zero-knowledge property stated above is quite strong: SIM2 achieves a perfect simulation

without rewinding R′. This definition is met by our constructions. More generally, one may weaken

the zero-knowledge requirement to allow, for example, computational indistinguishability where

SIM2 is given oracle access to R′ (i.e., is allowed to rewind R′). While this is an interesting

direction, we do not pursue such a definition here.

A non-malleable PPK should satisfy the intuition that “anything proven by a man-in-the-middle

adversaryM is known byM (unlessM simply copies a proof).” To formalize this idea, we allowM

to interact with a simulator (whose existence is guaranteed by Definition 5.1) while simultaneously

interacting with a (real) receiver R. The goal of M is to output ciphertexts C, C′ (which may be

93

chosen adaptively) and then successfully complete a PPK of C′ to R while the simulator is executing

a PPK of C to M. The following definition states (informally) that if R accepts M’s proof — yet

the transcripts of the two proofs are different — then a knowledge extractor KE∗ can extract a

witness to the decryption of C′. The reason we have M interact with the simulator instead of the

real sender S is that we must ensure that the knowledge is actually extracted from M, and not

from the real sender. This definition is based on the ideas of [38], who define a similar notion in the

non-interactive setting.

Definition 5.2 PPK (G,S,R) is non-malleable if there exists a simulator SIM (satisfying the

relevant portion of Definition 5.1), a function κ∗ : {0, 1}∗ → [0, 1], a negligible function ε∗(·), and an

expected-polynomial-time knowledge extractor KE∗ such that, for all ppt algorithms M, with all but

negligible probability over pk output by K(1k), σ, s output by SIM1(pk), and uniformly-distributed

r, r′, machine KE∗ satisfies the following:

Assume M (using random tape r′) acts as a receiver with SIM2(s; r) on joint input

pk, σ, C and simultaneously as a sender with R on joint input pk, σ, C′ (where C is a

valid ciphertext and C, C′ are adaptively chosen by M). Let the transcripts of these two

interactions be π and π′. Denote by p∗ the probability (over the random tape of R) that

R accepts in the above interaction and π 6= π′. On input pk, σ, s, r, and access to Mr′ ,

the probability that KE∗ outputs a witness to the decryption of C′ under pk is at least:

p∗ − κ∗(pk)− ε∗(|pk|).

We note that our definitions of zero-knowledge (in Definition 5.1) and non-malleability (in Def-

inition 5.2) both consider the single-theorem case. The definitions may be modified for the multi-

theorem case; however, the present definitions suffice for our intended applications.

Σ-protocols. Since we use Σ-protocols [31] in an essential way as part of our constructions, we

briefly review their definition here. A Σ-protocol is a pair of ppt algorithms (P ,V) which defines a

three-move interactive protocol between a prover P and a verifier V , where the prover sends the first

message. Furthermore, the message q sent by V is a random challenge (without loss of generality,

we may assume it is the contents of V ’s random tape). Let R be a binary relation computable

in polynomial-time. Define LR as the set of all y such that there exists an x with R(y, x) = 1.

The string x is called a witness for y. The common input to P and V will be y, while x is known

only to P . Let (A, q, z) be a transcript of the conversation between P and V . Upon completion

of the protocol, the verifier outputs the single bit ϕ(y, A, q, z), where ϕ(·) is an efficient, publicly-

computable predicate with 1 denoting acceptance and 0 denoting rejection. If ϕ(y, A, q, z) = 1, we

say that (A, q, z) is an accepting conversation for y.

94

All Σ-protocols we consider satisfy special soundness and special honest-verifier zero-knowledge

(special-HVZK). For a particular y, let (A, q, z) and (A, q′, z′) denote two accepting conversations

with q 6= q′. Special soundness implies that y ∈ LR and furthermore, that on input y and these

two conversations, one can efficiently compute an x such that R(y, x) = 1. Special-HVZK means

that there exists a ppt simulator S that, on input y ∈ LR and a randomly-chosen q, can generate

a conversation (A, q, z) which is identically-distributed to a real conversation between P and V in

which q is the challenge sent by V . Note that the protocol of Figure 5.1 is a Σ-protocol satisfying

the above requirements.

A note on complexity assumptions. Our proofs of security require hardness assumptions with

respect to adversaries permitted to run in expected polynomial time. For example, we assume that the

RSA function cannot be inverted with more than negligible probability by any expected-polynomial-

time algorithm. The reason for this is our reliance on constant-round proofs of knowledge, for which

only expected-polynomial-time knowledge extractors are currently known. Security definitions of

protocols, however, are stated with respect to ppt adversaries.

5.3 Non-Malleable Proofs of Plaintext Knowledge

Our constructions follow a common paradigm. Recall the parameter σ which is shared by the sender

and receiver and which is used as a common input during execution of the PPK. Embedded in σ

will be a particular value y for which the simulator knows a witness x such that R(y, x) = 1. A PPK

for ciphertext C will be a witness indistinguishable proof of knowledge of either a witness to the

decryption of C or a witness for y, using the generic techniques for constructing such proofs [35].

Note that soundness of the protocol is not affected since a ppt adversary cannot derive a witness

for y, while ZK simulation is easy (since the simulator knows the witness x).

As stated, this simple approach does not suffice to achieve non-malleability. To see why, consider

a simulator interacting with man-in-the-middle M while M simultaneously interacts with verifier

V . Since the simulator must simulate a proof of “w or x” (where w is the witness to the decryption

of the ciphertext C chosen by the adversary), the simulator must know x. However, if we use the

knowledge extractor to extract from M, who is proving “w′ or x” (where w′ is the witness to the

decryption of C′), there is nothing which precludes extracting x! Note that without initial knowledge

of x the simulator cannot properly perform the simulation; yet, if the simulator initially knows x,

there is no contradiction in extracting this value fromM. Thus, a more careful approach is needed.

To overcome this obstacle, we borrow a technique from Chapter 4. Namely, the value y will

depend on a parameter α which M cannot re-use; thus, the simulator proves knowledge of “w or

xα” while M is forced to prove knowledge of “w′ or xα′”, for some α′ 6= α. This will be secure as

95

long as the following conditions hold: (1) it is possible for the simulator to know the witness xα; yet

(2) learning xα′ for any α′ 6= α results in a contradiction; furthermore, (3)M cannot duplicate the

value α used by the simulator. Details follow in the remainder of this section.

5.3.1 Construction for the RSA Cryptosystem

We briefly review the RSA cryptosystem, extended to allow encryption of ℓ-bit messages using the

techniques of Blum and Goldwasser [21]. The public key N is chosen as a product of two random

k/2-bit primes (where k is the security parameter), and e is a prime number such that |e| = O(k).4

Let hc(·) be a hard-core bit [64] for the RSA permutation (so that, given re, hc(r) is computationally

indistinguishable from random; note that hc(·) may depend on information included with the public

parameters), and define hc∗(r)
def
= hc(reℓ−1

)◦· · ·◦hc(re)◦hc(r). Encryption of ℓ-bit message m is done

by choosing a random element r ∈ Z∗
N , computing C = reℓ

mod N , and sending 〈C, c
def
= hc∗(r)⊕m〉.

It is easily shown that this scheme is semantically secure under the RSA assumption.

Our protocol uses a Σ-protocol for proving knowledge of eℓ-th roots which extends a previously-

given Σ-protocol for proving knowledge of e-th roots [74]. To prove knowledge of r = C1/eℓ

, the

prover chooses a random element r1 ∈ Z∗
N and sends A = reℓ

1 to the verifier. The verifier replies

with a challenge q selected randomly from Ze. The prover responds with R = rqr1 and the receiver

verifies that Reℓ ?
= CqA. To see that special soundness holds, consider two accepting conversations

(A, q, R) and (A, q′, R′). Since Reℓ

= CqA and (R′)eℓ

= Cq′

A we have (R/R′)eℓ

= Cq−q′

. Noting

that |q − q′| is relatively prime to eℓ, Lemma 4.2 shows that the desired witness C1/eℓ

may be

efficiently computed. Special-HVZK is demonstrated by the simulator which, on input C and a

“target” challenge q, generates A = Reℓ

/Cq for random R ∈ Z
∗
N and outputs transcript (A, q, R).

We now describe the non-malleable PPK in detail (cf. Figure 5.3). The public parameters

σ (which may be included with the public key) are generated by selecting two random elements

g, h ∈ Z∗
N . Additionally, a function H : {0, 1}∗ → Ze from a family of universal one-way hash

functions is chosen at random. Once σ is established, a PPK for ciphertext 〈C, c〉 proceeds as follows:

first, a key-generation algorithm for a one-time signature scheme is run to yield verification key VK

and signing key SK, and α = H(VK) is computed. The PPK will be a witness indistinguishable

proof of knowledge of either r = C1/eℓ

or xα
def
= (gαh)1/e, following the paradigm of [35]. The

sender chooses random elements r1, R2 ∈ Z∗
N along with a random element q2 ∈ Ze. The sender

then executes a real proof of knowledge of C1/eℓ

(using the known witness) and a simulated proof

of knowledge of (gαh)1/e for challenge q2 (using the simulator guaranteed by the special-HVZK

property of the Σ-protocol). In more detail, element A1 is computed as reℓ

1 while A2 is computed

4Below, we mention a modification of the protocol for the case of small e (e.g., e = 3).

96

Public key: N ; prime e

σ : g, h ∈ Z∗

N ; H : {0, 1}∗ → Ze

S (input m ∈ {0, 1}ℓ) R

(VK, SK)← SigGen(1k)

r, r1, R2 ← Z∗
N ; q2 ← Ze

C := reℓ

; c := hc∗(r) ⊕m

α := H(VK)

A1 := reℓ

1

A2 := Re
2/ (gαh)

q2

VK, C, c, A1, A2
-

q ← Zeq
�

q1 := q − q2 mod e

R1 := rq1r1

s← SignSK(transcript) q1, R1, R2, s
-

Verify: Reℓ

1
?
= Cq1A1

Re
2

?
=
(
gH(VK)h

)(q−q1 mod e)
A2

VrfyVK(transcript, s)
?
= 1

Figure 5.3: Non-malleable PPK for the RSA cryptosystem.

as Re
2/(gαh)q2 . These values are sent (along with VK, C, c) as the first message of the PPK. The

receiver chooses challenge q ∈ Ze as before. The sender sets q1 = q − q2 mod e and answers with

R1 = rq1r1 (completing the “real” proof of knowledge with challenge q1) and R2 (completing the

“simulated” proof of knowledge with challenge q2). The values q1, R1, R2 are sent to the receiver. To

complete the proof, the sender signs a transcript of the entire execution of the PPK (including C, c

but not including VK itself) using SK and sends the signature to the receiver. The receiver verifies

the correctness of the proofs by checking that Reℓ

1
?
= Cq1A1 and Re

2
?
= (gαh)(q−q1 mod e)A2. Finally,

the receiver verifies the correctness of the signature on the transcript.

Theorem 5.1 Assuming the hardness of the RSA problem for expected-polynomial-time algorithms,

the protocol of Figure 5.3 is a PPK (with κ(pk) = 1/e) for the RSA encryption scheme outlined

above.

Proof We show that the given protocol satisfies Definition 5.1. Completeness is trivial. Sim-

ulatability (zero-knowledge) is achieved by making sure the simulator knows appropriate secret

information about σ. For example, SIM1(N, e) may choose random elements x, y and a hash func-

tion H and output σ = 〈xe, ye, H〉. Note that σ has the correct distribution. When SIM2 is

97

requested to run the PPK on any ciphertext, it can do so easily (without rewinding the potentially

dishonest receiver) because it knows (gαh)1/e for any α. Witness indistinguishability of the proof

(cf. [35]) implies that the simulated transcript is distributed identically to a real transcript.

The witness extraction property follows from the stronger result proved in Theorem 5.2.

Theorem 5.2 Assuming (1) the hardness of the RSA problem for expected-polynomial-time algo-

rithms, (2) the security of (SigGen, Sign, Vrfy) as a one-time signature scheme, and (3) the security

of UOWH as a universal one-way hash family, the protocol of Figure 5.3 is a non-malleable PPK

(with κ∗(pk) = 1/e) for the RSA encryption scheme outlined above.

Proof We use the following simulator (which is different from the one given in the proof of

Theorem 5.1): SIM1(N, e) chooses random hash function H , runs SigGen(1k) to generate (VK, SK),

and computes α = H(VK). Random elements g, x ∈ Z∗
N are chosen, and h is set equal to g−αxe.

Finally, σ = 〈g, h, H〉 is output along with state information state = 〈VK, SK, x〉. Note that σ

output by SIM1 has the correct distribution. Furthermore, given state, simulation of a single PPK

by SIM2 for any ciphertext is easy: simply use verification key VK and then (gαh)
1/e

is known (cf.

the proof of Theorem 5.1). Note that the simulation is perfect due to the witness indistinguishability

of the proof.

Fix pk, σ, state, and randomness r for SIM2 (recall that ciphertext 〈C, c〉, for which SIM2

will be required to prove a witness, is chosen adaptively by M). We are given adversaryM using

(unknown) random tape r′ who interacts with both SIM2(state; r) and honest receiver R. Once

the challenge q′ of R is fixed, the entire interaction is completely determined; thus, we may define

π(q′) as the transcript of the conversation between SIM2(state; r) andMr′ when q′ is the challenge

of R; analogously, we define π′(q′) as the transcript of the conversation between Mr′ and R when

q′ is the challenge of R. If certain messages have not been sent (e.g., M never sends a challenge q

to SIM2) we simply set those messages to ⊥.

The knowledge extractor KE∗ is given pk, σ, state, r, and access to Mr′ . When we say that

KE∗ runs Mr′ with challenge q we mean that KE∗ interacts with Mr′ by running algorithm

SIM2(state; r) and sending challenge q for R. We stress that interleaving of messages (i.e., schedul-

ing of messages to/from R and SIM2) is completely determined byMr′ . KE∗ operates as follows:

First, KE∗ picks a random value q′
1 ∈ Ze and runsMr′ with challenge q′

1
(cf. Figure 5.4). If π′(q′

1
)

is not accepting, or if π′(q′
1
) = π(q′

1
), stop and output ⊥. Otherwise, run the following:

98

SIM2(state; r) M R

VK, C, c, A1, A2
-

VK′, C′, c′, A′
1, A

′
2
-

q′
1

�

q
�

q1, R1, R2, s
-

q′1
1
, R′

1
1
, R′

2
1
, s′

1

-

Rewind:

q′
2

�

q′1
2
, R′

1
2
, R′

2
2
, s′

2

-

π(q′
1
)

def
= 〈VK, C, c, A1, A2, q, q1, R1, R2, s〉

π′(q′
1
)

def
= 〈VK′, C′, c′, A′

1, A
′
2, q

′1, q′1
1
, R′

1
1
, R′

2
1
, s′

1〉

π′(q′
2
)

def
= 〈VK′, C′, c′, A′

1, A
′
2, q

′2, q′1
2
, R′

1
2
, R′

2
2
, s′

2〉

Figure 5.4: Knowledge extraction.

For i = 0 to e− 1:

q′2 ← Ze

Run Mr′ with challenge q′
2

If π′(q′
2
) is accepting and π(q′

2
) 6= π′(q′

2
) and q′

2 6= q′
1
:

Output π′(q′
2
) and stop

Run Mr′ with challenge i

If π′(i) is accepting and π(i) 6= π′(i) and i 6= q′
1
:

Output π′(i) and stop
Output ⊥ and stop.

At this point, KE∗ has either output ⊥ or has the transcripts π(q′
1
), π′(q′

1
), π′(q′

2
), where

π(q′
1
) 6= π′(q′

1
) and π′(q′

1
), π′(q′

2
) are accepting transcripts with q′

1 6= q′
2

(see Figure 5.4).

We first verify that the expected running time of KE∗ until this point is polynomial in k. Fix

pk, σ, state, and r as above. Let p∗ be the probability (over challenges q sent by R) thatMr′ gives

a valid proof and π(q) 6= π′(q). If p∗ > 1/e, the expected number of iterations of the loop above

(assuming this loop is executed) is at most 2/p∗; furthermore, the probability of executing this loop

(which is only done following an initial success)is exactly p∗. Thus, the expected running time is

upper-bounded by p∗ · poly(k)
p∗ = poly(k), where poly(k) is an upper bound on the running time of

M. On the other hand, if p∗ ≤ 1/e, the number of iterations of the loop above is at most e, yet the

probability of executing the loop is at most 1/e. Thus, the expected running time of Ext in this case

is at most 1
e · e · poly(k) = poly(k).

Let Good be the event that KE∗ does not output ⊥. In this case, let the transcripts be as

99

indicated in Figure 5.4. Note that the probability of event Good is exactly p∗ when p∗ > 1/e and 0

otherwise. In either case, we have Pr[Good] ≥ p∗ − 1/e.

Assuming event Good occurs, π′(q′
1
) and π′(q′

2
) are accepting transcripts with q′

1 6= q′
2

and

therefore we must have either q′1
1 6= q′1

2 or q′1 − q′1
1 6= q′2 − q′1

2 mod e (or possibly both). In case

q′
1 − q′1

1
= q′

2 − q′1
2

mod e (denote this event by Real) and hence q′1
1 6= q′1

2
, we have the two

equations:

(
R′

1
1
)eℓ

= (C′)
q′

1
1

A′
1 mod N

(
R′

1
2
)eℓ

= (C′)
q′

1
2

A′
1 mod N.

Therefore, (∆R)eℓ

= (C′)∆q , where ∆R
def
= R′

1
1/R′

1
2 (we assume all values in ZN are in fact invertible;

if not, N may be immediately factored and eth roots easily computed) and ∆q
def
= q′1

1− q′1
2
. Lemma

4.2 shows that this allows computation of r′
def
= (C′)1/eℓ

. Note that once r′ is known, KE∗ may

compute hc∗(r′) and hence determine the entire witness to the decryption of ciphertext 〈C′, c′〉.

On the other hand, if q′
1 − q′1

1 6= q′
2 − q′1

2
mod e (denote this event by Fake), we have the two

equations:

(
R′

2
1
)e

=
(
gα′

h
)q′1−q′

1
1

A′
2

(
R′

2
2
)e

=
(
gα′

h
)q′2−q′

1
2

A′
2,

where α′ def
= H(VK′), from which KE∗ may compute (gα′

h)1/e (using the same techniques as above).

Since Good = Real ∪ Fake, we have Pr[Real] + Pr[Fake] ≥ p∗ − 1/e. To complete the proof (since

Real∩Fake = ∅), we show that Pr[Fake] (where the probability is over the random tape ω of KE∗) is

less than some negligible function with all but negligible probability over choice of pk, σ, state, r, r′.

We establish this via the following sequence of claims:

Claim 5.1 Prpk,σ,state,r,r′,ω[VK = VK′ ∧ Good] is negligible.

Consider algorithm Forge which takes input VK, has access to a signing oracle, and runs as follows:

emulating KE∗, algorithm Forge generates pk, σ, and parameters state and r for SIM2. However,

Forge does not run the key-generation procedure for the one-time signature scheme, but instead uses

VK. Next, Forge runs the initial portion of KE∗ by choosing random r′ forM, choosing q′ randomly

from Ze, and running Mr′ with challenge q′. When a signature under VK is needed (during the

single execution of SIM2), Forge obtains the required signature from its signing oracle. OnceMr′

completes its execution, Forge stops and outputs the transcript π′(q′).

The probability that the transcript output by Forge contains a valid forgery under VK is at

least Prpk,σ,state,r,r′,ω[VK = VK′ ∧ Good]. However, the security of the one-time signature scheme

100

guarantees that this is negligible. Note that, since no rewinding is involved and consequently Forge

runs in strict polynomial time, the signature scheme need only be secure against ppt adversaries.

Claim 5.2 Prpk,σ,state,r,r′,ω[VK 6= VK′ ∧H(VK) = H(VK′) ∧ Good] is negligible.

The proof is similar to that of Claim 5.1, but is based on the security of the family of universal

one-way hash functions. As in Claim 5.1, the family of universal one-way hash functions need only

be secure against ppt adversaries. Details omitted.

Claim 5.3 Prpk,σ,state,r,r′,ω[H(VK) 6= H(VK′) ∧ Fake] is negligible.

Note that algorithm KE∗, as described previously, does not require any secret information about

N, e, g in order to run. Thus, we can consider the expected polynomial-time algorithm KE ′ which

takes as input a modulus N , a prime e, and a (random) element g ∈ Z∗
N and otherwise runs

identically to KE∗. Clearly, the probability that both Fake and H(VK) 6= H(VK′) occur remains

unchanged.

Let α = H(VK) and α′ = H(VK′); define ∆
def
= α′ −α 6= 0. By definition of event Fake, KE ′ may

compute y′ such that (y′)e = gα′

h; but then:

y′ def
=
(
gα′

h
)1/e

=
(
g∆xe

)1/e
=
(
g∆
)1/e

x,

and therefore y
def
= y′/x satisfies ye = g∆. Note that |∆| and e are relatively prime since ∆ ∈ (−e, e).

Thus, Lemma 4.2 shows that g1/e may be efficiently computed. In other words, whenever Fake

and α′ 6= α occur, algorithm KE ′ inverts the given RSA instance g. Therefore, under the RSA

assumption, Prpk,σ,state,r,r′,ω[H(VK) 6= H(VK′) ∧ Fake] must be negligible.

