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Abstract. We describe a cryptanalysis of a public-key encryption scheme based on the
polynomial reconstruction problem . Given the public-key and a ciphertext, we recover
the corresponding plaintext in polynomial time. Therefore, the scheme is not one-way.
Our technique is a variant of the Berlekamp-Welsh algorithm.

1 Introduction

We describe a cryptanalysis of a public-key encryption scheme recently proposed by
Augot and Finiasz [1]. The scheme is based on the polynomial reconstruction (PR)
problem [6], which is the following:

Problem 1 (Polynomial Reconstruction). Given n, k, ω and (xi, yi)i=1...n, output any
polynomial p such that deg p < k and p(xi) = yi for at least n− ω values of i.

This problem has an equivalent formulation in terms of the decoding of Reed-
Solomon error-correcting codes [7]. The problem can be solved in polynomial time
when the number of errors ω is such that ω ≤ (n− k)/2, using the Berlekamp-Welsh
algorithm [2]. This has been improved to ω ≤ n−

√
kn by Guruswami and Sudan [4].

When the number of errors is larger, no polynomial time algorithm is known for
the PR problem. Therefore, some cryptosystem have been constructed based on the
hardness of the PR problem; for example, an oblivious polynomial evaluation scheme
[6], and a semantically secure symmetric cipher [5].

A new public-key cryptosystem based on the PR problem has been recently in-
troduced in [1] by Augot and Finiasz. A security level exponential in terms of the
parameters was conjectured. However, we provide a complete cryptanalysis of the
cryptosystem: given the public key pk and a ciphertext c, we recover the correspond-
ing plaintext m in polynomial time. Therefore, the scheme is not one-way and can
not be used in any application. Our technique is a variant of the Berlekamp-Welsh
algorithm [2] for solving the PR problem.

2 The proposed cryptosystem

2.1 Reed-Solomon codes

As in [1], we briefly recall some basic definitions of Reed-Solomon codes. Let Fq be
the finite field with q elements and let x1, · · · , xn be n distincts elements of Fq. We
denote by ev the following map:



2

ev :
{

Fq[X] → Fn
q

p(X) → (p(x1), . . . , p(xn))

Definition 1. The Reed-Solomon code of dimension k and length n over Fq is the
following set of n-tuples (codewords):

RSk = {ev(f); f ∈ Fq[X],deg f < k}

where Fq[X] is the set of univariate polynomials with coefficients in Fq.

The weight of a word c ∈ Fn
q is the number of non-zero coordinates in c. The

Hamming distance between two words x and y is the weight of x − y. Formally, the
problem of decoding Reed-Solomon code is the following:

Problem 2 (Reed-Solomon decoding). Given a Reed-Solomon code RSk of length n, ω
an integer and a word y ∈ Fn

q , find any codeword in RSk at distance less than ω of y.

The smallest weight of non-zero codewords in RSk is n − k + 1. Therefore, when
ω ≤ (n− k)/2, the solution to Reed-Solomon decoding is guaranteed to be unique.

The Polynomial Reconstruction problem and the Reed-Solomon decoding problem
are actually completely equivalent. Both problems can be solved in polynomial time
when w ≤ (n− k)/2, using the Berlekamp-Welsh algorithm [2].

2.2 The new cryptosystem

In the following, we briefly review Augot and Finiasz public-key cryptosystem [1].

Parameters: q is the size of Fq, n is the length of the Reed-Solomon code, k its
dimension, W is the weight of a large error, so that the PR problem for n, k,W is
believed to be hard, i.e. we must have:

W >
n− k

2

ω is the weight of a small error, for which the PR problem with n−W coordinates is
easy:

ω ≤ n−W − k

2
(1)

It is recommended in [1] to take n = 1024, k = 900, ω = 25, W = 74 and q = 280.

Key generation: Generate a unitary polynomial p of degree k − 1, and a random
error E of weight W . Compute the codeword c = ev(p) of RSk. The public key is
z = c + E, while the private key is (p, E).