To complete the proof, note that the above claims imply that Prpk,σ,state,r,r′,ω[Fake] < ε(k) for

some negligible function ε(·). But then:

ε(k) > Pr
pk,σ,state,r,r′,ω

[Fake] >
√

ε(k) · Pr
pk,σ,state,r,r′

[
Pr
ω

[Fake] >
√

ε(k)
]
,

and hence Prpk,σ,state,r,r′

[
Prω[Fake] ≤

√
ε(k)

]
≥ 1 −

√
ε(k). In other words, with all but negligible

probability over choice of pk, σ, state, r, r′, the probability of event Fake is negligible

Using small values of e. For reasons of efficiency, RSA encryption is often performed using small

(prime) values of e; e.g., e = 3. The protocol above may be adapted for this case by using the

Σ-protocol given in [33, Section 6.3], which works for all e. Details are left to the reader.

101

5.3.2 Construction for the Rabin Cryptosystem

We propose a variant of the Rabin cryptosystem [104] for ℓ-bit messages. The public key N is

chosen as a product of two primes p, q where |p| = |q| = k/2 (k is the security parameter) and

p, q = 3 mod 4; such N are called Blum integers. Additionally, a positive integer t, where t = Θ(k),

is included with the public key. Let QRN denote the set of quadratic residues modulo N and let

JN (x), for x ∈ Z∗
N , denote the Jacobi symbol of x. Note that JN (x) can be efficiently computed

even without knowledge of the factorization of N ; furthermore, since N is a Blum integer, for all

x ∈ QRN we have JN (x) = JN (−x) = 1. It is well known that the squaring permutation on QRN

is one-way if and only if factoring Blum integers is hard [104]. Let hc(·) denote a hard-core bit of this

permutation, and for r ∈ QRN define hc∗(r)
def
= hc(r2ℓ−1

) ◦ · · · ◦ hc(r2) ◦ hc(r). Encryption of ℓ-bit

message m is performed by choosing random r ∈ Z∗
N and random bit b, computing C = (−1)br2t+ℓ

,

and sending 〈C, c
def
= hc∗(r2t

)⊕m〉 (note that r2t

∈ QRN). To decrypt ciphertext 〈C, c〉 (assuming

the factorization of N is known), first check that JN (C) = 1; if not, output ⊥. Otherwise, compute

the unique element r′ ∈ QRN such that (r′)2
ℓ

= ±C and output c⊕ hc∗(r′). Semantic security of

this scheme may be based on the hardness of factoring Blum integers, following [104].

Our PPK is based on a Σ-protocol for proving knowledge of 2ℓ-th roots that, as far as we know,

has not appeared previously. Given an element C with JN (C) = 1, successful execution of the

protocol proves knowledge of r′ ∈ QRN such that (r′)2
ℓ

= ±C; however, a real prover is required

to know r ∈ Z∗
N such that r2t+ℓ

= ±C. The Σ-protocol proceeds as follows: the prover first chooses

random r1 ∈ Z∗
N and sends A = r2t+ℓ+1

1 . The verifier responds with random challenge q ∈ Z2t . The

prover then answers with R = rqr1 and the verifier checks that R2t+ℓ+1 ?
= AC2q. Special-HVZK

follows from the following simulator: given C and challenge q, choose random R ∈ Z∗
N and compute

A = R2t+ℓ+1

/C2q; the simulated transcript is (A, q, R). Special soundness will be clear from the

proof of Theorem 5.3.

Using this basic Σ-protocol, we construct a non-malleable PPK following the paradigm outlined

in Section 5.3.1. We give a high-level description of this PPK (cf. Figure 5.5): the public parameters

σ are generated by selecting two random elements g, h ∈ QRN (note that this may be done efficiently

even without knowledge of the factorization of N). Additionally, a function H : {0, 1}∗ → Z2t from

a family of universal one-way hash functions is chosen at random. The PPK for ciphertext 〈C, c〉

begins by having the prover generate VK and SK for a one-time signature scheme and computing

α = H(VK). The PPK will be a witness indistinguishable proof of knowledge of either r ∈ QRN

such that r2ℓ

= ±C or xα ∈ QRN such that x2
α = gαh.

Theorem 5.3 Assuming (1) the hardness of factoring Blum integers for expected-polynomial-time

102

Public key: N , t

σ : g, h ∈ QRN ; H : {0, 1}∗ → Z2t

S (input m ∈ {0, 1}ℓ) R

(VK, SK)← SigGen(1k)

r, r1, R2 ← Z
∗
N ; b← {0, 1}

q2 ← Z2t ; α := H(VK)

C := (−1)br2t+ℓ

mod N

c := hc∗(r2t

)⊕m

A1 := r2t+ℓ+1

1 mod N

A2 := R22t

2 /(gαh)q2 mod N VK, C, c, A1, A2
- Verify: JN (C)

?
= +1

q ← Z2tq
�

q1 := q − q2 mod 2t

R1 := rq1r1 mod N

s← SignSK(transcript) q1, R1, R2, s
-

Verify: R2t+ℓ+1

1
?
= A1C

2q1 mod N

R22t

2
?
= A2(g

αh)q−q1 mod 2t

mod N

VrfyVK(transcript, s)
?
= 1

Figure 5.5: Non-malleable PPK for a Rabin-like cryptosystem.

algorithms, (2) the security of (SigGen, Sign, Vrfy) as a one-time signature scheme, and (3) the

security of UOWH as a universal one-way hash family, the protocol of Figure 5.5 is a non-malleable

PPK (with κ(pk) = 1/2t) for the Rabin-like encryption scheme outlined above.

Proof The proof that the scheme is a PPK is similar to the proof of Theorem 5.1, and is omitted.

The proof of non-malleability follows the outline of the proof of Theorem 5.2, so we only sketch the

key differences here.

Our simulator is as follows: SIM1(N, t) chooses random hash function H , runs the key gener-

ation algorithm for the one-time signature scheme to obtain (VK, SK), and computes α = H(VK).

Random elements g, x ∈ QRN are chosen, and h is set equal to g−αx22t

. Finally, σ = 〈g, h, H〉 is

output along with state information state = 〈VK, SK, x〉. Note that σ output by SIM1 is identically

distributed to σ in a real execution. Furthermore, given state, simulation of a single PPK by SIM2

for any valid ciphertext is easy since x ∈ QRN such that x22t

= gαh is known.

Fix pk, σ, state, and randomness r for SIM2. Recall that ciphertext 〈C, c〉 for which SIM2

will be required to prove a witness, is chosen adaptively byM; furthermore, a ciphertext is valid if

and only if JN (C) = 1, which can be efficiently and publicly verified even without knowledge of the

103

factorization of N . We are given adversaryM using (unknown) random tape r′ who interacts with

both SIM2(state; r) and honest receiver R. For any query q′ sent by R, define π(q′) and π′(q′)

as in the proof of Theorem 5.2. As in the proof of Theorem 5.2, we define a knowledge extractor

KE∗ which runs in expected polynomial time (the proof is similar to that given previously) and

outputs either ⊥ or 〈π(q′
1
), π′(q′

1
), π′(q′

2
)〉, where π(q′

1
) 6= π′(q′

1
) and π′(q′

1
), π′(q′

2
) are accepting

transcripts with q′
1 6= q′

2
. Let Good be the event that KE∗ does not output ⊥. By a similar proof

as before, we have Pr[Good] ≥ p∗ − 1/2t.

Assuming event Good occurs, π′(q′
1
) and π′(q′

2
) are accepting transcripts with q′

1 6= q′
2

and

therefore we must have either q′1
1 6= q′1

2
or q′

1 − q′1
1 6= q′

2 − q′1
2

mod 2t (or possibly both). In case

q′
1 − q′1

1
= q′

2 − q′1
2

mod 2t and hence q′1
1 6= q′1

2
, we show how to compute a value r ∈ QRN such

that r2ℓ

= ±C′. From the accepting transcripts, we have the two equations:

(
R′

1
1
)2t+ℓ+1

= (C′)
2q′

1
1

A′
1 mod N

(
R′

1
2
)2t+ℓ+1

= (C′)
2q′

1
2

A′
1 mod N.

Together, these imply (∆R)
2t+ℓ+1

= (C′)
2∆q , where ∆R

def
= R′

1
1
/R′

1
2

(we assume all values in ZN are

invertible; if not, N may be factored and the desired witness computed easily) and ∆q
def
= q′1

1−q′1
2 6=

0. Without loss of generality, assume ∆q > 0 (if not, we can always re-write the above equation

so this holds). Since ∆q < 2t, we must have gcd(2t+ℓ+1, ∆q) = 2i with 0 ≤ i < t. We may then

efficiently compute integers a, b such that a2t+ℓ+1 + b∆q = 2i. Then:

((C′)2)2
i

= ((C′)2)a2t+ℓ+1+b∆q = ((C′)2a(∆R)b)2
t+ℓ+1

= γ2t+ℓ+1

mod N, (5.1)

where γ
def
= (C′)2a(∆R)b. If i = 0, we are done since r = γ2t

satisfies r ∈ QRN and r2ℓ

= ±C′.

Otherwise, using the fact that squaring is a permutation on QRN , (5.1) implies that:

(C′)2 = (γ2)2
t+ℓ−i

= (γ2t+ℓ−i

)2 mod N.

Since JN (C′) = 1, we have ±C′ = γ2t+ℓ−i

= (γ2t−i

)2
ℓ

. Note that, since t − i > 0, γ2t−i

can be

efficiently computed; furthermore, γ2t−i

∈ QRN . Thus, r = γ2t−i

is the desired value.

On the other hand, denote event q′
1 − q′1

1 6= q′
2 − q′1

2
mod 2t by Fake. To complete the proof,

we show that Pr[Fake] (where the probability is over the random tape ω of Ext) is less than some

negligible function with all but negligible probability over choice of pk, σ, state, r, r′. We establish

this using Claims 5.1 and 5.2 from the proof of Theorem 5.2 along with the following:

Claim 5.4 Prpk,σ,state,r,r′,ω[H(VK) 6= H(VK′) ∧ Fake] is negligible.

Note that algorithm KE∗ does not require any information beyond N, t, and g in order to run; in

particular, element g ∈ QRN may be selected at random. Thus, we can consider the expected

104

polynomial-time algorithm KE ′ which takes input modulus N , t, and (random) element g ∈ QRN

and otherwise runs identically to KE∗. Clearly, the probability that both Fake and H(VK) 6= H(VK′)

occur remains unchanged.

We show that r ∈ QRN such that r2 = g may be computed when both Fake and H(VK) 6= H(VK′)

occur. Since inverting the squaring permutation on QRN is hard under the factoring assumption,

this will give the desired contradiction. Let α = H(VK) and α′ = H(VK′); define ∆α
def
= α′ −α 6= 0.

From the two accepting transcripts, we have the two equations:

(
R′

2
1
)22t

=
(
gα′

h
)q′1−q′

1
1 mod 2t

A′
2 mod N

(
R′

2
2
)22t

=
(
gα′

h
)q′2−q′

1
2 mod 2t

A′
2 mod N,

which yield:

(∆R)
22t

=
(
gα′

h
)∆q

=
(
g∆αx22t

)∆q

mod N, (5.2)

where ∆R
def
= R′

2
1/R′

2
2 and ∆q

def
= q′1 − q′1

1 − q′2 + q′1
2 6= 0 mod 2t. Re-arranging (5.2) gives:

g∆α∆q =
(
x−∆q∆R

)22t

.

Without loss of generality, assume ∆α∆q > 0 (if not, we can re-write the equation above so that

this holds). Since ∆α, ∆q < 2t, we must have gcd(22t, ∆α∆q) = 2i with 0 ≤ i < 2t − 1. We may

then efficiently compute integers a, b such that a22t + b∆α∆q = 2i. Then:

g2i

= ga22t+b∆α∆q = (ga(∆Rx−∆q)b)2
2t

= γ22t

, (5.3)

where γ
def
= ga(∆Rx−∆q)b. If i = 0, we have computed a square root γ22t−1

∈ QRN of g. Otherwise,

we may re-write (5.3) as:

g2i

= (γ2)2
2t−1

. (5.4)

Using the fact that squaring is a permutation over QRN , (5.4) implies that:

g = (γ2)2
2t−i−1

,

and hence γ22t−i−1

∈ QRN is the desired square root of g.

Thus, under the factoring assumption, Prpk,σ,state,r,r′,ω[H(VK) 6= H(VK′) ∧ Fake] must be negli-

gible. The remainder of the proof follows the proof of Theorem 5.2 exactly.

105

5.3.3 Construction for the Paillier Cryptosystem

We provide a brief review of the Paillier cryptosystem [101]. The public key N is a product of two

primes p, q where |p| = |q| = k (where k is the security parameter). Additionally, the public key

contains an element g ∈ Z∗
N2 such that the order of g (in Z∗

N2) is a non-zero multiple of N . It can be

shown that the function fg : ZN ×Z
∗
N → Z

∗
N2 defined by fg(x, y) = gxyN mod N2 is a bijection. For

C ∈ Z∗
N2 , we define by [C]g the unique x ∈ ZN for which there exists a y ∈ Z∗

N such that fg(x, y) = C.

The decisional composite residuosity assumption states that the distributions {C ← Z∗
N2 : (C, [C]g)}

and {C ← Z∗
N2 , x← ZN : (C, x)} are computationally indistinguishable. This naturally gives rise to

the following encryption scheme whose semantic security is equivalent to this assumption: to encrypt

message m ∈ ZN , choose a random y ∈ Z∗
N and send C = gmyN mod N2. It can be shown that,

given the factorization of N , decryption may be done efficiently [101]. We note that an encryption

scheme based on the computational composite residuosity assumption (i.e., the assumed hardness of

computing [C]g for random C) is also possible using the hardcore bits of fg(·); the PPK given below

can be modified for this case in a straightforward way. In either case, the security of the PPK itself

depends on the weaker computational assumption.

We build on a Σ-protocol [34] that, given C, proves knowledge of m, y such that C = gmyN mod

N2. The basic Σ-protocol proceeds as follows: the prover chooses random x ∈ ZN , u ∈ Z∗
N2 and sends

B = gxuN mod N2 as the first message. The verifier responds with a random challenge q ∈ ZN , and

the prover answers with w = x + qm mod N and z = uyqgt mod N2, where t is such that x + qm =

w + tN (over the integers). The verifier then checks that gwzN ?
= BCq mod N2. Special-HVZK

follows from the following simulator: given C and challenge q, choose random w ∈ ZN , z ∈ ZN2 and

set B = gwzN/Cq mod N2; the simulated transcript is (B, q, w, z). Special soundness will be clear

from the proof of Theorem 5.4.

Using this basic Σ-protocol, we construct a non-malleable PPK following the paradigm outlined

in Section 5.3.1. We give a high-level description of this PPK (cf. Figure 5.6): the public parameters

σ are generated by selecting two random elements h0, h1 ∈ Z∗
N2 . Additionally, a function H :

{0, 1}∗ → ZN from a family of universal one-way hash functions is chosen at random. The PPK

for ciphertext C begins by having the prover generate VK and SK for a one-time signature scheme

and computing α = H(VK). The PPK will be a witness indistinguishable proof of knowledge of

(m, y) ∈ ZN × Z
∗
N such that either gmyN = C mod N2 or gmyN = hα

0 h1 mod N2.

Theorem 5.4 Assuming (1) the hardness of the computational composite residuosity assumption for

expected-polynomial-time algorithms, (2) the security of (SigGen, Sign, Vrfy) as a one-time signature

scheme, and (3) the security of UOWH as a universal one-way hash family, the protocol of Figure

106

Public key: N ; g ∈ Z∗

N2

σ : h0, h1 ∈ Z∗

N2 ; H : {0, 1}∗ → ZN

S (input m ∈ ZN) R

(VK, SK)← SigGen(1k)

y, x1, w2, q2 ← Z∗
N ; u1, z2 ← Z∗

N2

C := gmyN mod N2

α := H(VK)

B1 := gx1uN
1 mod N2

B2 := gw2zN
2 / (hα

0 h1)
q2 mod N2

VK, C, B1, B2
-

q ← ZNq
�

q1 := q − q2 mod N

w1 := x1 + q1m mod N

t = (x1 + q1m− w1)/N

z1 := u1y
qgt mod N2

s← SignSK(transcript) q1, w1, z1, w2, z2, s
-

Verify: z1, z2 ∈ Z∗
N2

gw1zN
1

?
= B1C

q1 mod N2

gw2zN
2

?
= B2(h

α
0 h1)

q−q1 mod N mod N2

VrfyVK(transcript, s)
?
= 1

Figure 5.6: Non-malleable PPK for the Paillier cryptosystem.

5.6 is a non-malleable PPK (with κ(pk) = 1/N) for the Paillier encryption scheme.

Proof The proof that the scheme is a PPK is similar to the proof of Theorem 5.1, and is omitted.

The proof of non-malleability follows the outline of the proof of Theorem 5.2, so we only sketch the

key differences here.

Our simulator is as follows: SIM1(N, g) chooses random hash function H , runs the key gener-

ation algorithm for the one-time signature scheme to obtain (VK, SK), and computes α = H(VK).

Random elements h0 ∈ Z∗
N2 , m′ ∈ ZN , and y′ ∈ Z∗

N are chosen, and h1 is set equal to h−α
0 gm′

(y′)N .

Finally, σ = 〈h0, h1, H〉 is output along with state information state = 〈VK, SK, m′, y′〉. Note that σ

output by SIM1 is identically distributed to σ in a real execution. Furthermore, given state, simula-

tion of a single PPK by SIM2 for any valid ciphertext is easy since m′, y′ such that gm′

(y′)N = hα
0 h1

are known.

Fix pk, σ, state, and randomness r for SIM2. Recall that ciphertext C for which SIM2 will be

required to prove a witness is chosen adaptively byM. We are given adversaryM using (unknown)

random tape r′ who interacts with both SIM2(state; r) and honest receiver R. For any query q

107

sent by R, define π(q) and π′(q) as in the proof of Theorem 5.2. As in the proof of Theorem 5.2, we

define a knowledge extractor KE∗ which runs in expected polynomial time (the proof is similar to

that given previously) and outputs either ⊥ or 〈π(q′
1
), π′(q′

1
), π′(q′

2
)〉, where π(q′

1
) 6= π′(q′

1
) and

π′(q′1), π′(q′2) are accepting transcripts with q′1 6= q′2. Let Good be the event that KE∗ does not

output ⊥. As above, we have Pr[Good] ≥ p∗ − 1/N .

Assuming event Good occurs, π′(q′
1
) and π′(q′

2
) are accepting and therefore we must have either

q′1
1 6= q′1

2
or q′

1 − q′1
1 6= q′

2 − q′1
2

mod N (or possibly both). In case q′
1 − q′1

1
= q′

2 − q′1
2

mod N

and hence q′1
1 6= q′1

2
, we show how to compute a values m, y such that gmyN = C′ mod N2. From

the accepting transcripts, we have the two equations:

gw′

1
1

(z′1
1
)N = B′

1(C
′)q′

1
1

mod N2

gw′

1
2

(z′1
2
)N = B′

1(C
′)q′

1
2

mod N2.

Together, these imply g∆w(∆z)
N = (C′)∆q , where ∆w

def
= w′

1
1−w′

1
2
, ∆z

def
= z′1

1
/z′1

2
(recall z′1

1
, z′1

2 ∈

Z∗
N2), and ∆q

def
= q′1

1 − q′1
2
. Without loss of generality, assume ∆q > 0 (if not, we can always re-

arrange the above equation so this holds). If gcd(∆q, N) 6= 1, then we have found a factor of N and,

in particular, can use the factorization of N to compute the desired m, y [101]. Otherwise, we may

compute integers a, b such that a∆q + bN = 1; then:

C′ = (C′)a∆q+bN = ga∆w((∆z)
a(C′)b)N mod N2,

giving the desired values m = a∆w mod N and y = (∆z)
a(C′)b mod N2.

On the other hand, denote event q′
1 − q′1

1 6= q′
2 − q′1

2
mod N by Fake. To complete the proof,

we show that Pr[Fake] (where the probability is over the random tape ω of KE∗) is less than some

negligible function with all but negligible probability over choice of pk, σ, state, r, r′. We establish

this using Claims 5.1 and 5.2 from the proof of Theorem 5.2 along with the following:

Claim 5.5 Prpk,σ,state,r,r′,ω[H(VK) 6= H(VK′) ∧ Fake] is negligible.

Note that algorithm KE∗ does not require any information beyond N, g, h0 in order to run; in

particular, element h0 may be selected at random. Thus, we can consider the expected polynomial-

time algorithm KE ′ which takes input modulus N and (random) elements g, h0 ∈ Z∗
N2 and otherwise

runs identically to KE∗. Clearly, the probability that both Fake and H(VK) 6= H(VK′) occur remains

unchanged.

We show that m, y such that gmyr = h0 may be efficiently computed when both Fake and

H(VK) 6= H(VK′) occur, contradicting the computational composite residuosity assumption. Let

α = H(VK) and α′ = H(VK′); define ∆α
def
= α′ − α 6= 0. From the two accepting transcripts, we

108

have the two equations:

gw′

2
1

(z′2
1
)N = B′

2(h
α′

0 h1)
q′1−q′

1
1

mod N2

gw′

2
2

(z′2
2
)N = B′

2(h
α′

0 h1)
q′2−q′

1
2

mod N2,

which yield

g∆w(∆z)
N = (hα′

0 h1)
∆q

= (h∆α

0 gm′

(y′)N)∆q mod N2, (5.5)

where ∆w
def
= w′

2
1 − w′

2
2
, ∆z

def
= z′2

1
/z′2

2
, and ∆q

def
= q′

1 − q′1
1 − q′

2
+ q′1

2
. Re-arranging (5.5) gives

h
∆α∆q

0 = g∆w−m′∆q(∆z/(y′)∆q)N mod N2

(recall y′ ∈ Z∗
N and is therefore invertible modulo N2). Without loss of generality, assume ∆α∆q > 0

(if not, we can re-write the equation above so this holds). If gcd(∆α∆q, N) 6= 1, then we have found a

factor of N and, in particular, can use the factorization of N to compute the desired m, y. Otherwise,

we may compute integers a, b such that a∆α∆q + bN = 1; then

h0 = h
a∆α∆q+bN
0 = ga∆w−am′∆q((∆z/(y′)∆q)ahb

0)
N ,

yielding the desired values m = a∆w − am′∆q mod N and y = (∆z/(y′)∆q)ahb
0 mod N2.

The remainder of the proof exactly follows the proof of Theorem 5.2.

5.3.4 Construction for the El Gamal Cryptosystem

We briefly review the El Gamal cryptosystem [51]. Given primes p, q such that p = 2q+1 and |q| = k

(where k is a security parameter), we may define finite, cyclic group G as the unique subgroup of

Z∗
p with order q. The public key of the El Gamal scheme is created by choosing a random generator

g0 ∈ G, choosing a random x ∈ Zq, and setting g1 = gx
0 . The public key is p, q, g0, g1. To encrypt a

message m ∈ G, select a random y ∈ Zq and send 〈gy
0 , gy

1m〉. Decryption of 〈C0, C1〉 is simply done

by computing m = C1/Cx
0 . Semantic security of this scheme is equivalent to the DDH assumption.

We note that an encryption scheme whose security may be based on the CDH assumption is also

possible (using hard-core bits of the Diffie-Hellman key-exchange protocol), and the PPK given

below may be easily extended for this case.

Our protocol builds on the Σ-protocol for proving knowledge of discrete logarithms given in

Figure 5.1. Our non-malleable PPK (cf. Figure 5.7) requires public parameters σ consisting of a

generator h ∈ G. Additionally, a function H : {0, 1}∗ → Zq from a family of universal one-way hash

functions is chosen at random. The PPK for ciphertext C0, C1 begins by having the prover generate

109

Public key: G, g0, g1

σ : h ∈ G; H : {0, 1}∗ → Zq

S (input m ∈ G) R

(VK, SK)← SigGen(1k)

y, r1, z2, c2 ← Zq

C0 := gy
0 ; C1 = gy

1m

α := H(VK)

A1 := gr1

0

A2 := gz2

0 / (gα
1 h)c2

VK, C0, C1, A1, A2
-

c← Zqc
�

c1 := c− c2 mod q

z1 := c1y + r1

s← SignSK(transcript) c1, z1, z2, s
-

Verify: gz1

0
?
= Cc1

0 A1

gz2

0
?
=
(
g

H(VK)
1 h

)c−c1 mod q

A2

VVK(transcript, s)
?
= 1

Figure 5.7: Non-malleable PPK for the El Gamal cryptosystem.

VK and SK for a one-time signature scheme and computing α = H(VK). The PPK will be a witness

indistinguishable proof of knowledge of y ∈ Zq such that either gy
0 = C0 or gy

0 = gα
1 h.

Theorem 5.5 Assuming (1) the hardness of the discrete logarithm problem in G for expected-

polynomial-time algorithms, (2) the security of (SigGen, Sign, Vrfy) as a one-time signature scheme,

and (3) the security of UOWH as a universal one-way hash family, the protocol of Figure 5.7 is a

non-malleable PPK (with κ(pk) = 1/q) for the El Gamal encryption scheme.

Proof The proof that the scheme is a PPK is similar to the proof of Theorem 5.1, and is omitted.

Proof of non-malleability follows the outline of the proof of Theorem 5.2, so we only sketch the key

differences here.

Our simulator is as follows: SIM1(p, q, g0, g1) chooses random hash function H , runs the key-

generation algorithm for the one-time signature scheme to obtain (VK, SK), and computes α =

H(VK). Random x ∈ Zq is chosen, and h is set equal to g−α
1 gx

0 . Finally, σ = 〈h, H〉 is output along

with state information state = 〈VK, SK, x〉. Note that σ output by SIM1 is identically distributed

to σ in a real execution. Furthermore, given state, simulation of a single PPK by SIM2 for any

valid ciphertext is easy since logg0
(gα

1 h) is known.

110

Fix pk, σ, state, and randomness r for SIM2. Recall that ciphertext C0, C1 for which SIM2

will be required to prove a witness is chosen adaptively by M. We are given adversary M using

(unknown) random tape r′ who interacts with both SIM2(state; r) and honest receiver R. For

any query c sent by R, define π(c) and π′(c) as in the proof of Theorem 5.2. As in the proof of

Theorem 5.2, we may define a knowledge extractor KE∗ which runs in expected polynomial time

(the proof is similar to that given previously) and outputs either ⊥ or 〈π(c′
1
), π′(c′

1
), π′(c′

2
)〉, where

π(c′
1
) 6= π′(c′

1
) and π′(c′

1
), π′(c′

2
) are accepting transcripts with c′

1 6= c′
2
. Let Good be the event

that KE∗ does not output ⊥. By a similar proof as above, we have Pr[Good] ≥ p∗ − 1/q.

Assuming event Good occurs, π′(c′
1
) and π′(c′

2
) are accepting and therefore we must have either

c′1
1 6= c′1

2
or c′

1 − c′1
1 6= c′

2 − c′1
2

mod q (or possibly both). In case c′
1 − c′1

1
= c′

2 − c′1
2

mod q and

hence c′1
1 6= c′1

2
, we show how to compute a value r such that r = logg0

C′
0. From the accepting

transcripts, we have the two equations:

g
z′

1
1

0 = (C′
0)

c′1
1

A′
1

g
z′

1
2

0 = (C′
0)

c′1
2

A′
1.

Together, these imply g∆z

0 = (C′
0)

∆c , where ∆z
def
= z′1

1− z′1
2

and ∆c
def
= c′1

1− c′2
2
. Hence, logg0

C′
0 =

∆z/∆c and we are done.

On the other hand, if c′
1 − c′1

1 6= c′
2 − c′1

2
mod q, we denote this event by Fake. To complete

the proof, we show that Pr[Fake] (where the probability is over the random tape ω of KE∗) is less

than some negligible function with all but negligible probability over choice of pk, σ, state, r, r′. We

establish this using Claims 5.1 and 5.2 from the proof of Theorem 5.2 along with the following:

Claim 5.6 Prpk,σ,state,r,r′,ω[H(VK) 6= H(VK′) ∧ Fake] is negligible.

Note that algorithm KE∗ does not require any information about g0 or g1 in order to run; in particu-

lar, elements g0, g1 may be selected at random. Thus, we can consider the expected polynomial-time

algorithm KE ′ which takes input modulus p, q, g0, g1 and otherwise runs identically to KE∗. Clearly,

the probability that both Fake and H(VK) 6= H(VK′) occur remains unchanged.

We show that logg0
g1 may be computed when both Fake and H(VK) 6= H(VK′) occur, contradict-

ing the discrete logarithm assumption. Let α = H(VK) and α′ = H(VK′); define ∆α
def
= α′ − α 6= 0.

From the two accepting transcripts, we have the two equations:

g
z′

2
1

0 = (gα′

1 h)c′1−c′1
1

A′
2

g
z′

2
2

0 = (gα′

1 h)c′2−c′1
2

A′
2,

which yield:

g∆z

0 = (gα′

1 h)∆c

111

= (g∆α

1 gx
0)∆c

= g∆α∆c

1 gx∆c

0 ,

where ∆z
def
= z′2

1 − z′2
2

and ∆c
def
= c′

1 − c′1
1 − c′

2
+ c′1

2 6= 0 mod q. From this, we may immediately

conclude that logg0
g1 = ∆z−x∆c

∆α∆c
.

The remainder of the proof exactly follows that of Theorem 5.2.

5.4 Applications

In this section, we discuss applications of non-malleable PPKs to the construction of (1) chosen-

ciphertext-secure, interactive encryption protocols, (2) password-based authentication and key ex-

change protocols in the public-key model, (3) strong deniable-authentication protocols, and (4)

identification protocols secure against man-in-the-middle attacks. In each case, we show how the

protocols of the previous section may be used for the intended application.

Concurrent composition. In our intended applications, the man-in-the-middle adversary may

conduct multiple PPKs concurrently and witness extraction will be required from each such exe-

cution; furthermore, extraction of this witness is typically required as soon as the relevant proof is

completed. If arbitrary interleaving of the proofs is allowed, extracting all witnesses may require

exponential time due to the nested rewinding of the prover (a similar problem is encountered in

simulation of concurrent zero-knowledge proofs [49]). To avoid this problem, we introduce timing

constraints [49] in our protocols. These are explained in detail in the relevant sections.

5.4.1 Chosen-Ciphertext-Secure Interactive Encryption

Previous work. Definitions for chosen-ciphertext-secure public-key encryption were given by Naor

and Yung [99] and and Rackoff and Simon [105]. Naor and Yung also give a construction achieving

non-adaptive chosen-ciphertext security [99]. The notion of non-malleable public-key encryption

was put forth by Dolev, Dwork, and Naor [44]. The first construction of a non-malleable (and

hence chosen-ciphertext-secure [16]) public-key encryption5 scheme was given in [44], and improved

constructions appear in [110, 38]. These constructions, however, are based on general assumptions

and are therefore impractical. Efficient non-malleable encryption schemes are known in the random

oracle model (e.g., OAEP [14]); we work in the standard model only. Prior to this work, the only

efficient non-malleable encryption scheme in the standard model was [36], whose security is based

on the DDH assumption. Subsequent to the present work, Cramer and Shoup [37] have proposed

non-malleable encryption schemes based on alternate assumptions; yet, it is important to note that

5Unless stated otherwise, “encryption” refers to non-interactive encryption.

112

the security of these schemes is based on the hardness of decisional problems, whereas we present

schemes whose security may be based on the hardness of computational problems.

Chosen-ciphertext security for interactive public-key encryption has been considered previously

[60, 75, 62], although formal definitions do not appear until [44]. Using an interactive PPK to

achieve chosen-ciphertext-secure, interactive public-key encryption has been previously proposed

[60, 75, 62]; however, such an approach is not secure against adaptive chosen-ciphertext attacks

unless a non-malleable PPK is used. A practical, non-malleable interactive public-key encryption

scheme (which does not use proofs of knowledge) is given by [44]; however, this protocol requires

a signature from the receiver, making it unsuitable for use in a deniable authentication protocol

(see below). Moreover, this protocol [44] requires the receiver — for each encrypted message —

to (1) compute an existentially unforgeable signature and (2) run the key generation procedure for

a public-key encryption scheme (often the most computationally intensive step). Our protocols,

optimized for particular number-theoretic assumptions, are more efficient.

Definitions. A number of definitional approaches to chosen-ciphertext security in the interactive

setting are possible. For example, the notion of non-malleability [44] may be extended for the case

of interactive encryption. An oracle-based definition is also possible, and we sketch such a definition

here.6

We have a sender, a receiver (where the receiver has published public-key pk), and a man-in-the-

middle adversaryM who controls all communication between them (cf. Chapter 2). To model this,

we define an encryption oracle and a decryption oracle to whichM is given access. The encryption

oracle Eb,pk plays the role of the sender. The adversary may interact with this oracle multiple times

at various points during its execution, and may interleave requests to this oracle with requests to

the decryption oracle in an arbitrary manner. At the outset of protocol execution, the encryption

oracle picks a bit b at random. An instance of the adversary’s interaction with the oracle proceeds as

follows: first, the adversary chooses two messages m0, m1 and sends these to Eb,pk. The encryption

oracle then executes the encryption protocol for message mb. The adversary, however, need not act

as an honest receiver. Since the adversary may have multiple concurrent interactions with Eb,pk,

the oracle must maintain state between the adversary’s oracle calls. Formally, each instance of the

encryption oracle is associated with a unique label; furthermore, each message the adversary sends

to the oracle must include a label indicating to which encryption-instance the message corresponds.

When Eb,pk sends the final message for a given instance of its execution, we say that instance is

completed.

6To obtain an equivalent definition using the language of non-malleability, we would need to define a notion of
non-malleability with respect to vectors of ciphertexts. Such a definition becomes cumbersome to work with in the
interactive setting.

113

The decryption oracle Dsk plays the role of a receiver. Since the adversary may perform multiple

concurrent executions of the protocol with the oracle, Dsk must also record state between oracle calls,

and each message sent by the adversary must also include a label indicating to which decryption-

instance the message corresponds (as above). The adversary need not act as an honest sender. Each

time a given decryption-instance is completed, the decryption oracle computes the decryption (using

the secret key) and sends the resulting message (or ⊥, if the transcript was invalid) to the adversary.

The adversary succeeds if it can guess the bit b. Clearly, some limitations must be placed on

the adversary’s access to the decryption oracle or else the adversary may simply forward messages

between Eb,pk and Dsk and therefore trivially determine b. At any point during the adversary’s

execution, the set of transcripts of completed encryption-instances of Eb,pk is well defined. Addi-

tionally, when a decryption-instance of Dsk is completed, the transcript of that interaction is well

defined. Upon completing a decryption-instance, let {π1, . . . , πℓ} denote the transcripts (not includ-

ing instance labels) of all completed encryption-instances. We allow the adversary to receive the

decryption corresponding to a decryption-instance with transcript π′ only if π′ 6= πi for 1 ≤ i ≤ ℓ.

Definition 5.3 Let Π = (K, E ,D) be an interactive, public-key encryption scheme. We say that Π

is CCA2-secure if, for any ppt adversary A, the following is negligible (in k):

∣∣Pr
[
(sk, pk)← K(1k); b← {0, 1} : AEb,pk,Dsk(1k, pk) = b

]
− 1/2

∣∣ ,

where A’s access to Dsk is restricted as discussed above.

A straightforward hybrid argument shows that it is sufficient to consider adversaries which are

allowed only a single access to the encryption oracle. We consider this type of adversary in what

follows.

Constructions. The protocols of Figures 5.3, 5.5–5.7 are in fact chosen-ciphertext-secure interactive

encryption schemes (under the relevant assumptions) when the adversary is given sequential access

to the decryption oracle. More precisely, given a semantically-secure encryption scheme (K, E ,D)

(which may be the RSA, Rabin, Paillier, or El Gamal scheme) and non-malleable PPK (G,S,R)

for this encryption scheme, the interactive, chosen-ciphertext-secure encryption scheme (K′, E ′,D′)

is defined as follows:

• K′(1k) runs K(1k) to generate pk, sk. Additionally, G(pk) is run to give σ. The public key pk′

is 〈pk, σ〉 and the secret key is sk.

• To encrypt message m under public key pk′ = 〈pk, σ〉, the sender computes C ← Epk(m) and

then executes algorithm S for C using parameters σ (i.e., the sender proves knowledge of a

witness to the decryption of C).

114

• To decrypt, the receiver uses R to determine whether to accept or reject the proof of ciphertext

C. If the receiver accepts (we say the proof succeeds), the receiver outputs Dsk(C). If the

proof is rejected (we say the proof fails), the receiver outputs ⊥.

As mentioned previously, timing constraints are needed to ensure security against an adversary

who is given concurrent access to the decryption oracle. In this case, we require that S respond to the

challenge (i.e., send the third message of the protocol) within time α from when the second message

of the protocol is sent. If S does not respond in this time, the proof is rejected. Additionally, the

protocols are modified so that a fourth message is sent from the receiver to the sender; this message

is simply an acknowledgment message which is ack if the sender’s proof was verified to be correct and

⊥ otherwise. Furthermore, R delays the sending of this message until at least time β has elapsed

from when the second message of the protocol was sent (with β > α).

We stress that, when concurrent access to the decryption oracle is allowed, the decryption oracle

enforces the above timing constraints by (1) rejecting any proofs for which more than time α has

elapsed between sending the second message and receiving the third message, and (2) the decrypted

ciphertext is not given to the adversary until after the acknowledgment message is sent (in particular,

until time β has elapsed since sending the second message).

Theorem 5.6 Assuming (1) the hardness of the RSA problem for expected-polynomial-time algo-

rithms, (2) the security of (SigGen, Sign, Vrfy) as a one-time signature scheme, and (3) the security

of UOWH as a universal one-way hash family, the protocol of Figure 5.3 (with |e| = Θ(k)) is an

interactive encryption scheme secure against sequential chosen-ciphertext attacks. If timing con-

straints are enforced as outlined above, the protocol is secure against concurrent chosen-ciphertext

attacks.

Proof We prove security for the more challenging case of concurrent access to the decryption

oracle. The protocol Π of Figure 5.3 is a PPK for encryption scheme (K, E ,D) in which K(1k) outputs

as the public key a k-bit modulus N and a k-bit prime e. Encryption of ℓ-bit message m is done by

choosing random r ∈ Z
∗
N and sending C̃ = 〈reℓ

, hc∗(r) ⊕m〉, where hc∗(·) is a hard-core function

for the RSA permutation. Assuming the hardness of the RSA problem for expected-polynomial-

time algorithms, (K, E ,D) is semantically secure against expected-polynomial-time adversaries. We

transform any ppt adversary A mounting a CCA2 attack against Π into an expected-polynomial-

time adversary A′ attacking the semantic security of (K, E ,D). Furthermore, we show that the

advantage of A′ is not negligible if the advantage of A is not negligible. This will immediately imply

CCA2 security of Π.

Let t(k), which is polynomial in k, be a bound on the number of times A accesses the decryption

115

oracle when run on security parameter 1k; without loss of generality, we assume that t(k) ≥ k (for

convenience, in the remainder of the proof we suppress the dependence on k and simply write t).

In the real experiment Expt0, the final output b′ of A is completely determined by pk′ = 〈pk, σ〉,

random coins r′ for A, the vector of challenges ~q = q1, . . . , qt used during the t instances A interacts

with the decryption oracle, and the randomness used by the encryption oracle (this includes the bit

b, the randomness ω used for the encryption, and the randomness used for execution of the PPK).

Let Succ denote the event that b′ = b, and let Pr0[Succ] denote the probability of this event in the

real experiment.

We modify the real experiment, giving Expt1, as follows. Key generation is done by running

K(1k) to generate pk, sk. Additionally, SIM1(pk) (cf. the proof of Theorem 5.2) is run to generate

parameters σ and state (in the real experiment σ was generated by G(pk)). The public key pk′ is

〈pk, σ〉 and the secret key is sk. The adversary’s calls to the decryption oracle are handled as in

Expt0 (in particular, any ciphertext C̃ may be decrypted since sk is known), but the adversary’s

encryption oracle call will be handled differently. When A calls the encryption oracle on messages

m0, m1, we pick b randomly, compute C̃∗ = Epk(mb; ω) for random ω, and simulate the PPK for C̃∗

using algorithm SIM2(state; r) with randomly-chosen r. Now, the final output b′ of A is completely

determined by pk′ = 〈pk, σ〉, random coins r′ for A, the vector of challenges ~q used by the decryption

oracle, the values b and ω used in computing C̃∗, and the values state and r used by SIM2 in

simulating the encryption oracle. Since SIM yields a perfect simulation of a real execution of the

PPK, we have Pr1[Succ] = Pr0[Succ], where the first probability refers to the probability of an event

in Expt1.

We now describe our adversary A′ attacking the semantic security of (K, E ,D). Given the

public key pk, adversary A′ runs SIM1(pk) to generate parameters σ and state. A′ then fixes the

randomness r′ of A, and runs A on input pk′ = 〈pk, σ〉. Simulation of the encryption oracle for

A is done as follows: when A submits two messages m0, m1, adversary A′ simply forwards these

to its encryption oracle and receives in return a ciphertext C̃∗ (note that the encryption oracle

thus implicitly defines values b∗ and ω∗). Then, A′ simulates the PPK for C̃∗ using algorithm

SIM2(state; r) for randomly-chosen coins r. Simulation of the decryption oracle for A is done by

choosing a random vector of queries ~q ∗ and attempting to extract the relevant witnesses (in expected

polynomial time) from the PPKs given by A. Details of the simulation are described below. In case

the simulation is successful, the final output b′ is just the final output of A; if the simulation is

not successful, the final output b′ is a randomly-chosen bit. As we show below, the simulation will

succeed with sufficiently high probability such that if the advantage of A (in attacking the CCA2

security of Π) is not negligible then the advantage of A′ (in attacking the semantic security of

116

(K, E ,D) is not negligible as well. This will complete the proof.