Encryption: Let m a message of length k − 1 over the alphabet Fq. The message
m is seen as a polynomial m(X) = m0 + m1X + . . . + mk−1X

k−2 of degree at most
k − 2. Generate a random α ∈ Fq and a random error e of weight ω. The ciphertext
y is then:

y = ev(m) + α× (c + E) + e
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Decryption: One considers only the positions where Ei = 0 and define the shortened
code of length n − W , which is also a Reed-Solomon code of dimension k, which we
denote RSk. Let y, ev(m), c, e be the shortened y, ev(m), c, e. One must solve the
equation:

y = ev(m) + α× c + e

We have ev(m)+α×c ∈ RSk, and from (1), the weight of the small error e is less than
the error correction capacity of RSk; therefore, using the Berlekamp-Welsh algorithm,
one can recover the unique polynomial r of degree k − 1 such that:

ev(r) = ev(m) + α× c

which gives
r = m + α · p

Since deg(m) ≤ k− 2 and p is a unitary polynomial of degree k− 1, the field element
α is the leading coefficient of r. Therefore one can recover m as:

m = r − α · p

3 Our attack

Our attack is a variant of the Berlekamp-Welsh algorithm for solving the PR problem
(see [3]). Let n, k,W, ω and q be the parameters of the system. Let (p, E) be the
private key and z = ev(p) + E be the public-key. Let m be the plaintext encoded as a
polynomial of degree less than k − 2. Let e be an error vector of weight ω, and α be
a field element. Let

y = ev(m) + α× z + e (2)

be the corresponding ciphertext.

Theorem 1. Given the public-key z and the ciphertext y, one can recover the corre-
sponding plaintext m in polynomial time.

Proof. Let yi, zi and ei be the components of the words y, z and e. Given y and z, we
must solve the following set of equations:

∃e,m, α, yi = m(xi) + α · zi + ei for all 1 ≤ i ≤ n (3)

where the weight of e is less than ω. Note that from the definition of the cryptosystem,
there is a unique solution.

Consider the following set of equations:

∃V,m, α,

{
deg(V ) ≤ ω, V 6= 0, deg(m) ≤ k − 2
∀i, V (xi) · (yi − α · zi) = V (xi) ·m(xi)

(4)

Any solution V,m, α of (4) gives a solution to (3). Namely, the fact that V 6= 0
and deg V ≤ ω implies that V can be equal to zero at most ω times. Therefore, letting
ei = yi −m(xi)− α · zi, the weight of e is less than ω.
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Conversely, any solution to (3) gives a solution to (4). Namely, we can take V (X) =∏
i∈B(X − xi) with B = {i|ei 6= 0}. The problem of solving (3) can thus be reduced

to finding V,m, α satisfying (4). Consider now the following set of equations:

∃V,N, λ,

{
deg(V ) ≤ ω, V 6= 0, deg(N) ≤ k + ω − 1
∀i, V (xi) · (yi − λ · zi) = N(xi)

(5)

It is easy to see that any solution of (4) gives a solution to (5), as we can take
λ = α and N = m · V . However, the converse is not necessarily true.

For a given λ, the system (5) gives a linear system of n equations in the k+2 ·ω+1
unknown, which are the coefficients of the polynomials V and N . More precisely,
denoting:

V (X) =
ω∑

i=0

vi ·Xi, N(X) =
k+ω−1∑

i=0

ni ·Xi

and Y the vector of coordinates:

Y = (v0, · · · , vω, n0, · · · , nk+ω−1)

we let M(λ) be the matrix of the system:

M(λ)i,j =
{

(yi − λ · zi) · (xi)j if 0 ≤ j ≤ ω
−(xi)j−ω−1 if ω < j < k + 2ω + 1

The matrix M(λ) is a rectangular matrix with n lines and k + 2ω + 1 columns; from
(1) we have n > k + 2ω + 1. The coefficients of M(λ) are a function of the public-key
and the ciphertext only. The system (5) is then equivalent to:

∃Y, λ, M(λ).Y = 0, Y 6= 0 (6)

Let us take λ = 0. Using Gaussian elimination, we compute the rank of the matrix
M(0). We distinguish two cases: rank M(0) = k+2ω+1, and rank M(0) < k+2ω+1.

If rank M(0) = k + 2ω + 1, then there exists a square sub-matrix of M(0) of
dimension k + 2ω + 1 which is invertible. Without loss of generality, we can assume
that the matrix obtained by taking the first k +2ω +1 lines of M(0) is invertible. Let
M ′(λ) be the square matrix obtained by taking the first k+2ω +1 lines of M(λ). Any
solution Y, λ of (6) satisfies:

M ′(λ).Y = 0, Y 6= 0

which implies that the matrix M ′(λ) is non-invertible, i.e. det(M(λ)) = 0. Then, the
solution α in system (4) must be a root of the function:

f(λ) = Det(M ′(λ))

which is a polynomial of degree at most ω+1. The polynomial f is not identically zero,
because M ′(0) is invertible, which implies f(0) 6= 0. The polynomial f can easily be
obtained from the public-key z and the ciphertext y by computing f(λ) = Det(M ′(λ))
for ω + 2 distinct values of λ and then using Lagrange interpolation.
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Then, using any polynomial time finite-field factoring algorithm such as [9], one
obtains a list of at most ω+1 candidates, one of which being the solution α of (4), and
equivalently, of (3). For the right candidate α, the vector y−α×z is equal to ev(m)+e,
where the weight of e is less than the error correcting capacity of the Reed-Solomon
code. Therefore, using Berlekamp-Welsh algorithm, we recover the plaintext m from
y − α× z in polynomial time.

More precisely, let α, m, e be the solution of (3). Given a solution V,N, λ of (5)
with λ = α, we have for all 1 ≤ i ≤ k + 2 · ω + 1 :

V (xi) · (m(xi) + ei) = N(xi)

Since the error vector e has a weight at most ω, we have for at least ω + k + 1 values
of i:

V (xi) ·m(xi) = N(xi)

N and V ·m are therefore two polynomials of degree less than ω + k − 1 which take
the same value on at least ω + k + 1 points; consequently, the two polynomials must
be equal. This means that we can recover m by performing a polynomial division:

m =
N

V

Therefore, we can recover the plaintext in polynomial time.
Let us now consider the second case, i.e. rank M(0) < k + 2ω + 1. Then there

exists Y 6= 0 such that M(0).Y = 0, which gives for all 1 ≤ i ≤ n:

V (xi) · yi = N(xi)

From (2) we have yi = m(xi) + α · (p(xi) + Ei) + ei, which gives for all i:

V (xi) · ((m + α · p)(xi) + α · Ei + ei) = N(xi)

The weight of E is at most W and the weight of e is at most ω. Moreover, from (1)
we have n ≥ k + 2ω + W . Therefore, for at least ω + k values of i, we have:

V (xi) · (m + α · p)(xi) = N(xi)

As previously, V · (m + α · p) and N are two polynomials of degree less than k + ω− 1
which take the same value on at least ω + k distinct points; consequently, they must
be equal, which gives:

m + α · p =
N

V
Since the polynomial p is unitary and deg p = k − 1 and deg m ≤ k − 2, this enables
to recover α. Then, as previously, given α, we recover m in polynomial time1. ut

4 Practical experiments

In appendix, we illustrate the attack for small parameters. We have also implemented
our attack using Shoup’s NTL library [8]. The attack works well in practice. For the
recommended parameters (n = 1024, k = 900, ω = 25, W = 74, q = 280), it takes
roughly 30 minutes on a single PC to recover the plaintext from the ciphertext and
the public-key.
1 In this second case, we can also recover the private key (p, E). However, we never came across that

case in practice.
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5 Conclusion

We have broken the proposed cryptosystem. Our attack recovers the plaintext from the
ciphertext and the public-key in polynomial time. We insist that only the ciphertext
and the public-key are required; in particular, our attack is not a chosen-ciphertext
attack, as we do not require a decryption oracle. Therefore, the cryptosystem does
not achieve one-wayness. Moreover, our attack works well in practice, as for the rec-
ommended parameters, one recovers the plaintext in a few minutes on a single PC.
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A A toy example

In this section we illustrate the attack for small parameters. We take n = 8, k = 3,
ω = 1, W = 3. We work modulo q = 11. We take xi = i for i = 1, . . . , 8. We take:

p(x) = x2 + 5x + 3
E = (0, 0, 4, 0, 7, 6, 0, 0)

for the private key. The public-key is:

z = ev(p) + E = (9, 6, 9, 6, 5, 9, 10, 8)

Let the message m be m(x) = 8x + 2. Let α = 7 and e = (0, 5, 0, 0, 0, 0, 0, 0). The
ciphertext y is:

y = ev(m) + α× z + e = (7, 10, 1, 10, 0, 3, 7, 1)
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The matrix M(λ) is then:

M(λ) =



7− 9λ 7− 9λ 10 10 10 10
10− 6λ 9− λ 10 9 7 3
1− 9λ 3− 5λ 10 8 2 6
10− 6λ 7− 2λ 10 7 6 2
−5λ −3λ 10 6 8 7

3− 9λ 7− 10λ 10 5 8 4
7− 10λ 5− 4λ 10 4 6 9
1− 8λ 8− 9λ 10 3 2 5


The determinant f(λ) of the matrix M ′(λ) obtained by taking the first 6 lines of M(λ)
is equal to:

f(λ) = det M ′(λ) = 3λ2 + 5λ + 5

which factors modulo q = 11 into:

f(λ) = 3 · (λ− 6) · (λ− 7)

For λ = 7, we obtain V (x) = 7x + 8 and N(x) = x2 + x + 5, which gives modulo
q = 11:

m(x) = N(x)/V (x) = 8x + 2