It remains to show how to simulate the decryption oracle. Our proof requires techniques used in

an analysis of concurrent composition of zero-knowledge proofs [49]. We assume that A controls the

scheduling of all messages to and from all the oracles; so, for example, the decryption oracle does

not send its next message until A requests it. Define the ith instance of the decryption oracle as the

ith time A requests the second message (i.e., the challenge) of the PPK be sent by the decryption

oracle. In any transcript of the execution of A, we let Ci denote the ciphertext sent by A in the

ith instance of the decryption oracle. For any instance of the decryption oracle, we say the instance

succeeds if (1) an honest receiver would accept the instance, (2) the transcript of the instance is

different from the transcript (if it yet exists) of the interaction of A with the encryption oracle, and

(3) the timing constraints are satisfied for that instance. Otherwise, we say the instance fails.

Recall that the simulator has values 〈pk, σ, r′, ~q ∗, state, r〉 and has access to an encryption oracle

which, on input m0, m1, outputs Epk(mb∗ ; ω∗) for random b∗ and ω∗. Note that the value state defines

a key VK which is used by SIM2 when giving its simulated proof. The values pk, σ, r′, state, and r

are fixed throughout the simulation. When we say the simulator interacts with A using 〈~q, ω, b〉 we

mean that the simulator runs A as in Expt1; that is, encryption oracle query m0, m1 is answered by

encrypting mb using randomness ω and then running SIM2(state; r), and the challenge sent by the

ith instance of the decryption oracle is qi. We note that decryption requests cannot be immediately

satisfied; this will not be a problem, as we show below.

We begin with simulation of the first instance. The simulator chooses random ~q, ω, b and interacts

with A using 〈~q, ω, b〉. If A makes a call m0, m1 to the encryption oracle before q1 is requested, the

simulator forwards m0, m1 to its encryption oracle and receives in return a ciphertext C̃∗; we then

say the ciphertext is defined at instance 1. Once the ciphertext is defined, the simulator no longer

needs to choose values ω, b and, in effect, interacts with A using 〈~q, ω∗, b∗〉. If the verification key

VK1 used by A in the first instance is equal to VK defined by state, the first instance is declared

conditionally delinquent and the simulator proceeds to simulation of instance 2.

If the ciphertext is not defined at instance 1, the simulator interacts with A using 〈~q, ω, b〉 until

the first instance either succeeds or conclusively fails. Note that decryption of ciphertexts C̃i with

i > 1 is not required since such a request would imply that time β has elapsed since the sending of the

second message of instance i, but this would mean that time α has already elapsed since the second

message of instance 1 was sent (and therefore the first instance has either succeeded or failed by that

point). If the first instance succeeds, the simulator proceeds with witness extraction as described

below. If the first instance fails, the simulator chooses new, random ~q, ω, b and interacts with A using

〈~q, ω, b〉. This is repeated for a total of at most t4/τ times (using new, random ~q, ω, b each time) or

117

until the first instance succeeds, where τ = τ(k) is an inverse polynomial whose value we will fix at

the end of the proof and t = t(k) is a bound on the number of times A interacts with the decryption

oracle. If the first instance ever succeeds, the simulator proceeds with witness extraction. Otherwise,

the first instance is declared conditionally delinquent and the simulator proceeds to simulation of

the second instance.

If the ciphertext is defined at instance 1, the simulator proceeds as above, but uses values ω∗, b∗

to interact with A (where these values are defined by ciphertext C̃∗ received from the simulator’s

encryption oracle, as discussed previously).

If the first instance ever succeeds, witness extraction will be performed. Assume the first instance

succeeded when interacting with A using 〈~q, ω, b〉. The simulator then does the following:

For n = 0 to e− 1:
q′1 ← Ze

Interact with A using 〈q′1, q2, . . . , qt, ω, b〉
If the first instance succeeds and q′1 6= q1, output the transcript and stop

Interact with A using 〈n, q2, . . . , qt, ω, b〉
if the first instance succeeds and n 6= q1, output the transcript and stop

Output ⊥ and stop

If ⊥ is not output, the simulator attempts to compute a witness to the decryption of C̃1 as in the

proof of Theorem 5.2. If such a witness is computed, we say the first instance is extracted and the

simulator proceeds with simulation of instance 2. If ⊥ is output, or if ⊥ is not output but a witness

to the decryption of C̃1 cannot be computed, the entire simulation is aborted; we call this a failure

to extract.

In general, when we are ready to simulate the ith instance (assuming the entire simulation has not

been aborted), each of the first i−1 instances has been classified as either extracted or conditionally

delinquent. If instance j is extracted, the simulator knows the decryption of C̃j and can send it to A

upon successful completion of that instance in the current simulation. On the other hand, if instance

j is classified as conditionally delinquent, then with sufficiently high probability that instance will

never succeed.

We say the ciphertext is defined before instance i if, for some j ≤ i, the ciphertext is defined at j.

At the beginning of simulation of the ith instance, if the ciphertext is not defined before instance i−1,

the simulator chooses random qi, . . . , qt, ω, b and interacts with A using 〈q∗1 , . . . q∗i−1, qi, . . . , qt, ω, b〉.

If A makes a call m0, m1 to the decryption oracle before qi is requested, the simulator forwards

m0, m1 to its encryption oracle and receives in return a ciphertext C̃∗; we then say the ciphertext is

defined at instance i. If the verification key VKi used by A during the ith instance of the decryption

oracle is equal to VK defined by state, the ith instance is declared conditionally delinquent and the

simulator proceeds with simulation of the next instance.

118

If the ciphertext is not defined before instance i, the simulator continues to interact with A

using 〈q∗1 , . . . q∗i−1, qi, . . . , qt, ω, b〉 until the ith instance either succeeds or conclusively fails. If a

success occurs, witness extraction is performed as described below. In case the ith instance fails, the

simulator chooses new, random qi, . . . , qt, ω, b and interacts withA using 〈q∗1 , . . . , q∗i−1, qi, . . . , qt, ω, b〉.

This is repeated for a total of at most t4/τ times or until the ith instance succeeds. If the ith instance

ever succeeds, the simulator proceeds with witness extraction as described below. Otherwise, the ith

instance is declared conditionally delinquent and the simulator proceeds to simulation of the next

instance.

Note that during simulation of instance i, decryption of ciphertexts Cj with j > i is not required

since such a request would imply that time β has elapsed since the sending of the second message

of instance j, but this would mean that time α has already elapsed since the second message of

instance i was sent (and therefore the ith instance has either succeeded or failed by that point).

However, the simulator may be required to decrypt ciphertext C̃j with j < i. In case instance j is

extracted, this is no problem, since the simulator knows the witness to the decryption of C̃j . On

the other hand, when j is conditionally delinquent, there is a problem. We handle this as follows:

if conditionally delinquent instance j succeeds before qi is sent, the entire simulation is aborted; we

call this a classification failure. If a conditionally delinquent instance j succeeds after qi is sent, we

consider this an exceptional event at instance j during simulation of i, and do not include it in the

count of failed trials. However, if 3t3/τ such exceptional events occur for any j, the entire simulation

is aborted; we call this an exception at j during simulation of i.

If the ciphertext is defined before instance i, the simulator proceeds as above but using ω∗, b∗

(where these values are defined by the ciphertext C∗ obtained from the simulator’s encryption oracle,

as discussed previously).

If the ith instance ever succeeds, witness extraction will be performed. Assume the first instance

succeeded when interacting with A using 〈~q, ω, b〉. The simulator then does the following (success

here means that the ith instance succeeds and no exceptional events occurred during the interaction

with A):

For n = 0 to e− 1:
q′i ← Ze

Interact with A using 〈q1, qi−1, q
′
i, qi+1, . . . , qt, ω, b〉

If the first instance succeeds and q′i 6= qi, output the transcript and stop
Interact with A using 〈q1, qi−1, n, qi+1, . . . , qt, ω, b〉
if the first instance succeeds and n 6= qi, output the transcript and stop

Output ⊥ and stop

If ⊥ is not output, the simulator attempts to compute a witness to the decryption of C̃i as in

the proof of Theorem 5.2. If such a witness is computed, we say the ith instance is extracted and

119

proceed with simulation of the next instance. If ⊥ is output, or if ⊥ is not output but a witness to

the decryption of C̃i cannot be computed, the entire simulation is aborted; we call this a failure to

extract.

Once all t instances have been simulated, if the ciphertext is not defined before t, the simulator

simply interacts with A on input 〈~q ∗,⊥,⊥〉 until A makes call m0, m1 to the encryption oracle. The

simulator forwards these values to its encryption oracle, receiving in return C̃∗. Simulation of the

encryption oracle for A is done using SIM2, as above. In this case, we say the ciphertext is defined

at t + 1.

As long as the entire simulation is not aborted, the result is a perfect simulation of the view of A

in Expt1 with random variables Ω∗ def
= 〈pk, σ, r′, state, r, w∗, b∗〉. We now show that: (1) the expected

running time of the above simulation is polynomial in t and 1/τ , and (2) with all but negligible

probability over Ω∗ and for some negligible function µ(·), the simulation fails with probability at

most 3τ/4 + µ(k). Fixing τ(k) to an appropriate inverse polynomial function then yields a correct

simulation with sufficiently high probability.

Claim 5.7 The expected running time of the simulation is polynomial in t and 1/τ .

For simulation of each instance, at most 4t4/τ trials are run before either aborting, declaring the

instance conditionally delinquent, or attempting to extract. Say extraction is attempted at instance

i because the ith instance succeeded (and no exceptional events occurred) when interacting with

A using 〈~q, ω, b〉. Let pi denote the probability, over choice of q′i, that the ith instance succeeds

and no exceptional events occur when interacting with A using 〈q1, . . . , qi−1, q
′
i, qi+1, . . . , qt, ω, b〉. If

pi > 1/e, extraction requires expected number of steps at most 2/pi. Since extraction with these

values of ~q, ω, b is performed with probability at most pi · (4t4/τ), the contribution to the expected

running time is at most (4t4pi/τ) · 2/pi = 8t4/τ . If pi ≤ 1/e, extraction requires at most e steps,

and the contribution to the expected running time is then at most (4t4/eτ) · e = 4t4/τ . In either

case, the contribution to the expected running time for simulation of any instance is polynomial

in t and 1/τ . Since there are at most t instances, the entire simulation has expected running time

polynomial in t and 1/τ .

Claim 5.8 With all but negligible probability over Ω∗, the probability of a classification failure is at

most τ/4 + ε4(k), where ε4(·) is negligible.

The analysis follows [49]. Say the ciphertext is defined at instance v, where 1 ≤ v ≤ t+1. For i < v,

define the values defined before i as q∗1 , . . . , q∗i−1 and the variables not defined before i as variables

qi, . . . , qt, ω, b; for i ≥ v, define the values defined before i as q∗1 , . . . , q∗i−1, ω
∗, b∗ and the variables

120

not defined before i as qi, . . . , qt. For each i, recursively define di as the probability (over variables

not defined before i) that instance i succeeds, conditioned on the values defined before i and on the

event that no delinquent instance j (j < i) succeeds. Define an instance i to be delinquent if di is at

most τ/4t3. We now compute the probability that an instance which is not delinquent is classified

as conditionally delinquent.

If an instance i is declared conditionally delinquent because VKi = VK, then, with all but

negligible probability over Ω∗, the probability that instance i succeeds is negligible. If not, the

security of the one-time signature scheme is violated with non-negligible probability during Expt1

(details omitted). If an instance is declared conditionally delinquent for failing too many trials, then,

if di > τ/4t3, the probability that none of the t4/τ trials succeeded is at most

(
1−

τ

4t3

)t4/τ

≤ e−t/4,

which is negligible.

Assuming that all instances declared conditionally delinquent are in fact delinquent, the proba-

bility of a classification failure during a given instance is at most τ/4t3, and hence the probability

of a classification failure occurring is at most t · τ/4t3 ≤ τ/4.

Claim 5.9 With all but negligible probability over Ω∗, the probability of a failure to extract is negli-

gible.

A failure to extract occurs for one of two reasons: (1) the extraction algorithm cannot generate

two different accepting transcripts or (2) the extraction algorithm generates two different accepting

transcripts but cannot extract a witness to the decryption of the relevant ciphertext. Say extraction

is attempted at instance i because the ith instance succeeded (and no exceptional events occurred)

when interacting with A using 〈~q, ω, b〉. Let pi denote (as in Claim 5.7) the probability, over choice

of q′i, that the ith instance succeeds and no exceptional events occur when interacting with A using

〈q1, . . . , qi−1, q
′
i, qi+1, . . . , qt, ω, b〉. If case (1) occurs, this implies that pi = 1/e. But in this case,

extraction at this instance and with these values of ~q, ω, b is performed only with probability at

most (4t4/τ) · (1/e), which is negligible. Furthermore, since VKi 6= VK (otherwise instance i is

declared conditionally delinquent), the techniques of the proof of Theorem 5.3 imply that, with all

but negligible probability over Ω∗, case (2) occurs with only negligible probability. (If not, an RSA

root may be extracted in expected polynomial time with non-negligible probability.)

Claim 5.10 With all but negligible probability over Ω∗, the probability of abort due to an exception

at j during simulation of i (for any i, j) is at most τ/2 + ε5(k), where ε5(·) is negligible.

121

Fix i and j with i > j. Define d′i,j as the probability (over variables not defined before i) that instance

j succeeds (conditioned on the values defined before i). An exception at j during simulation of i

means that, during simulation of i, conditionally delinquent instance j succeeded at least 3t3/τ times

out of at most 4t4/τ trials. We claim that if this happens, then, with all but negligible probability,

d′i,j is at least 1/2t. If this were not the case, letting X be a random variable denoting the number

of successes in 4t4/τ trials and µ denote the actual value of d′i,j , the Chernoff bound shows that:

Pr[X >
3

2
· µ4t4/τ] < Pr[X > 3t3/τ]

< (e/(3/2)3)t3/τ ,

and since e/(3/2)3 < 1, this expression is negligible. Assuming instance j is in fact delinquent (which

is true with all but negligible probability; see the proof of Claim 5.8), the probability (over variables

not defined before j) that d′i,j ≥ 1/2t is at most τ/2t2. Summing over all t2 possible choices of i and

j yields the desired result.

Assume the advantage of A in Expt1 is not negligible. This implies the existence of some constant

c such that, for infinitely many values of k,
∣∣∣∣Pr1[Succ]−

1

2

∣∣∣∣ > 1/kc.

Set τ(k) = 1/2kc. The probability of a correct simulation is then at least 1− 1/2kc− µ(k) for some

negligible function µ(·). Let Sim denote the event that a successful simulation occurs. Then:

AdvA′(k) =

∣∣∣∣Pr[Succ ∧ Sim] + Pr[Succ ∧ Sim]−
1

2

∣∣∣∣

=

∣∣∣∣Pr1[Succ ∧ Sim] + Pr[Succ|Sim] Pr[Sim]−
1

2

∣∣∣∣

≥

∣∣∣∣Pr1[Succ]− Pr1[Succ ∧ Sim]−
1

2

∣∣∣∣−
1

2
· (

1

2kc
+ µ(k))

≥

∣∣∣∣Pr1[Succ]−
1

2

∣∣∣∣−
3

2
· (

1

2kc
+ µ(k)),

and then for infinitely many values of k we have AdvA′(k) ≥ 1/8kc so that this quantity is not

negligible. This completes the proof of the Theorem.

For completeness, we state the following theorems (in each case, we must also assume the security

of (SigGen, Sign, Vrfy) as a one-time signature scheme and the security of UOWH as a universal one-

way hash family):

Theorem 5.7 Assuming the hardness of factoring Blum integers for expected-polynomial-time algo-

rithms, the protocol of Figure 5.5 (with t = Θ(k)) is an interactive encryption scheme secure against

sequential chosen-ciphertext attacks. If timing constraints are enforced, the resulting protocol is

secure against concurrent chosen-ciphertext attacks.

122

Theorem 5.8 Assuming the hardness of the decisional7 composite residuosity problem for expected-

polynomial-time algorithms, the protocol of Figure 5.6 is an interactive encryption scheme secure

against sequential chosen-ciphertext attacks. If timing constraints are enforced, the resulting protocol

is secure against concurrent chosen-ciphertext attacks.

Theorem 5.9 Assuming the hardness of the DDH8 problem for expected-polynomial-time algo-

rithms, the protocol of Figure 5.7 is an interactive encryption scheme secure against sequential

chosen-ciphertext attacks. If timing constraints are enforced, the resulting protocol is secure against

concurrent chosen-ciphertext attacks.

These schemes are in fact quite efficient, especially in comparison with the underlying semantically

secure schemes. For example, the RSA-based scheme of Figure 5.3 for encryption of ℓ-bit messages

requires only 2ℓ+4 exponentiations compared to the ℓ exponentiations required by the basic scheme.

Furthermore, the additional exponentiations may be done in a preprocessing stage before the message

to be sent is known.

5.4.2 Password-Based Authentication and Key Exchange

Password-based authentication and key exchange in the public-key setting were first formally mod-

eled by Halevi and Krawczyk [76]; Boyarsky [22] extends the model to the multi-party setting (the

model and definition of security for this setting are essentially identical to that presented in Chapter

3, except that the adversary is now additionally given the public keys of the servers). Protocols for

password-based authentication may be constructed from any chosen-ciphertext-secure encryption

scheme [76, 22]. Let pw be the password of the user which is stored by the server. A password-based

authentication protocol using a (non-interactive) chosen-ciphertext-secure encryption scheme has the

server send a random, sufficiently-long nonce n to the user, who replies with an encryption of pw ◦n

(actually, this brief description suppresses details which are unimportant for the discussion which

follows; see [76, 22]). The server decrypts and verifies correctness of the password and the nonce;

the nonce is necessary to prevent replay attacks. When an interactive, chosen-ciphertext-secure

encryption scheme is used, the nonce is not necessary if the probability that a server repeats its

messages is negligible [22]. In this case, authentication proceeds by simply having the user perform

a (random) encryption of pw.

Password-based key-exchange protocols (with or without mutual authentication) may also be

constructed using any chosen-ciphertext-secure encryption scheme [76, 22]. Here, for example, the

7As mentioned in Section 5.3.3, a construction secure under the (weaker) computational variant of this assumption
is also possible.

8As mentioned in Section 5.3.4, a construction secure under the (weaker) CDH assumption is also possible.

123

user responds to a random nonce n with an encryption of pw ◦n ◦ k, where k is the key to be shared

(this achieves one-way authentication only; mutual authentication can be achieved with an additional

round). As above, when an interactive chosen-ciphertext-secure encryption scheme is used, the nonce

is not necessary when the probability of repeat messages from the server is negligible.

The only previously-known efficient and provably-secure implementations use the public-key en-

cryption scheme of [36] whose security relies on the DDH assumption (the interactive solution of [44]

may also be used, but, as mentioned previously, the solutions presented here are more efficient). Our

techniques allow efficient implementation of these protocols based on a wider class of assumptions.

For the chosen-ciphertext-secure schemes given in the previous section, the probability that

a server (acting as a receiver for the given encryption scheme) repeats a challenge is negligible.

Figures 5.3, 5.5–5.7 therefore immediately yield efficient, 3-round, password-based authentication or

key-exchange protocols in the public-key model. Security of these protocols may be based on the

hardness of factoring, the RSA problem, or the decisional composite residuosity assumption. We

stress that these are the first efficient and provably-secure constructions based on assumptions other

than DDH.

5.4.3 Deniable Authentication

Previous work. Deniable authentication was first considered in [44], and a formal definition appears

in [49]. The strongest notion of security requires the existence of a simulator which, given access

only to a malicious verifier, can output a transcript which is indistinguishable from an interaction

of the verifier with the actual prover. Constructions based on any non-malleable encryption scheme

are known [49, 50, 48]. However, these protocols are not secure (in general) when a non-malleable

interactive encryption scheme is used. For example, the non-malleable, interactive encryption scheme

of [44] requires a signature from the prover and hence the resulting deniable authentication protocol

is not simulatable (this problem is pointed out explicitly by Dwork, et al. [49]). Thus, the only

previously-known, efficient deniable-authentication protocol which is secure under the strongest

definition of security uses the construction of Dwork et al. [49] instantiated with the Cramer-Shoup

encryption scheme [36]. Our constructions have the same round-complexity and efficiency, but their

security may be based on a larger (and, in some cases, weaker) class of assumptions.

Definitions. We begin with a review of the definition that appears in [49, 48]. We have a prover

P who has established a public key using key-generation algorithm K and is willing to authenticate

messages to a verifier V ; however, P is not willing to allow the verifier to convince a third party

(after the fact) that P authenticated anything. This is captured by ensuring that a transcript of an

execution of the authentication protocol can be efficiently simulated without any access to P . We also

124

require that no malicious adversary will be able to impersonate P . More specifically, an adversary

M (acting as man-in-the-middle between P and a verifier) should not be able to authenticate a

message m to the verifier which P does not authenticate forM.

Definition 5.4 Let Π = (K,P ,V) be a tuple of ppt algorithms. We say Π is a strong deniable-

authentication protocol over message space M = {Mpk}pk∈K(1k),k∈N if it satisfies the following:

(Completeness) For all (pk, sk) output by K(1k) and all m ∈Mpk, we have 〈Psk(m),V〉(pk) = m

(when V does not output ⊥ we say it accepts).

(Soundness) Let M be a ppt adversary with oracle access to P, where P authenticates any poly-

nomial number of messages chosen adaptively by M. Then the following is negligible in k:

Pr[(pk, sk)← K(1k); m← 〈MPsk(·),V〉 : m /∈ {m1, . . . , mℓ} ∧m 6=⊥],

where m1, . . . , mℓ are the messages authenticated by P.

(Strong deniability) Let V ′ be a ppt adversary interacting with P, where P authenticates any

polynomial number of messages chosen adaptively by V ′. There exists an expected-polynomial-time

simulator SIM with black-box (rewind) access to V ′ such that, with all but negligible probability over

pk output by K(1k), the following distributions are statistically indistinguishable:

{pk,SIM(pk)}

{pk,V ′Psk(pk)}.

We also consider deniable-authentication protocols with a slightly weaker guarantee on their denia-

bility.

Definition 5.5 Let Π = (K,P ,V) be a tuple of ppt algorithms. We say Π is a strong ε-deniable-

authentication protocol over message space M = {Mpk} if it satisfies completeness and soundness as

in Definition 5.4 in addition to the following:

(Strong ε-deniability) Let V ′ be a ppt adversary interacting with P, where P authenticates any

polynomial number of messages chosen adaptively by V ′. There exists a negligible function µ(·) and

a simulator SIM with black-box (rewind) access to V ′ such that, for all ε > 0, the expected running

time of SIM(pk, ε) is polynomial in k and 1/ε and, with all but negligible probability over pk output

by K(1k), the following distributions have statistical difference at most ε + µ(k):

{pk,SIM(pk, ε)}
{
pk,V ′Psk(pk)

}
.

125

A relaxation of the above definitions which has been considered previously (e.g., [49]) allows

the simulator SIM to have access to Psk when producing the simulated transcript, but P only

authenticates some fixed sequence of messages independent of those chosen by V ′. We call this weak

deniability. In practice, weak deniability may not be acceptable because the protocol then leaves an

undeniable trace that P authenticated something (even if not revealing what). However, P may want

to deny that any such interaction took place. Note that previous solutions based on non-malleable

encryption [44, 49, 50, 48] only achieve weak deniability when using the interactive non-malleable

encryption scheme suggested by [44] (which requires a signature from P).

Constructions. The protocols of Section 5.3 may be easily adapted to give deniable-authentication

protocols whose security rests on the one-wayness of the appropriate encryption scheme for random

messages; semantic security of the encryption scheme is not necessary. This yields very efficient

deniable-authentication protocols since, for example, we may use the “simple” RSA encryption

scheme in which r is encrypted as re mod N (under the RSA assumption, this scheme is one-way

for random messages). Furthermore, efficient deniable-authentication protocols may be constructed

using weaker assumptions; for example, using the CDH assumption instead of the DDH assumption.

Below, we improve the efficiency of these schemes even further, although in this case the resulting

protocols are only secure over polynomially-large message spaces.

We first present the paradigm for construction of protocols which are secure over exponentially-

large message spaces. The basic idea is for the receiver to give a non-malleable PPK for a ciphertext

C encrypted using an encryption scheme which is one-way for random messages. Additionally,

the message m which is being authenticated is included in the transcript and is signed along with

everything else. Assuming the receiver’s proof succeeds, the prover authenticates the message by

responding with the decryption of C.

Figure 5.8 shows an example of this approach applied to the non-malleable PPK for RSA en-

cryption. The public key of the prover P is an RSA modulus N , a prime e (with |e| = Θ(k)),

elements g, h ∈ Z∗
N , and a hash function H chosen randomly from a family of universal one-way

hash functions. Additionally, the prover has secret key d such that de = 1 mod ϕ(N). The verifier

V has message m taken from an arbitrary message space (of course, |m| must be polynomial in the

security parameter). To have m authenticated by P , the verifier chooses a random y ∈ Z∗
N , computes

C = ye, and then performs a non-malleable proof of knowledge of the witness y to the decryption of

C (as in Figure 5.3). Additionally, the message m is sent as the first message of the protocol, and is

signed along with the rest of the transcript. If the verifier’s proof succeeds, the prover computes Cd

and sends this value to the verifier. If the proof does not succeed, the prover simply replies with ⊥.

As in the case of interactive encryption in Section 5.4.1, timing constraints are needed when

126

Public key: N ; prime e; g, h ∈ Z∗

N ; H : {0, 1}∗ → Ze

V (input m ∈ {0, 1}∗) P (input d)

(VK, SK)← SigGen(1k)

y, r1, R2 ← Z∗
N ; q1 ← Ze

C := ye; α := H(VK)

A1 := re
1

A2 := Re
2/ (gαh)

q1

VK, m, C, A1, A2
-

q2 ← Zeq2
�

q := q2 − q1 mod e

R1 := yqr1

s← SignSK(transcript) q, R1, R2, s
-

Verify: Re
1

?
= CqA1

Re
2

?
=
(
gH(VK)h

)(q2−q mod e)
A2

VrfyVK(transcript, s)
?
= 1Cd

�

Figure 5.8: A deniable-authentication protocol based on RSA.

concurrent access to the prover is allowed. In this case, we require that the verifier respond to the

challenge (i.e., send the third message of the protocol) within time α from when the challenge was

sent. If V does not respond within this time, the proof is rejected. Additionally, the last message of

the protocol is not sent by the prover until at least time β has elapsed since sending the challenge

(clearly, we must have β > α).

Theorem 5.10 Assuming (1) the hardness of the RSA problem for expected-polynomial-time algo-

rithms, (2) the security of (SigGen, Sign, Vrfy) as a one-time signature scheme, and (3) the secu-

rity of UOWH as a universal one-way hash family, the protocol of Figure 5.8 is a strong deniable-

authentication protocol, over an arbitrary message space, for adversaries given sequential access to

the prover. If timing constraints are enforced as outlined above, the protocol is a strong ε-deniable-

authentication protocol for adversaries given concurrent access to the prover.

Proof We assume familiarity with the proofs of Theorems 5.3 and 5.6. We consider the more

challenging case of concurrent access to the prover; results for the case of sequential access may be

derived from the arguments given here. Correctness of the protocol is immediate. We demonstrate

soundness of the protocol using the same techniques as in the proof of Theorem 5.6. Given a ppt

adversaryM, we construct an expected-polynomial-time adversary A′ who attacks the one-wayness

of the encryption scheme for a random message. In particular, adversary A′ takes as input modulus

127

N and a random C ∈ Z∗
N and attempts to compute y = C1/e mod N . Define Succ as the event

that M authenticates a message for V which was not authenticated by P (cf. Definition 5.4). We

show that the success probability of A′ in inverting C will be negligible if and only if Pr[Succ] is

negligible. This immediately implies soundness of the deniable-authentication protocol.

Let t(k), which is polynomial in k, be a bound on the number of timesM accesses the prover when

run on security parameter 1k; without loss of generality, we assume that t(k) ≥ k (for convenience,

in the remainder of the proof we suppress the dependence on k and simply write t). Let pk denote

the components N, e of the public key and let σ denote components g, h, H . In the real experiment

Expt0, the actions of M are completely determined by pk′ = 〈pk, σ〉, random coins r′ for M, the

vector of challenges ~q = q1, . . . , qt used during the t interactions of M with the prover, and the

randomness used by the verifier (this includes the randomness y used to generate C as well as the

randomness used for execution of the PPK). Let Pr[Succ0] denote the probability of event Succ in

the real experiment.

We modify the real experiment giving Expt1, as follows. Component pk of the public key is

generated normally, along with the corresponding secret key sk; however, σ is generated using

SIM1(pk), which also generates state. The adversary M is run on input pk′ = 〈pk, σ〉. The

adversary’s calls to the prover are handled as in Expt0 (in particular, any ciphertext C may be

decrypted since sk is known), but the adversary’s call to the verifier will be handled differently.

When M calls the verifier on message m, we now compute C = ye for random y and simulate the

PPK for C (including m in the transcript) using algorithm SIM2(state; r) for randomly-chosen r.

Now, the actions of M are completely determined by pk′, random coins r′ for M, the vector of

challenges ~q = q1, . . . , qt used by the prover, the value y, and the values state and r used by SIM2

in simulating the verifier. Since SIM yields a perfect simulation of a real execution of the PPK (cf.

Theorem 5.2), we have Pr[Succ1] = Pr[Succ0], where the first probability refers to the probability of

event Succ in Expt1.

For the final experiment Expt2, interaction with the prover will be handled by extracting witnesses

to the decryption of the various ciphertexts from the proofs given byM (in particular, sk will not be

used). Let Ω
def
= 〈pk, σ, r′, ~q, state, r〉 and let Ω∗ def

= 〈Ω, y〉. We show below an expected-polynomial-

time simulator which takes Ω and C as input (where C = ye). For any particular Ω∗, let pΩ∗ be

the probability that the simulator succeeds in simulating the execution ofM in Expt1 with random

variables Ω∗. Then for some negligible function µ(·) and with all but negligible probability over Ω∗,

we will have pΩ∗ > 1/2 − µ(k). As in the proof of Theorem 5.6, this implies that Pr[Succ2] is at

least 1/2 · Pr[Succ1]− ε1(k), for some negligible function ε1(·).

Before giving the details of the simulation, we note that Expt2 immediately suggests an adversary

128

A′ attacking the one-wayness of RSA encryption. Given a public key pk and a ciphertext C,

adversary A′ runs SIM1(pk) to generate parameters σ and state. A′ then fixes the randomness r′

ofM, and runsM on input pk′ = 〈pk, σ〉. Simulation of the verifier forM is done as follows: when

M gives message m, adversary A′ uses SIM2(state; r), for randomly-chosen r, to simulate a PPK

for C and includes m in the transcript. The decryption oracle will be simulated as in Expt2 (details

of which appear below). A′ outputs whatever value M sends to the verifier as the final message of

that interaction. Note that the probability that A′ successfully outputs C1/e is exactly Pr[Succ2].

One-wayness of RSA implies that this is negligible.

Simulation of P in Expt2 may be done exactly as in the proof of Theorem 5.6. In fact, the proof

here is even easier since the ciphertext C to be inverted is known to A′ at the beginning of the

simulation; therefore, we do not need to worry about the instance at which C is defined. In brief,

the simulator is given values 〈pk, σ, r′, ~q ∗, state, r, C〉 (where C = ye for some y unknown to the

simulator). The values pk, σ, r′, state, r, and C are fixed throughout the simulation. When we say

the simulator interacts with M using 〈~q〉 we mean that the simulator runsM as in Expt1; that is, if

M submits message m to V , this query is answered by using SIM2(state; r) to simulate a PPK of

C and including m in the transcript, and the challenge sent by the ith instance of the prover is qi.

When we are ready to simulate the ith instance (assuming the entire simulation has not been

aborted), each of the first i−1 instances has been classified as either extracted or conditionally delin-

quent. The simulator chooses random qi, . . . , qt and interacts withM using 〈q∗1 , . . . , q∗i−1, qi, . . . , qt〉

until either (1) the ith instance succeeds or (2) the ith instance fails. If success occurs, witness

extraction is performed as in the proof of Theorem 5.6. Otherwise, the above process is repeated at

most t4/τ times; if the ith instance never succeeds, it is classified as conditionally delinquent.

The remaining details of the simulation may be derived from the proof of Theorem 5.6. This

completes the proof of soundness.

For the proof of strong ε-deniability, note that the proof of Theorem 5.6 actually gives, for all

τ > 0, a simulator which has expected running time polynomial in k and 1/τ ; furthermore, with

all but negligible probability over Ω∗ the simulation is aborted with probability at most τ plus a

negligible quantity. The modified simulator for the present context, as described above, inherits this

property. This immediately implies strong ε-deniability.

We briefly sketch the proof of strong deniability for the sequential case (where timing constraints

are not used). Here, the simulator is given values pk′, r′, and ~q ∗ and must simulate the interaction of

a malicious verifier V∗ with P . To do so, the simulator fixes pk, σ, sets the random tape of V∗ to r′

and gives pk′ to V∗ as input, and interacts with V∗ using ~q ∗. To simulate the ith instance (assuming

all previous instances have been simulated and the entire transcript has not been aborted), the

129

simulator interacts with V∗ using ~q ∗ until V∗ sends the third message of the ith instance. If this

instance fails, the simulator responds with ⊥ and continues with simulation of the next instance. If

this instance succeeds, the simulator runs the witness extraction procedure as in the proof of Theorem

5.6. If witness extraction fails, the simulation is aborted; we call this a failure to extract. If witness

extraction succeeds, the simulator now knows C
1/e
i and can therefore continue with simulation of

the next instance.

If an instance j fails when interacting with V∗ using q1, . . . , qj , qj+1, . . . , qt then this instance

always fails when interacting with V∗ using q1, . . . , qj , q
′
j+1, . . . , q

′
t for arbitrary q′j+1, . . . , q

′
t; this

follows from the sequential access of V∗. Therefore, no classification failures or exceptional events

can occur. Thus, the simulation is aborted only following a failure to extract; however, as shown in

the proof of Theorem 5.6, the probability of a failure to extract is negligible.

For completeness, we state the following theorems (in each case, we must also assume the security

of (SigGen, Sign, Vrfy) as a one-time signature scheme and the security of UOWH as a universal one-

way hash family):

Theorem 5.11 Assuming the hardness of factoring Blum integers for expected-polynomial-time al-

gorithms, the protocol of Figure 5.5 may be adapted, as above, to give a strong deniable-authentication

protocol (over an arbitrary message space) for adversaries given sequential access to the prover. If

timing constraints are enforced, the protocol is an strong ε-deniable-authentication protocol for ad-

versaries given concurrent access to the prover.

Theorem 5.12 Assuming the hardness of the computational composite residuosity problem for

expected-polynomial-time algorithms, the protocol of Figure 5.6 may be adapted, as above, to give

a strong deniable-authentication protocol (over an arbitrary message space) for adversaries given

sequential access to the prover. If timing constraints are enforced, the protocol is a strong ε-deniable-

authentication protocol for adversaries given concurrent access to the prover.

Theorem 5.13 Assuming the hardness of the computational Diffie-Hellman problem for expected-

polynomial-time algorithms, the protocol of Figure 5.7 may be adapted, as above, to give a strong

deniable-authentication protocol (over an arbitrary message space) for adversaries given sequen-

tial access to the prover. If timing constraints are enforced, the protocol is a strong ε-deniable-

authentication protocol for adversaries given concurrent access to the prover.

We stress that these protocols are quite practical. For example, the protocol implied by Theorem

5.13 has the same round-complexity, requires fewer exponentiations, has a shorter public key, and is

based on a weaker assumption than the most efficient, previously-known protocol for strong deniable

130

Public key: G; g, h0, h1 ∈ G

V (input m ∈Mq ⊂ Zq) P (input x = logg h0)

y, r0, z1, c2 ← Zq

C := gy

A1 := gr0

A2 := gz1/ (hm
0 h1)

c2

m, C, A1, A2
-

c← Zqc
�

c1 := c− c2 mod q

z0 := c1y + r0 c1, z0, z1
-

Verify: gz0
?
= Cc1A1

gz1
?
= (hm

0 h1)
c−c1 A2Cx

�

Figure 5.9: A deniable-authentication protocol for polynomial-size message spaces.

authentication (i.e., the protocol of [49] instantiated with the Cramer-Shoup encryption scheme [36]).

No previous efficient protocols were known based on the RSA, factoring, or computational/decisional

composite residuosity assumptions.

The efficiency of the above constructions may be improved further; however, the resulting pro-

tocols are secure over polynomial-sized message spaces only.9 In Figure 5.9, we illustrate the im-

provement for the non-malleable PPK of Figure 5.7 (similar modifications to Figures 5.3, 5.5, and

5.6 yield protocols whose security may be based on the RSA, factoring, or computational composite

residuosity assumptions). In the improved protocol, we make use of the fact that the adversary

cannot re-use the value m which the adversary attempts to authenticate for the verifier (since, to

break the security of the scheme, the adversary must authenticate a message which the prover does

not authenticate). This eliminates the need to use a verification key VK, and eliminates the need

for a one-time signature on the transcript. However, since the adversary chooses m (and this value

must be guessed by the simulator in advance; see proof below), the present schemes are only secure

when the message space is polynomial-size.

Theorem 5.14 Assuming the hardness of the CDH problem for expected-polynomial-time algo-

rithms, the protocol of Figure 5.9 is a strong deniable-authentication protocol (over message space

{Mq} where Mq ⊂ Zq and |Mq| is polynomial in k) for adversaries given sequential access to the
9In Section 5.4.5, we modify the protocol based on the CDH assumption to achieve security over an exponentially-

large message space.

131

prover. If timing constraints are enforced, the protocol is a strong ε-deniable-authentication protocol

for adversaries given concurrent access to the prover.

Proof Completeness is obvious. Strong deniability in the sequential case and strong ε-deniability

in the concurrent case follow from the arguments in the proof of Theorem 5.10. We prove soundness

of the protocol for the more difficult, concurrent case.

Given a ppt adversaryM, we construct an expected-polynomial-time algorithm A which solves

an instance of the CDH problem. Let Succ be the event that M authenticates a message for V

which was not authenticated by P (cf. Definition 5.4). We show that the success probability of A in

solving a random CDH instance is negligible if and only if Pr[Succ] is negligible. This immediately

implies soundness of the deniable-authentication protocol.

Let the size of Mq be p(k) (where p(·) is polynomial in the security parameter), and let t(k)

(where t(·) is polynomial in k), be a bound on the number of timesM accesses the prover when run

on security parameter 1k; without loss of generality, we assume that t(k) ≥ k (for convenience, in

the remainder of the proof we suppress the dependence on k and simply write p, t). Let pk denote

the values G, g, h0, h1 which constitute the public key. In the real experiment Expt0, the actions of

M are completely determined by pk, random coins r′ forM, the vector of challenges ~c = c1, . . . , ct

used during the t interactions ofM with the prover, and the randomness used by the verifier (this

includes the randomness y used to generate C as well as the randomness ωr used for the real PPK).

Let Pr[Succ0] denote the probability of event Succ in the real experiment.

We next modify the real experiment, giving Expt1, as follows. Public key pk is generated by

choosing g at random in G, choosing random m∗ ∈ M and x, r ∈ Zq, and setting h0 = gx and

h1 = hm∗

0 gr. The adversaryM is run on input G, g, h0, h1. The adversary’s calls to the prover are

handled as in Expt0 (this can be done efficiently since logg h0 is known), but the adversary’s call

to the verifier will be handled differently. If M ever asks the prover to authenticate message m∗,

abort. Furthermore, if M calls the verifier on message m with m 6= m∗, abort. (Without loss of

generality, we assume that if M calls the verifier on message m∗, then M never asks the prover

to authenticate m∗; note that M, by definition, cannot succeed if this occurs.) If m = m∗, choose

C∗ ∈ G at random, and simulate a PPK for C∗ as in the proof of Theorem 5.5. In particular,

choose z0, r1, c1 ∈ Zq at random, set A1 = gz0/(C∗)c1 and A2 = gr1 , and send m∗, C∗, A1, A2 as

the first message. Upon receiving query c from M, set c2 = c− c1 and compute z1 = c2r + r1; the

values c1, z0, z1 are sent as the response. Note that the actions ofM are now completely determined

by pk, r′,~c, C∗, ωf , where ωf denotes the randomness used for the simulated PPK. Let Pr[Succ1]

denote the probability of event Succ in this experiment. Since pk hides all information about the

choice of m∗, the probability of not aborting is exactly 1/p; furthermore, since the simulated proof

132

is identically-distributed to a real proof, we have Pr[Succ1] = 1/p · Pr[Succ0].

For the final experiment Expt2, actions of the prover will be simulated by extracting logg Ci

from the proofs given by M in its various interactions with the prover (in particular, logg h0 will

not be used). Let Ω
def
= 〈pk, r′,~c, C∗, ωf〉. We show below an expected-polynomial-time simulator

which takes Ω as input; furthermore, for all Ω and some negligible ε1(·), the simulator succeeds in

simulating the execution ofM in Expt1 with random variables Ω with probability at least 1/2−ε1(k).

Therefore, Pr[Succ2] > 1/2 · Pr[Succ1]− ε1(k). In particular (recalling that p is polynomial in k), if

Pr[Succ0] is non-negligible, then so is Pr[Succ2].

Before giving the details of the simulation, we note that Expt2 immediately suggests an adversary

A which solves the CDH problem. Given g, h0, C
∗ as input, A fixes random r′,~c, and ωf , and runs

M as in Expt2. Note that this can be efficiently done (given the simulator we describe below); in

particular logg h0 is not needed. Finally, A outputs whatever value M sends to the verifier as the

final message of that interaction. The probability that A solves the given CDH instance is exactly

Pr[Succ2]. Hardness of the CDH problem implies that this is negligible.

It remains to show how to simulate the actions of the prover. Define the ith instance of the prover

as the ith time that A requests the second message of the PPK (i.e., the challenge) be sent by the

prover. In any transcript of the execution ofM, we let Ci denote the second component of the first

message of the ith instance of the prover; define mi similarly. For any instance of the prover, we say

the instance succeeds if (1) an honest prover would accept the instance, (2) the timing constraints

are satisfied for that instance. Otherwise, we say the instance fails.

The simulator is given values 〈pk, r′,~c ∗, C∗, ω∗
f 〉; furthermore, the value m∗ is as defined above for

Expt1. The values pk, r′ are fixed throughout the simulation. When we say the simulator interacts

with M using 〈~c, y, ωr, C, ωf 〉 we mean the following:

• If C, ωf =⊥ and y, ωr 6=⊥, the simulator runsM using ~c as the challenges of the prover. When

M interacts with the verifier, the simulator runs the honest protocol for the verifier, sending

C = gy and executing a real PPK using coins ωr.

• If y, ωr =⊥ and C, ωf 6=⊥, the simulator runsM using ~c as the challenges of the prover. When

M interacts with the verifier, the simulator sends C∗ and executes the simulated PPK using

coins ωf . Note that such a simulation is only possible if m∗ is the message M sends to the

verifier.

Decryption requests cannot be immediately satisfied; this will not be a problem, as we show below.

To begin, the simulator chooses random ~q, y, ωr and interacts with M using 〈~c, y, ωr,⊥,⊥〉. If

M sends message m to the verifier and m 6= m∗, the simulation is aborted. IfM sends message m

133

to the verifier and m = m∗, we say the message is defined at instance 1. Otherwise, the message is

not defined at instance 1.

If the message is not defined at instance 1, the simulator interacts withM using 〈~c, y, ωr,⊥,⊥〉.

If m1 = m∗, the simulation is aborted. Otherwise, interaction continues until either (1) the first

instance succeeds or (2) the first instance fails. Note that the simulator cannot yet simulate the

prover for instances j > i; however, this is not required, since a request for such a simulation implies

that the first instance has already failed due to the timing constraints.

If the first instance ever succeeds, witness extraction is performed as described below. In case

the first instance fails, the simulator chooses new, random ~c, y, ωr and interacts with M using

〈~c, y, ωr,⊥,⊥〉. This is repeated at most t4/τ times (using new, random ~q, ω, b each time) or until

the first instance succeeds, where τ is a constant whose value we will fix at the end of the proof. If

the first instance ever succeeds, the simulator proceeds with witness extraction as described below.

Otherwise, the first instance is declared conditionally delinquent and the simulator proceeds to

simulation of the second instance as described below.

If the message is defined at instance 1, the simulator proceeds as above, but interacts with M

using 〈~c,⊥,⊥, C∗, ω∗
f〉.

If the first instance ever succeeds, witness extraction will be performed. Assume the first instance

succeeded when interacting with M using 〈~c, y, ωr, C, ωf 〉. The simulator does the following:

For n = 0 to q − 1:
c′1 ← Zq

Interact with M using 〈c′1, c2, . . . , ct, y, ωr, C, ωf 〉
If the first instance succeeds and c′1 6= c1, output the transcript and stop

If gn = C1 output n and stop

If a value in Zq is output, we immediately have y1(= logg C1). If a second transcript is output, the

simulator computes (cf. the proof of Theorem 5.5) either y1 or logg(h
m1

0 h1) for m1 6= m∗ (recall the

simulation is aborted if mi = m∗ is ever sent by M during any of the instances). In this second

case, the simulator may then compute x = logg h0. In either case, the simulator can now simulate

the first instance by responding with either Cx
1 or hy1

0 and we say the instance is extracted.

In general, when we are ready to simulate the ith instance (assuming the entire simulation has not

been aborted), each of the first i−1 instances has been classified as either extracted or conditionally

delinquent. If instance j is extracted, then the simulator can send the appropriate value toM upon

successful completion of that instance in the current simulation. On the other hand, if instance j is

classified as conditionally delinquent, then with sufficiently high probability that instance will never

succeed.

We say the message is defined before instance i if, for some j ≤ i, the message is defined

at instance j. At the beginning of simulation of the ith instance, if the message is not defined

134

before instance i − 1, the simulator chooses random ci, . . . , ct, y, ωr and interacts with M using

〈c∗1, . . . c
∗
i−1, ci, . . . , ct, y, ωr,⊥,⊥〉. If M sends message m to the verifier and m 6= m∗, the simula-

tion is aborted. IfM sends message m to the verifier and m = m∗, we say the message is defined at

instance i. Otherwise, the message is not defined at instance i.

If the message is not defined before instance i, the simulator continues to interact withM using

〈c∗1, . . . c
∗
i−1, ci, . . . , ct, y, ωr,⊥,⊥〉. If mi = m∗, the simulation is aborted. Otherwise, interaction

continues until either: (1) the ith instance succeeds or (2) the ith instance fails. This is repeated for

a total of at most t4/τ times or until the ith instance succeeds. If the ith instance ever succeeds,

the simulator proceeds with witness extraction similar to what was described above (details omit-

ted). Otherwise, the ith instance is declared conditionally delinquent and the simulator proceeds to

simulation of the next instance.

Note that during simulation of instance i, simulation of instance j with j > i is not required since

such a request would imply that time the ith instance has already failed due to timing constraints.

However, the simulator may be required to simulate instances j with j < i. In case instance j

is extracted, this is not problem. On the other hand, if j is conditionally delinquent, simulation

cannot continue. We handle this as follows: if conditionally delinquent instance j succeeds before

ci is sent, the entire simulation is aborted; we call this a classification failure. If a conditionally

delinquent instance j succeeds after ci is sent, we consider this an exceptional event at instance j

during simulation of i, and do not include it in the count of failed trials. However, if 3t3/τ such

exceptional events occur for any j, the entire simulation is aborted; we call this an exception at j

during simulation of i.

If the message is defined before instance i, the simulator proceeds as above, but interacts with

M using 〈c∗1, . . . , c
∗
i−1, ci, . . . , ct,⊥,⊥, C∗, ω∗

f 〉.

Once all t instances have been simulated in this way, if the message is not defined before instance

t, then the simulator interacts with M using 〈~c ∗,⊥,⊥, C∗, ω∗
f〉 until completion.

Claim 5.11 The expected running time of the simulation is polynomial in t and 1/τ .

The proof is as for Claim 5.7.

For the following two claims, it is important to note that for any ~c, the distribution of actions of

M when the simulator interacts withM using 〈~c, y, ωr,⊥,⊥〉 (for random choice of y, ωr) is identical

to the distribution of actions ofM when the simulator interacts with M using 〈~c,⊥,⊥, C, ωf 〉 (for

random choice of C, ωf). This follows from the fact that the simulated PPK is distributed identically

to a real PPK.

Claim 5.12 The probability of a classification failure is at most τ/4+ε2(k), where ε2(·) is negligible.

135

The proof is as for Claim 5.8, except that the claim holds for all Ω since the adversary is assumed

not to ask the prover to authenticate m∗ once that value is given to the verifier (in Claim 5.8, M

was “prevented” from re-using VK by virtue of the security of the signature scheme).

Claim 5.13 The probability of abort due to an exception at j during simulation of i (for any i, j) is

at most τ/2 + ε3(k), where ε3(·) is negligible.

The proof is as in Claim 5.10, except that, as above, the claim holds for all Ω.

Note that the probability of a failure to extract is 0 in this case; however, for the protocols based

on RSA, factoring, or Paillier, this probability would be negligible with all but negligible probability

over Ω.

As in the proof of Theorem 5.6, setting τ = 2/3 yields the desired simulation.

5.4.4 Identification

Definitions and preliminaries. Identification protocols satisfying various notions of security are

known [56, 111, 74, 100, 31]. Only recently, however, has a definition of security against man-in-the-

middle attacks been given by Bellare, et al. [7]. They provide practical, 4-round protocols and less

practical, 2-round solutions which are secure under this definition. Motivated by this recent work,

we introduce a definition of security against man-in-the-middle attacks that is weaker than that

considered previously [7]. In particular, we do not allow P ′ to invoke multiple concurrent executions

of P while P ′ is interacting with V , and we do not consider reset attacks. We believe this approach

is reasonable for most network-based settings since (1) P may simply refuse to execute multiple

instances of the protocol simultaneously and (2) reset attacks are not an issue in a network-based

setting.

Definition 5.6 Let Π = (K,P ,V) be a tuple of ppt algorithms. We say Π is an identification

scheme secure against man-in-the-middle attacks if the following conditions hold:

(Correctness) For all (pk, sk) output by K(1k), we have 〈Psk,V〉(pk) = 1 (where Psk denotes

P(sk)).

(Security) For all ppt adversaries P ′ = (P ′
1,P

′
2), the following is negligible (in k):

Pr
[
(pk, sk)← K(1k); state← P ′

1
Psk(pk) : 〈P ′

2
Psk(state),V〉(pk) = 1 ∧ π 6= π′

]
,

where P ′
2 may access only a single instance of Psk, π is defined as the transcript of the interaction

between Psk and P ′
2, and π′ is defined as the transcript of the interaction between P ′

2 and V.

136

We also define the notion of a simulatable identification scheme. Although such a definition is

fairly standard and seems to have motivated the design of previous identification schemes, no such

definition (in the context of identification schemes) has previously appeared.

Definition 5.7 Let Π = (K,P ,V) be an identification scheme and let V∗ denote the algorithm

which runs V honestly and then outputs the entire transcript of the interaction. Π is simulatable

if there exists a ppt simulator SIM such that, for all (pk, sk) output by K(1k), the distribution

{pk,SIM(pk)} is equivalent to the distribution {pk, 〈Psk,V∗〉(pk)}.

For the remainder of this chapter we let G denote a finite, cyclic group of prime order q. We

review some properties of this group.

Definition 5.8 Let g1, g2, h ∈ G. Then (x, y) ∈ Z2
q is a representation of h with respect to g1, g2 if

gx
1gy

2 = h. When g1, g2 are clear from context, we simply say that (x, y) is a representation of h.

Representations (x0, y0) and (x1, y1) are distinct if and only if x0 6= x1 and y0 6= y1.

Fact 5.1 Let g1, g2 ∈ G be generators of G. Every h ∈ G has q distinct representations with respect

to g1, g2.

Proof Since g1 is a generator, there exist α, β such that gα
1 = g2 and gβ

1 = h. Furthermore, α 6= 0

since g2 is a generator. The set {(β − αy, y)}y∈Zq
consists of exactly q distinct representations of h.

Indeed:

gβ−αy
1 gy

2 = (gβ
1)(gα

1)−ygy
2

= hg−y
2 gy

2

= h,

and, for y 6= y′, we have β − αy 6= β − αy′.

We now show that learning two distinct representations of any element with respect to the same

g1, g2 is equivalent to learning logg1
g2.

Lemma 5.1 Given two distinct representations (a0, b0), (a1, b1) of any value h ∈ G with respect to

g1, g2 ∈ G, the value logg1
g2 may be efficiently computed.

Proof Since ga0

1 gb0
2 = ga1

1 gb1
2 , algebraic manipulation implies that logg1

g2 = (a0 − a1)/(b1 − b0).

Note that this value may be efficiently computed since Zq is a field and b1 − b0 6= 0.

Our construction. Our construction follows the paradigm outlined in the previous sections, yet

new techniques are needed for the present setting. A public key for the identification protocol may

137

Public key: G; g1, g2, v1, v2 ∈ G; H : {0, 1}∗ → Zq

P (input x1, y1, x2, y2 ∈ Zq) V

(VK, SK)← SigGen(1k)

r1, r2 ← Zq

A := gr1

1 gr2

2 VK, A
-

c← Zqc
�α := H(VK)

z1 := c(αx1 + x2) + r1 mod q

z2 := c(αy1 + y2) + r2 mod q

s← SignSK(transcript) z1, z2, s
-

α := H(VK)

Verify: gz1

1 gz2

2
?
= (vα

1 v2)
cA

VrfyVK(transcript, s)
?
= 1

Figure 5.10: Identification scheme secure against man-in-the-middle attacks.

be viewed as containing values g, h such that a simulator knows a witness x = logg h and can then

run the identification protocol as the prover when interacting with the adversary P ′. Furthermore,

this value h will depend on a parameter α which P ′ cannot re-use; thus the simulator will prove

knowledge of logg hα while the man-in-the-middle P ′ will be forced to prove knowledge of logg hα′

for some α′ 6= α. This will be secure as long as the following hold: (1) it is possible for the simulator

to know the witness logg hα yet (2) learning logg hα′ for any α′ 6= α will allow the simulator to break

some computationally-hard problem; furthermore, (3) the value of α used by the simulator cannot

be used in any other execution of the protocol.

So far, this is exactly as in Sections 5.4.1–5.4.3. However, in the context of identification schemes,

a proof of security using the above paradigm runs into trouble. The problem is that the simulator is

required to simulate polynomially-many executions of the identification protocol with P ′ before the

actual man-in-the-middle attack begins. Recall that in the case of proofs of knowledge (and their

application to public-key encryption schemes and deniable-authentication protocols), the simulator

is required to simulate only a single proof of knowledge for a particular value α which is fixed by

the simulator in advance. Simulating many executions seems to contradict the requirements listed

above: if the simulator cannot re-use the value α yet must simulate more than one execution of

the protocol, it appears the simulator must then know logg hα1
and logg hα2

for α1 6= α2. However,

if the simulator already knows two such values, it seems the simulator has already broken the

computational assumption on which the security of the scheme relies!

We overcome this seeming contradiction by extending the Okamoto-Schnorr [111, 100] identifi-

138

cation scheme; the modified protocol is shown in Figure 5.10. In the simulation, the simulator will

know a witness (xα, yα) which is a representation of hα with respect to two generators g1, g2; in fact,

the simulator will know such a witness for all hα. Yet, P ′ will not know (in an information-theoretic

sense) which witnesses the simulator knows. Security will follow from the following, modified re-

quirements: (1) the simulator knows a witness (which is a representation of hα) for all α; thus,

the simulator can simulate polynomially-many executions of the protocol. Let α0 be the value of

α used by the simulator during the execution of P ′
2 (i.e., the man-in-the-middle portion of the at-

tack); then: (2) for any α′ 6= α0, P ′
2 cannot tell which representation of hα′ the simulator knows

and furthermore (3) learning two witnesses for any α (in particular, for α′) allows the simulator to

break some computationally-hard problem. Note that, since there are exponentially-many possible

representations for any hα, this immediately implies that, with all but negligible probability, if the

simulator can extract from P ′ a representation of hα′ with α′ 6= α0, then the simulator breaks the

computationally-hard problem. Finally, we require (4) that P ′ cannot re-use the value α0 during its

impersonation attempt.

We briefly describe the protocol of Figure 5.10. The public key consists of a finite, cyclic group

G and random elements g1, g2, v1, v2 ∈ G, along with a function H : {0, 1}∗ → Zq chosen at random

from a family of universal one-way hash functions. The prover P knows values x1, y1, x2, y2 ∈ Zq such

that v1 = gx1

1 gy1

2 and v2 = gx2

1 gy2

2 . Execution of the identification scheme begins by havingP generate

keys (VK, SK) for a one-time signature scheme. Then, P runs the Okamoto-Schnorr identification

protocol [111, 100] using public key vα
1 v2 and secret key (i.e., representation) (αx1 + x2, αy1 + y2),

where α
def
= H(VK). The entire transcript is signed using SK. Note that this protocol inherits the

witness indistinguishability of the Okamoto-Schnorr protocol.

Theorem 5.15 Assuming (1) the hardness of the discrete logarithm problem in G for expected

polynomial-time algorithms, (2) the security of (SigGen, Sign, Vrfy) as a one-time signature scheme,

and (3) the security of UOWH as a universal one-way hash family, the protocol of Figure 5.10 is a

simulatable identification protocol secure against man-in-the-middle attacks.

Proof The proof of simulatability is straightforward, as the protocol of Figure 5.10 is honest-

verifier zero-knowledge. Therefore, we focus on the proof of security against man-in-the-middle

attacks.

Given a ppt adversary P ′ = (P ′
1,P

′
2), let Pr[Succ] be its probability of success (by success we

mean that V accepts and that a different transcript is used by P ′; cf. Definition 5.6). In other words,

Pr[Succ]
def
= Pr[g1, g2 ← G; x1, y1, x2, y2 ← Zq; v1 := gx1

1 gy1

2 ; v2 := gx2

1 gy2

2 ; H ← UOWH(1k);

pk := (G, g1, g2, v1, v2, H); state← P ′
1
Psk(pk) : 〈P ′

2
Psk(state),V〉(pk) = 1 ∧ π 6= π′].

139

We construct an expected polynomial-time algorithmA which uses P ′ to break the discrete logarithm

problem; A’s probability of computing the desired discrete logarithm will be negligibly close to

Pr[Succ]. This immediately implies that Pr[Succ] is negligible.

A proceeds as follows: on input g1, g2 ∈ G (where A must compute logg1
g2), A picks random

x1, x2, y1, y2, computes v1 = gx1

1 gy1

2 and v2 = gx2

1 gy2

2 , chooses random hash function H , fixes random

coins for P ′
1 and P ′

2, and runs P ′
1 on input pk = (G, g1, g2, v1, v2, H). Note that the distribution of

this public key is exactly the same as in a real experiment (in fact, the key generation procedure

is identical); furthermore, since A has a valid secret key (which is generated exactly as in a real

experiment), A can perfectly simulate the interaction of the real prover with P ′
1. Hence the view

of P ′
1 in its interaction with A is identically distributed to its view in an execution of the real

experiment.

Once P ′
1 has completed its execution, A runs P ′

2 on the value state which was output by P ′
1. A

chooses random coins ω′ with which to simulating an honest prover (as above), and A additionally

plays the role of an honest verifier V . If P ′
2 does not succeed in its impersonation attempt, A simply

aborts. Since A perfectly simulates the joint view of (P ′
1,P

′
2), the probability of not aborting is

exactly p.

If P ′
2 succeeds, let VK be the verification key used by A when simulating the honest prover during

execution of P ′
2, let α

def
= H(VK), and let 〈VK′, A′, c′, z′1, z

′
2, s

′〉 be the transcript of the interaction

between P ′
2 and V . Note that even if A was not requested to simulate the honest prover, values

VK, α are still well-defined by the random coins ω′ chosen by A. We now show how A can compute

logg1
g2 with all but negligible probability.

Fixing pk, sk, state, random coins ω for P ′
2, and random coins ω′ used by A in simulating the

honest prover, A proceeds to extract a witness from P ′
2 using the following extraction algorithm:

For i = 1 to q:
Check whether (g1)

i = g2; if so, output i and stop
ci ← Zq

Run P ′
2, sending challenge ci for V

If P ′
2 succeeds and ci 6= c′, output the transcript

of the interaction between P ′
2 and V and stop

We first verify that A runs in expected polynomial time. With Ω
def
= (pk, sk, state, ω, ω′) fixed

as above, define pΩ as the probability, over random challenges sent by V , that P ′
2 succeeds. For

each fixed value of Ω, the probability that the extraction algorithm is run is exactly pΩ (since this

algorithm is run only following a success by P ′
2). If pΩ > 1/q, the expected number of iterations of

the loop is at most 2/pΩ, so the contribution to the expected running time is at most pΩ ·
2·poly(k)

pΩ
=

2 · poly(k), where poly(·) is a bound on the running time of P ′
2. On the other hand, if pΩ ≤ 1/q, the

extraction procedure halts after at most q iterations, and the contribution to the running time is

140

therefore at most 1/q · q · poly(k) = poly(k).

When the extraction algorithm is run, it always outputs either the desired discrete logarithm

logg1
g2 or a second accepting transcript 〈VK′, A′, c′′, z′′1 , z′′2 , s′′〉 with c′′ 6= c′. In case a second

accepting transcript is output, we show how the desired discrete logarithm can be computed with

all but negligible probability. Given the two accepting transcripts, we must have:

g
z′

1

1 g
z′

2

2 = (vα′

1 v2)
c′A′

g
z′′

1

1 g
z′′

2

2 = (vα′

1 v2)
c′′A′,

where α′ def
= H(VK′). These equations imply:

g
∆z1

1 g
∆z2

2 = (vα′

1 v2)
∆c ,

where ∆z1

def
= z′1 − z′′1 , ∆z2

def
= z′2 − z′′2 , and ∆c

def
= c′ − c′′. Since ∆c 6= 0, this means that:

g
∆z1

/∆c

1 g
∆z2

/∆c

2 = vα′

1 v2,

and (∆z1
/∆c, ∆z2

/∆c) is a representation of vα′

1 v2. From the secret key, A already knows a repre-

sentation (α′x1 + x2, α
′y1 + y2) of vα′

1 v2. We show that with all but negligible probability these two

representations are distinct.

Denote by Good the event that the extraction algorithm is run; by definition, we have Pr[Good] =

Pr[Succ]. Note that Pr[VK′ = VK∧Good] is negligible. This follows from the assumed security of the

one-time signature scheme (details omitted). Similarly, Pr[VK′ 6= VK ∧ α′ = α ∧ Good] is negligible,

by the assumed security of the family of universal one-way hash functions. Thus, Pr[α′ 6= α∧Good]

is negligibly close to Pr[Succ].

Given that event (Good ∧ α 6= α′) occurs, and that two accepting transcripts are output by the

extraction algorithm, the probability that (α′x1 + x2, α
′y1 + y2) = (∆z1

/∆c, ∆z2
/∆c) is exactly 1/q

(which is negligible). This is implied by the following facts:

Fact 5.2 Given the entire view of P ′, throughout the entire experiment described above (including

rewinding), the values x1, y1, x2, y2 known by the simulator are uniformly distributed, subject to:

x1 + γy1 = logg1
v1 (5.6)

x2 + γy2 = logg1
v2 (5.7)

αx1 + x2 = w, (5.8)

where γ
def
= logg1

g2 and w is some fixed value.

141

Given the view of P ′
1, the values x1, y1, x2, y2 are uniformly distributed, subject to (5.6)–(5.7); this

follows from the perfect witness indistinguishability of the protocol. As for the view of P ′
2, note

that all A requires in order to simulate execution of the honest prover during this stage is the

representation (w, w′)
def
= (αx1 + x2, αy1 + y2) of vα

1 v2. In other words, the values of x1, x2, y1, y2

themselves are immaterial. Thus, x1, x2, y1, y2 are further constrained only by (5.8) and αy1 + y2 =

w′. However, this last equation may be derived from (5.6)–(5.8) since we also have w + γw′ =

logg1
(vα

1 v2). Note that witness indistinguishability does not imply that the entire view of P ′
2 is

independent of the representation used by A; the reason for this is that A rewinds P ′
2 during the

extraction procedure, and the protocol does not remain witness indistinguishable once multiple

proofs with the same initial value A are given.

Fact 5.3 When α′ 6= α, the equations (5.6)–(5.8) and α′x1 + x2 = u are linearly independent for

any value u. A similar statement holds for the equation α′y1 + y2 = u′.

Thus, given that event Good occurs, the two representations above are distinct with probability

(1 − 1/q); if they are distinct, Lemma 5.1 shows that logg1
g2 may be computed. The probability

of A’s computing the desired discrete logarithm is then negligibly close to (1 − 1/q) · Pr[Succ], and

Pr[Succ] must therefore be negligible.

5.4.5 Deniable Authentication with Improved Efficiency

Definitions of security for deniable-authentication protocols are given in Section 5.4.3. We apply the

techniques of Section 5.4.4 to construct an efficient deniable authentication protocol whose security

may be based on the CDH assumption. Our protocol has the same round-complexity and comparable

efficiency to the most efficient previous solution (the construction of [49] instantiated with the

Cramer-Shoup encryption scheme [36]), but may be based on a weaker assumption. Furthermore,

our solutions offers an alternate paradigm for constructing deniable authentication protocols.

Recall Figure 5.9, which illustrates a paradigm for constructing efficient deniable-authentication

protocols for polynomial-size message spaces. Unfortunately, the proof of security given in Theorem

5.14 fails when trying to extend it to exponential-size message spaces. It is instructive to see

where this failure lies. The proof requires a simulator who can simulate V for an arbitrary message

chosen by the adversary. If the message space is polynomial-size, a message to be simulated can be

chosen in advance by the simulator; with non-negligible probability, the message later chosen by the

adversary will be equal to that for which a simulation is possible. However, if the message space is

exponentially-large, the probability that the adversary will choose the message for which simulation

is possible is negligible.

142

Public key: G; g1, g2, v1, v2 ∈ G

V (input m ∈ Zq) P (input x = logg1
g2)

y, r0, z1, z2, c2 ← Zq

C := (g1)
y

A1 := gr0

1

A2 := gz1

1 gz2

2 / (vm
1 v2)

c2

m, C, A1, A2
-

c← Zqc
�

c1 := c− c2 mod q

z0 := c1y + r0 c1, z0, z1, z2
-

Verify: gz0

1
?
= Cc1A1

gz1

1 gz2

2
?
= (vm

1 v2)
c−c1 A2Cx

�

Figure 5.11: A deniable-authentication protocol for exponential-size message spaces.

The techniques of the previous section help get around this problem. We can in fact construct

a simulator who can simulate execution of the protocol for any message chosen by the adversary.

Besides facilitating the proof of security, a tighter reduction is achieved.

The deniable-authentication protocol is given in Figure 5.11. The public key consists of a finite,

cyclic group G, and elements g1, v1, v2 randomly chosen from G. The value x ∈ Zq is randomly

chosen, and g2 = gx
1 is added to the public key. The prover stores the value x as the secret key of

the scheme. To have message m ∈ Zq authenticated by P , the verifier chooses a random y ∈ Zq,

computes C = gy
0 , and then performs a witness indistinguishable proof of knowledge of either the

discrete logarithm logg1
C or a representation of vm

1 v2 with respect to g1 and g2. If the proof

succeeds, the prover computes Cx and sends this value back to the verifier. The verifier can check

whether this value is correct by verifying that it is equal to gy
2 .

Theorem 5.16 Assuming the hardness of the CDH problem for expected-polynomial-time algo-

rithms, the protocol of Figure 5.11 is a strong deniable-authentication protocol (over message space

Zq) under sequential access to the prover. Furthermore, it is a strong ε-deniable-authentication

protocol under concurrent access to the prover.

Proof Since a complete proof of security for the protocol of Figure 5.9 (over a polynomial-size

message space) is given in Theorem 5.14, we merely sketch the differences which make the protocol

of Figure 5.11 secure over an exponential-size message space. Completeness is clear. For soundness

143

and strong deniability, we focus on the case of sequential access to the prover; concurrent access to

the prover may be handled using timing constraints as discussed at the beginning of Section 5.4.

We now show that the protocol is strongly deniable; note that our proof assumes only the

hardness of the discrete logarithm problem for expected-polynomial-time algorithms. For simplicity,

we show how a single interaction of the malicious verifier V ′ with the prover can be simulated

to within negligible statistical difference; this immediately implies simulation to within negligible

statistical difference for polynomially-many sequential interactions. The simulator SIM proceeds

as follows: given public key pk = 〈G, g1, g2, v1, v2〉 and access to verifier V ′, SIM fixes the random

coins of V ′ and simulates the interaction of V ′ with the real P for the first three messages. In

other words, SIM replies to the initial message of V ′ with a random challenge c. Let the third

message, sent by V ′, be c1, z0, z1, z2. If this partial transcript is not accepting (i.e., verification as

shown in Figure 5.11 fails), SIM simply outputs the transcript 〈m, C, A1, A2, c, c1, z0, z1, z2,⊥〉 and

stops. Otherwise, SIM will attempt to extract y
def
= logg1

C using the procedure outlined below; if

this value is extracted, SIM outputs the transcript 〈m, C, A1, A2, c, c1, z0, z1, z2, g
y
2 〉. Let Good be

the event that verification of the transcript succeeds, and let Extract denote the event that SIM

extracts y. Clearly, the above results in a perfect simulation unless both Good and Extract occur.

We show that Pr[Extract∧Good] is negligible, where the probability is over choice of pk and random

coins of V ′ and SIM.

To extract y, SIM runs the following extraction algorithm:

For i = 1 to q:
Check whether (g1)

i = C; if so, output i and stop
c′ ← Zq

Run V ′, sending challenge c′ for P
If c′ 6= c and verification (as in Figure 5.11) succeeds,
output the values c′1, z

′
0, z

′
1, z

′
2 sent by V ′

We verify that extraction takes expected-polynomial time. Fixing pk and random coins for V ′, let

p denote the probability (over random challenges sent by P) that verification of the proof of V ′

succeeds. If p > 1/q, the expected number of iterations of the loop above is at most 2/p, so the

contribution to the expected running time is at most p· 2·poly(k)
p = 2·poly(k), where poly(·) is a bound

on the running time of V ′. On the other hand, if p ≤ 1/q, the extraction procedure halts after at most

q iterations, and the contribution to the running time is therefore at most 1/q · q · poly(k) = poly(k).

When the extraction algorithm is run, it always outputs either the desired discrete logarithm

y or a second accepting (partial) transcript 〈m, C, A1, A2, c
′, c′1, z

′
0, z

′
1, z

′
2〉 with c′ 6= c. In case a

second accepting (partial) transcript is output, we show how the desired discrete logarithm can

be computed with all but negligible probability (over pk and random coins of V ′). Given the two

accepting (partial) transcripts, we must have either c1 6= c′1 or else c−c1 6= c′−c′1 mod q (or possibly

144

both). In case c− c1 = c′ − c′1, we must have c1 6= c′1, and the following two equations

gz0

1 = Cc1A1

g
z′

0

1 = Cc′1A1

imply that g
z0−z′

0

1 = Cc1−c′1 (with c1 − c′1 6= 0). Therefore logg1
C = (z0 − z′0)/(c1 − c′1).

We show that Pr[c− c1 6= c′ − c′1 ∧ Good] is negligible. Note that, in this case, the equations

gz1

1 gz2

2 = (vm
1 v2)

c−c1A2

g
z′

1

1 g
z′

2

2 = (vm
1 v2)

c′−c′1A2

imply that:

g
∆z1

1 g
∆z2

2 = (vm
1 v2)

∆c ,

where ∆z1

def
= z1− z′1, ∆z2

def
= z2− z′2, and ∆c

def
= c− c1− c′ + c′1 6= 0. Simple algebraic manipulation

shows that this allows efficient computation of a representation (∆z1
/∆c, ∆z2

/∆c) of vm
1 v2.

If Pr[c−c1 6= c′−c′1∧Good] is not negligible, then we can construct an expected-polynomial-time

algorithm A which computes discrete logarithms with non-negligible probability. A, on input g1, g2

for which logg1
g2 must be computed, generates public key pk for the deniable-authentication scheme

by choosing random x1, x2, y1, y2 ∈ Zq and setting v1 = gx1

1 gy1

2 and v2 = gx2

1 gy2

2 . A then interacts

with V ′ exactly as SIM interacts with V ′, above. If both Good and c − c1 6= c′ − c′1 occur, then

A can compute a representation (∆z1
/∆c, ∆z2

/∆c) of vm
1 v2, for some m, as above. However, note

that A already knows a representation (mx1 + x2, my1 + y2) for vm
1 v2. Furthermore, given the view

of V ′, the values x1, x2, y1, y2 are uniformly distributed, subject to:

x1 + γy1 = logg1
v1 (5.9)

x2 + γy2 = logg1
v2, (5.10)

where γ
def
= logg1

g2. Furthermore, for any m, u ∈ Zq, the equations (5.9), (5.10), and mx1 + x2 = u

are linearly independent. Therefore, with all but negligible probability 1/q, we have that represen-

tations (∆z1
/∆c, ∆z2

/∆c) and (mx1 + x2, my1 + y2) are distinct. When this occurs, Lemma 5.1

shows that A may compute logg1
g2, which (by assumption) must occur with negligible probability.

We have thus shown that (1 − 1/q) Pr[c − c1 6= c′ − c′1 ∧ Good] is negligible. This implies that

Pr[c − c1 6= c′ − c′1 ∧ Good] is negligible. Note that event Extract ∧ Good occurs exactly when

(c− c1 6= c′ − c′1 ∧ Good) occurs; therefore Pr[Extract ∧ Good] is negligible as well. This completes

the proof of strong deniability.

The proof of soundness is very similar to the proof of Theorem 5.14, and we therefore sketch

only the differences here. Let pk denote the values G, g1, g2, v1, v2 which constitute the public key.

145

In the real experiment Expt0, the actions of M are completely determined by pk, random coins r′

for M, the vector of challenges ~c = c1, . . . , ct used during the t interactions of M with the prover,

and the randomness used by the verifier (this includes the randomness y used to generate C as well

as the randomness ωr used for the real PPK). Let Pr[Succ0] denote the probability of event Succ in

the real experiment.

We next modify the real experiment, giving Expt1, as follows. Given G, public key pk is generated

by choosing g1 at random in G, choosing r, x1, x2, y1, y2 at random in Zq, and setting g2 = gr
1,

v1 = gx1

1 gy1

2 , and v2 = gx2

1 gy2

2 . The adversary M is run on input pk. The adversary’s calls to

the prover are handled as in Expt0 (this can be done efficiently since logg1
g2 is known), but the

adversary’s call to the verifier will be handled differently. For any message m which M sends to

the verifier, choose C∗ ∈ G at random, and simulate a PPK for C∗ as in the proof of Theorem 5.15

(details omitted). Let Pr[Succ1] denote the probability of event Succ in this experiment. Since the

simulated proof is identically-distributed to a real proof, we have Pr[Succ1] = Pr[Succ0]. This is a

key difference from the protocol of Figure 5.9, since the PPK can here be simulated for any value

m chosen by M (and we do not lose the factor 1/µ, where µ is the size of the message space).

For the final experiment Expt2, actions of the prover will be simulated by extracting logg1
Ci

from the proofs given by M in its various interactions with the prover (in particular, logg1
g2 will

not be used). Let Ω
def
= 〈pk, r′,~c, C∗, ωf〉, where ωf are the random coins used for simulation of the

PPK. We show below an expected-polynomial-time simulator which takes Ω as input; furthermore,

for some negligible ε2(·) and all Ω, the simulator succeeds in simulating the execution of M in

Expt1 (with random variables Ω) with probability at least 1/2 − ε2(k). Therefore, Pr[Succ2] >

1/2 · Pr[Succ1] − ε2(k). In particular this implies that if Pr[Succ0] is non-negligible, then so is

Pr[Succ2].

Before giving the details of the simulation, we note that Expt2 immediately suggests an adversary

A which solves the CDH problem. Given g, h0, C
∗ as input, A fixes random r′,~c, and ωf , and runs

M as in Expt2. The probability that A solves the given CDH instance is exactly Pr[Succ2]. Hardness

of the CDH problem implies that this is negligible.

The simulation is similar to the simulation used in the proof of Theorem 5.14, with two exceptions:

(1) the simulator never aborts because m 6= m∗ (where m is the message given byM to the verifier),

or because mi = m∗ during some instance (indeed, a value m∗ is not defined in advance of the

simulation here), (2) witness extraction is slightly different, and we will need to take into account

the probability of a failure to extract. We stress that, even though the simulator is able to simulate

the protocol for many different values of m, such simulation is done only once the message is defined

(see proof of Theorem 5.14 for definition of this term). When the message is not defined, the

146

simulator runs a real execution of the protocol for a value C′ where logg1
C′ is known. This will be

crucial for the proof of security. We denote the message which is eventually defined by m∗.

Assume the ith instance succeeds when the simulator interacts with M using 〈~c, y, ωr, C, ωf 〉.

The simulator does the following:

For n = 0 to q − 1:
c′i ← Zq

Interact with M using 〈c1, . . . , ci−1, c
′
i, ci+1, . . . , ct, y, ωr, C, ωf 〉

If the first instance succeeds and c′i 6= ci, output the transcript and stop
If gn

1 = Ci output n and stop

If a value n ∈ Zq is output, then n = logg Ci. If a second transcript is output, the simulator computes

(cf. the proof of Theorem 5.15) either yi = logg1
Ci or a representation (a, b) of vm′

1 v2 with respect

to g0, g1. We show below that, with all but negligible probability, the latter allows the simulator to

compute x = logg0
g1. If this value cannot be computed, the simulation is aborted due to failure

to extract. In any case, with all but negligible probability, the simulator can now simulate the ith

instance by sending either the value Cx
i or gyi

1 and we say the instance is extracted.

We now prove that learning a representation (a, b) of vm′

1 v2, as above, allows the simulator to

compute logg0
g1 with all but negligible probability. Consider the first time extraction is performed.

Note that the simulator already knows a representation (m′x1 + x2, m
′y1 + y2) of vm′

1 v2. We argue

(as in the proof of Theorem 5.15) that these representations are different except with probability

1/q. Indeed, given the entire view ofM (including rewinding), the values x1, x2, y1, y2 are uniformly

distributed, subject to:

x1 + γy1 = logg1
v1 (5.11)

x2 + γy2 = logg1
v2, (5.12)

m∗x1 + x2 = w, (5.13)

where γ
def
= logg1

g2, and w is some fixed value. Equations (5.11) and (5.12) are derived from pk

itself. Furthermore, for any m′ 6= m∗ and any u ∈ Zq, equations (5.11)–(5.13) and m′x1 + x2 = u

are linearly independent; note that we must have m∗ 6= m′ since we assume that M does not ask

the prover to authenticate the message given to the verifier. Thus, in the first witness extraction,

the probability of a failure to extract is at most 1/q.

Arguing in this way, we see that the probability of a failure to extract during the jth witness

extraction is at most 1/(q−j). Summing over at most t witness extractions (where t(·) is polynomial),

shows that the probability of a failure to extract ever occurring is negligible.

The remainder of the proof is as in the proof of Theorem 5.14.

147

Chapter 6

Conclusions

Throughout this dissertation, we have argued that man-in-the-middle attacks represent an important

and potentially damaging class of attacks that must be taken into account when designing and

implementing real-world protocols. We have shown explicit examples of such attacks on many

seemingly innocuous protocols; these examples clearly illustrate the pitfalls of constructing protocols

without considering the possibility of active attacks. The results of this thesis also demonstrate the

importance of rigorous proofs of security against active attacks, in a well-defined and robust model.

And yet, more than a decade after the notion of non-malleability was introduced (in the con-

ference version of [44]), it remains difficult and challenging to construct provably-secure protocols

protecting against active attacks. Even more elusive has been the goal of designing protocols that

are provably secure against an active adversary yet efficient enough to be used in practice.

The work included in this dissertation represents a step toward that goal. We give very practical

protocols for password-only authenticated key exchange, non-interactive commitment, interactive

public-key encryption, password-based authenticated key exchange, and deniable authentication.

More importantly, we believe the techniques and methods outlined here will find further applications

to the construction of provably-secure protocols for other tasks.

Much work in this area remains to be done. Some compelling problems that come to mind

include:

Password-only authenticated key exchange. The protocol given in Chapter 3 is the only known

practical and provably secure protocol for password-only authenticated key exchange. The security

of this protocol is based on the decisional Diffie-Hellman assumption. One interesting direction is to

design a practical protocol whose security is based on, for example, the RSA assumption. It would

also be useful to formalize security for password-only protocols in the model of Canetti [27] and to

design a protocol secure in this model.

148

Non-malleable commitment. The protocols given in Chapter 4 all work in the public parameters

model. The original scheme of Dolev, Dwork, and Naor [44] is thus far the only known example of

a non-malleable commitment scheme operating in the “vanilla” model (without public parameters).

It is a important question whether the round complexity of their solution can be improved using

any reasonable cryptographic assumptions.

Even in the public parameters model, some intriguing questions remain. Perhaps most striking

is the following: non-malleable and non-interactive standard commitment can be done with com-

mitment size O(|M |k) based on the existence of one-way functions [40] and with commitment size

|M | + poly(k) based on the existence of trapdoor permutations (cf. Chapter 4). It seems counter-

intuitive that the trapdoor property is necessary to achieve a reduced commitment size. Yet, we

do not know how to substantially reduce the commitment size when only one-way functions are

assumed.

Non-malleable proofs of knowledge and applications. Definition 5.2 seems to capture what

is meant by a “non-malleable” interactive proof of knowledge. Yet, we were unable to prove secure

any generic construction of, say, an interactive encryption scheme from an arbitrary non-malleable

PPK. Instead, we were only able to prove such a construction secure for the specific non-malleable

PPKs given in Chapter 5. This is indeed an unsatisfying state of affairs. It seems that the flaw lies

in the definition itself (counterexamples that seem to satisfy Definition 5.2 yet fail to yield a secure

interactive encryption scheme can be constructed), but we were unable to extend the definition in

a reasonable way so as to obtain any sort of composition theorem. Resolving this issue seems a

promising future direction.

149

Bibliography

[1] Y. Aumann and M.O. Rabin. A Proof of Plaintext Knowledge Protocol and Applications.

Manuscript, June 2001.

[2] D. Beaver. Adaptive Zero-Knowledge and Computational Equivocation. Proceedings of the

28th Annual ACM Symposium on Theory of Computing, ACM, 1996, pp. 629–638.

[3] M. Bellare, A. Boldyreva, and S. Micali. Public-Key Encryption in a Multi-User Setting:

Security Proofs and Improvements. Advances in Cryptology — Eurocrypt 2000, LNCS 1807,

B. Preneel ed., Springer-Verlag, 2000, pp. 259–274.

[4] M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design and Analysis of

Authentication and Key Exchange Protocols. Proceedings of the 30th Annual ACM Symposium

on Theory of Computing, ACM, 1998, pp. 419–428.

[5] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric

encryption. Proceedings of the 38th Annual Symposium on Foundations of Computer Science,

IEEE, 1997, pp. 394–403.

[6] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions of Security

for Public-Key Encryption Schemes. Advances in Cryptology — CRYPTO ’98, LNCS 1462,

H. Krawczyk ed., Springer-Verlag, 1998, pp. 26–45.

[7] M. Bellare, M. Fischlin, S. Goldwasser, and S. Micali. Identification Protocols Secure Against

Reset Attacks. Advances in Cryptology — Eurocrypt 2001, LNCS 2045, B. Pfitzmann ed.,

Springer-Verlag, 2001, pp. 495–511.

[8] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. Advances in Cryptology —

CRYPTO ’92, LNCS 740, E.F. Brickell, ed., Springer-Verlag, 1992, pp. 390–420.

[9] M. Bellare, S. Halevi, A. Sahai, and S. Vadhan. Many-to-One Trapdoor Functions and Their

Relation to Public-Key Cryptosystems. Advances in Cryptology — CRYPTO ’98, LNCS 1462,

H. Krawczyk ed., Springer-Verlag, 1998, pp. 283–298.

150

[10] M. Bellare, J. Kilian, and P. Rogaway. The Security of the Cipher Block Chaining Message

Authentication Mode. Journal of Computer and System Sciences 61(3): 352–399 (2000).

[11] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against

Dictionary Attacks. Advances in Cryptology — Eurocrypt 2000, LNCS 1807, B. Preneel ed.,

Springer-Verlag, 2000, pp. 139–155.

[12] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient

Protocols. Proceedings of the First Annual Conference on Computer and Communications

Security, ACM, 1993, pp. 62–73.

[13] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. Advances in Cryp-

tology — CRYPTO ’93, LNCS 773, D.R. Stinson ed., Springer-Verlag, 1993, pp. 232–249.

[14] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption. Advances in Cryptology —

Eurocrypt ’94, LNCS 950, A. De Santis ed., Springer-Verlag, 1994, pp. 92–111.

[15] M. Bellare and P. Rogaway. Provably-Secure Session Key Distribution: the Three Party Case.

Proceedings of the 27th Annual ACM Symposium on Theory of Computing, ACM, 1995, pp.

57–66.

[16] M. Bellare and A. Sahai. Non-Malleable Encryption: Equivalence between Two Notions and an

Indistinguishability-Based Characterization. Advances in Cryptology — CRYPTO ’99, LNCS

1666, M. Wiener ed., Springer-Verlag, 1999, pp. 519–536.

[17] S.M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Protocols Secure

Against Dictionary Attacks. IEEE Symposium on Research in Security and Privacy, IEEE,

1992, pp. 72–84.

[18] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung. Systematic

Design of Two-Party Authentication Protocols. Advances in Cryptology — CRYPTO ’91,

LNCS 576, J. Feigenbaum ed., Springer-Verlag, 1991, pp. 44–61.

[19] M. Blum. How to Prove a Theorem So No One Else Can Claim It. Proceedings of the Inter-

national Congress of Mathematicians, 1986, pp. 1444–1451.

[20] M. Blum, P. Feldman, and S. Micali. Non-Interactive Zero-Knowledge and Its Applications.

Proceedings of the 20th Annual ACM Symposium on Theory of Computing, ACM, 1988, pp.

103–112.

151

[21] M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key Encryption Scheme which

Hides All Partial Information. Advances in Cryptology — CRYPTO ’84, LNCS 196, G.R.

Blakley and D. Chaum, eds., Springer-Verlag, 1984, pp. 289–302.

[22] M. Boyarsky. Public-Key Cryptography and Password Protocols: The Multi-User Case. Pro-

ceedings of the 7th Annual Conference on Computer and Communications Security, ACM,

1999, pp. 63–72.

[23] V. Boyko. On All-or-Nothing Transforms and Password-Authenticated Key Exchange Proto-

cols. PhD Thesis, MIT, Department of Electrical Engineering and Computer Science. Cam-

bridge, MA, 2000.

[24] V. Boyko, P. MacKenzie, and S. Patel. Provably-Secure Password-Authenticated Key Ex-

change Using Diffie-Hellman. Advances in Cryptology — Eurocrypt 2000, LNCS 1807, B. Pre-

neel ed., Springer-Verlag, 2000, pp. 156–171.

[25] G. Brassard, C. Crépeau, and M. Yung. Constant-Round Perfect-Zero-Knowledge

Computationally-Convincing Protocols. Theoretical Computer Science 84(1): 23–52 (1991).

[26] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of Cryp-

tology, 13(1): 143–202 (2000).

[27] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.

Proceedings of the 42nd Annual Symposium on Foundations of Computer Science, IEEE, 2001,

pp. 136–145.

[28] R. Canetti and M. Fischlin. Universally Composable Commitments. Advances in Cryptology

— CRYPTO 2001, LNCS 2139, J. Kilian ed., Springer-Verlag, 2001, pp. 19–40.

[29] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited. Proceed-

ings of the 30th Annual ACM Symposium on Theory of Computing, ACM, 1998, pp. 209–218.

[30] R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and their Use for Building

Secure Channels. Advances in Cryptology — Eurocrypt 2001, LNCS 2045, B. Pfitzmann ed.,

Springer-Verlag, 2001, pp. 453–474.

[31] R. Cramer. Modular Design of Secure Yet Practical Cryptographic Protocols. PhD Thesis,

CWI and University of Amsterdam, 1996.

152

[32] R. Cramer and I. Damg̊ard. Fast and Secure Immunization against Adaptive Man-in-the-

Middle Impersonation. Advances in Cryptology — Eurocrypt ’97, LNCS 1233, W. Fumy ed.,

Springer-Verlag, 1997, pp. 75–87.

[33] R. Cramer, I. Damg̊ard, and P. MacKenzie. Efficient Zero-Knowledge Proofs of Knowledge

Without Intractability Assumptions. Public Key Cryptography — PKC 2000, LNCS 1751, H.

Imai and Y. Zheng, eds., Springer-Verlag, 2000, pp. 354–372.

[34] R. Cramer, I. Damg̊ard, and J.B. Nielsen. Multiparty Computation from Threshold Homo-

morphic Encryption. Advances in Cryptology — Eurocrypt 2001, LNCS 2045, B. Pfitzmann

ed., Springer-Verlag, 2001, pp. 280–299.

[35] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of Partial Knowledge and Simplified

Design of Witness Hiding Protocols. Advances in Cryptology — CRYPTO ’94, LNCS 839, Y.

Desmedt ed., Springer-Verlag, 1994, pp. 174–187.

[36] R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure Against

Chosen Ciphertext Attack. Advances in Cryptology — CRYPTO ’98, LNCS 1462, H. Krawczyk

ed., Springer-Verlag, 1998, pp. 13–25.

[37] R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen-

Ciphertext-Secure Public-Key Encryption. To appear, Eurocrypt 2002.

[38] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust Non-

Interactive Zero Knowledge. Advances in Cryptology — CRYPTO 2001, LNCS 2139, J. Kilian

ed., Springer-Verlag, 2001, pp. 566-598.

[39] A. De Santis and G. Persiano. Zero-Knowledge Proofs of Knowledge Without Interaction.

Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, IEEE, 1992,

pp. 427–436.

[40] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-Interactive and Non-Malleable Commitment.

Proceedings of the 30th Annual ACM Symposium on Theory of Computing, ACM, 1998, pp.

141–150.

[41] G. Di Crescenzo, J. Katz, R. Ostrovsky, and A. Smith. Efficient and Non-Interactive, Non-

Malleable Commitment. Advances in Cryptology — Eurocrypt 2001, LNCS 2045, B. Pfitzmann

ed., Springer-Verlag, 2001, pp. 40–59.

[42] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions on Informa-

tion Theory, 22(6): 644–654 (1976).

153

[43] W. Diffie, P. van Oorschot, and M. Wiener. Authentication and Authenticated Key Exchanges.

Designs, Codes, and Cryptography, 2(2): 107–125 (1992).

[44] D. Dolev, C. Dwork, and M. Naor. Nonmalleable Cryptography. SIAM Journal of Computing

30(2): 391–437 (2000).

[45] D. Dolev, S. Even, and R. Karp. On the Security of Ping-Pong Protocols. Information and

Control 55(1–3): 57–68 (1982).

[46] D. Dolev and A.C. Yao. On the Security of Public-Key Protocols. Proceedings of the 22nd

Annual Symposium on Foundations of Computer Science, IEEE, 1981, pp. 350–357.

[47] C. Dwork. The Non-Malleability Lectures. Manuscript, Spring 1999.

[48] C. Dwork and M. Naor. Zaps and Their Applications. Proceedings of the 41st Annual Sympo-

sium on Foundations of Computer Science, IEEE, 2000, pp. 283–293.

[49] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. Proceedings of the 30th Annual

ACM Symposium on Theory of Computing, ACM, 1998, pp. 409–418.

[50] C. Dwork and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for Timing Con-

straints. Advances in Cryptology — CRYPTO ’98, LNCS 1462, H. Krawczyk ed., Springer-

Verlag, 1998, pp. 442–457.

[51] T. El Gamal. A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Loga-

rithms. IEEE Transactions on Information Theory 31(4): 469–472 (1985).

[52] S. Even and O. Goldreich. On the Security of Multi-Party Ping-Pong Protocols. Proceedings

of the 24th Annual Symposium on Foundations of Computer Science, IEEE, 1983, pp. 34–39.

[53] S. Even, O. Goldreich, and S. Micali. On-Line/Off-Line Digital Signatures. Journal of Cryp-

tology 9(1): 35–67 (1996).

[54] U. Feige, A. Fiat, and A. Shamir. Zero-Knowledge Proofs of Identity. Journal of Cryptology

1(2): 77–94 (1988).

[55] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. Advances in

Cryptology — CRYPTO ’89, LNCS 435, G. Brassard ed., Springer-Verlag, 1990, pp. 526–544.

[56] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and

Signature Problems. Advances in Cryptology — CRYPTO ’86, LNCS 263, A. Odlyzko ed.,

Springer-Verlag, 1986, pp. 186–194.

154

[57] FIPS 113, “Computer Data Authentication,” Federal Information Processing Standards Publi-

cation 113, U.S. Department of Commerce/National Bureau of Standards, National Technical

Information Service, Springfield, VA, 1985.

[58] M. Fischlin and R. Fischlin. Efficient Non-Malleable Commitment Schemes. Advances in Cryp-

tology — CRYPTO 2000, LNCS 1880, M. Bellare ed., Springer-Verlag, 2000, pp. 413–431.

[59] M. Fischlin and R. Fischlin. The Representation Problem Based on Factoring. To appear, The

Cryptographer’s Track at RSA Conference 2002, 2002.

[60] Z. Galil, S. Haber, and M. Yung. Symmetric Public-Key Encryption. Advances in Cryptology

— CRYPTO ’85, LNCS 218, H.C. Williams ed., Springer-Verlag, 1986, pp. 128–137.

[61] O. Goldreich. Secure Multi-Party Computation. Manuscript, 1998. Available at

http://www.wisdom.weizmann.ac.il/~oded/pp.html.

[62] O. Goldreich. “Foundation of Cryptography (Basic Tools)” Cambridge Univer-

sity Press, 2001. Preliminary versions of volumes 2 and 3 are available at

http://www.wisdom.weizmann.ac.il/~oded/frag.html.

[63] O. Goldreich, S. Goldwasser, and S. Micali. On the Cryptographic Applications of Random

Functions. Advances in Cryptology — CRYPTO ’84, LNCS 196, G.R. Blakley and D. Chaum

eds., Springer-Verlag, 1985, pp. 276–288.

[64] O. Goldreich and L.A. Levin. A Hard-Core Predicate for all One-Way Functions. Proceedings

of the 21st ACM Symposium on Theory of Computing, ACM, 1989, pp. 25–32.

[65] O. Goldreich and Y. Lindell. Session-Key Generation Using Human Passwords Only. Advances

in Cryptology — CRYPTO 2001, LNCS 2139, J. Kilian ed., Springer-Verlag, 2001, pp. 408–

432.

[66] O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental Game or a Completeness

Theorem for Protocols with Honest Majority. Proceedings of the 19th Annual ACM Symposium

on Theory of Computing, ACM, 1987, pp. 218–229.

[67] O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing but their Validity or All

Languages in NP have Zero-Knowledge Proof Systems. Journal of the ACM 38(3): 691–729

(1991).

[68] S. Goldwasser. Probabilistic Encryption: Theory and Applications. PhD Thesis, University of

California, Berkeley, 1984.

155

[69] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Sci-

ences 28(2): 270–299 (1984).

[70] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof

Systems. SIAM Journal on Computing 18(1): 186–208 (1989).

[71] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against Adaptive

Chosen-Message Attacks. SIAM Journal on Computing 17(2): 281–308 (1988).

[72] L. Gong, T.M.A. Lomas, R.M. Needham, and J.H. Saltzer. Protecting Poorly-Chosen Secrets

from Guessing Attacks. IEEE Journal on Selected Areas in Communications, 11(5): 648–656

(1993).

[73] L. Gong. Optimal Authentication Protocols Resistant to Password Guessing Attacks. Proceed-

ings of the 8th IEEE Computer Security Foundations Workshop, 1995, pp. 24–29.

[74] L.C. Guillou and J.-J. Quisquater. A Practical Zero-Knowledge Protocol Fitted to Security

Microprocessors Minimizing Both Transmission and Memory. Advances in Cryptology — Eu-

rocrypt ’88, LNCS 330, C. Gunther ed., Springer-Verlag, 1988, pp. 123–128.

[75] S. Haber. Multi-Party Cryptographic Computations: Techniques and Applications. PhD The-

sis, Columbia University, 1987.

[76] S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols. ACM Trans-

actions on Information and System Security, 2(3): 230–268 (1999).

[77] J. H̊astad, R. Impagliazzo, L.A. Levin, and M. Luby. A Pseudorandom Generator from any

One-Way Function. SIAM Journal on Computing 28(4): 1364–1396 (1999).

[78] R. Impagliazzo and M. Luby. One-Way Functions are Essential for Complexity-Based Cryp-

tography. Proceedings of the 30th Annual Symposium on Foundations of Computer Science,

IEEE, 1989, pp. 230–235.

[79] D. Jablon. Strong Password-Only Authenticated Key Exchange. ACM Computer Communi-

cations Review, 26(5): 5–20 (1996).

[80] D. Jablon. Extended Password Key Exchange Protocols Immune to Dictionary Attack. Pro-

ceedings of WET-ICE ’97, IEEE Computer Society, 1997, pp. 248–255.

[81] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated-Verifier Proofs and Their Applications.

Advances in Cryptology — Eurocrypt ’96, LNCS 1070, U. Maurer ed., Springer-Verlag, 1996,

pp. 143–154.

156

[82] J. Katz, R. Ostrovsky, and M. Rabin. Identity-Based Non-Interactive Zero-Knowledge.

Manuscript, November 2001.

[83] J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Exchange Using

Human-Memorable Passwords. Advances in Cryptology — Eurocrypt 2001, LNCS 2045, B.

Pfitzmann ed., Springer-Verlag, 2001, pp. 475–494.

[84] J. Katz and M. Yung. Complete Characterization of Security Notions for Probabilistic Private-

Key Encryption. Proceedings of the 32nd Annual ACM Symposium on Theory of Computing,

ACM, 2000, pp. 245–254.

[85] J.H. Kim, D.R. Simon, and P. Tetali. Limits on the Efficiency of One-Way Permutation-Based

Hash Functions. Proceedings of the 40th Annual Symposium on Foundations of Computer

Science, IEEE, 1999, pp. 535–542.

[86] H. Krawczyk. SKEME: A Versatile Secure Key-Exchange Mechanism for the Internet. Pro-

ceedings of the Internet Society Symposium on Network and Distributed System Security, 1996,

pp. 114–127.

[87] L. Lamport. Constructing Digital Signatures from a One-Way Function. Technical Report

CSL-98, SRI International, Palo Alto, 1979.

[88] T.M.A. Lomas, L. Gong, J.H. Saltzer, and R.M. Needham. Reducing Risks from Poorly-Chosen

Keys. ACM Operating Systems Review, 23(5): 14–18 (1989).

[89] S. Lucks. Open Key Exchange: How to Defeat Dictionary Attacks Without Encrypting Public

Keys. Proceedings of the Security Protocols Workshop, LNCS 1361, B. Christianson, B. Crispo,

T.M.A. Lomas, and M. Roe eds., Springer-Verlag, 1997, pp. 79–90.

[90] P. MacKenzie. More Efficient Password-Authenticated Key Exchange. Progress in Cryptology

— CT-RSA 2001, LNCS 2020, D. Naccache ed., Springer-Verlag, 2001, pp. 361–377.

[91] P. MacKenzie. On the Security of the SPEKE Password-Authenticated Key-Exchange Proto-

col. Manuscript, 2001.

[92] P. MacKenzie, S. Patel, and R. Swaminathan. Password-Authenticated Key Exchange Based

on RSA. Advances in Cryptology — Asiacrypt 2000, LNCS 1976, T. Okamoto ed., Springer-

Verlag, 2000, pp. 599–613.

[93] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptography. CRC

Press, 1999.

157

[94] R.C. Merkle. A Certified Digital Signature. Advances in Cryptology — CRYPTO ’89, LNCS

435, G. Brassard, ed., Springer-Verlag, 1990, pp. 218–238.

[95] S. Micali and P. Rogaway. Secure Computation. Advances in Cryptology — CRYPTO ’91,

LNCS 576, J. Feigenbaum ed., Springer-Verlag, 1991, pp. 392–404.

[96] M. Naor. Bit Commitment Using Pseudorandomness. Journal of Cryptology 4(2): 151–158

(1991).

[97] M. Naor, R. Ostrovsky, R, Venkatesan, and M. Yung. Perfect Zero-Knowledge Arguments for

NP can be Based on General Complexity Assumptions. Advances in Cryptology — CRYPTO

’92, LNCS 740, E. Brickell, ed., Springer-Verlag, 1993, pp. 196–214.

[98] M. Naor and M. Yung. Universal One-Way Hash Functions and Their Cryptographic Applica-

tions. Proceedings of the 21st Annual ACM Symposium on Theory of Computing, ACM, 1989,

pp. 33–43.

[99] M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure against Chosen Ciphertext

Attacks. Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, ACM,

1990, pp. 427–437.

[100] T. Okamoto. Provably Secure and Practical Identification Schemes and Corresponding Signa-

ture Schemes. Advances in Cryptology — CRYPTO ’92, LNCS 740, E. Brickell ed., Springer-

Verlag, 1993, pp. 31–53.

[101] P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. Ad-

vances in Cryptology — Eurocrypt ’99, LNCS 1592, J. Stern ed., Springer-Verlag, 1999, pp.

223–238.

[102] S. Patel. Number-Theoretic Attacks on Secure Password Schemes. Proceedings of the IEEE

Symposium on Research in Security and Privacy, IEEE, 1997, pp. 236–247.

[103] T.P. Pedersen. Non-Interactive and Information-Theoretic-Secure Verifiable Secret Sharing.

Advances in Cryptology — CRYPTO ’91, LNCS 576, J. Feigenbaum ed., Springer-Verlag,

1991, pp. 129–140.

[104] M. Rabin. Digitalized Signatures and Public-Key Functions as Intractable as Factorization.

Technical Report MIT/LCS/TR-212, MIT Laboratory for Computer Science, January 1979.

158

[105] C. Rackoff and D. Simon. Non-Interactive Zero-Knowledge Proofs of Knowledge and Chosen

Ciphertext Attack. Advances in Cryptology — CRYPTO ’91, LNCS 576, J. Feigenbaum ed.,

Springer-Verlag, 1991, pp. 433–444.

[106] R. Rivest and A. Shamir. How to Expose an Eavesdropper. Communications of the ACM

27(4): 393–395 (1984).

[107] R. Rivest, A. Shamir, and L.M. Adleman. A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems. Communications of the ACM 21(2): 120–126 (1978).

[108] J. Rompel. One-Way Functions are Necessary and Sufficient for Secure Signatures. Proceedings

of the 22nd Annual ACM Symposium on Theory of Computing, ACM, 1990, pp. 387–394.

[109] A. Russell. Necessary and Sufficient Conditions for Collision-Free Hashing. Journal of Cryp-

tology 8(2): 87–100 (1995).

[110] A. Sahai. Non-Malleable, Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext

Security. Proceedings of the 40th Annual Symposium on Foundations of Computer Science,

IEEE, 1999, pp. 543–553.

[111] C.P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology, 4(3):

161–174 (1991).

[112] A. Shamir and Y. Tauman. Improved Online/Offline Signature Schemes. Advances in Cryp-

tology — CRYPTO 2001, LNCS 2139, J. Kilian ed., Springer-Verlag, 2001, pp. 355–367.

[113] V. Shoup. Why Chosen Ciphertext Security Matters. IBM Research Report RZ-3076, Novem-

ber, 1998.

[114] V. Shoup. On Formal Models for Secure Key Exchange. Available at

http://eprint.iacr.org/1999/012.

[115] M. Steiner, G. Tsudik, and M. Waidner. Refinement and Extension of Encrypted Key Ex-

change. ACM Operating Systems Review, 29(3): 22–30 (1995).

[116] M. Tompa and H. Woll. Random Self-Reducibility and Zero-Knowledge Interactive Proofs

of Possession of Information. Proceedings of the 28th Annual Symposium on Foundations of

Computer Science, IEEE, 1987, pp. 472–482.

[117] T. Wu. The Secure Remote Password Protocol. Proceedings of the Internet Society Symposium

on Network and Distributed System Security, 1998, pp. 97–111.

159

[118] T. Wu. A Real-World Analysis of Kerberos Password Security. Proceedings of the Internet

Society Symposium on Network and Distributed System Security, 1999, pp. 13–22.

[119] A.C. Yao. Protocols for Secure Computations. Proceedings of the 23rd Annual Symposium on

Foundations of Computer Science, IEEE, 1982, pp. 160–164.

