
VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 1

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

BLENDED ATTACKS EXPLOITS, VULNERABILITIES
AND BUFFER-OVERFLOW TECHNIQUES IN

COMPUTER VIRUSES

Eric Chien and Péter Ször
Symantec Corporation 2500 Broadway, Suite 200 Santa Monica, CA 90404, USA

 Tel +1 310 453 4600 • Fax +1 310 453 0636 • Email echien@symantec.com,
pszor@symantec.com

ABSTRACT

Exploits, vulnerabilities, and buffer-overflow techniques have been used by malicious
hackers and virus writers for a long time. However, until recently, these techniques
were not common place in computer viruses. The CodeRed worm was a major shock
to the antivirus industry since it was the first worm that spread not as a file, but
solely in memory by utilizing a buffer overflow in Microsoft IIS. Many antivirus
companies were unable to provide protection against CodeRed, while other compa-
nies with a wider focus on security were able to provide solutions to the relief of
end users.

Usually new techniques are picked up and used by copy cat virus writers. Thus, many
other similarly successful worms followed CodeRed, such as Nimda and Badtrans.

In this paper, the authors will not only cover such techniques as buffer overflows and
input validation exploits, but also how computer viruses are using them to their
advantage.

Finally, the authors will discuss tools, techniques and methods to prevent these
blended threats.

2 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

DEFINITION OF BLENDED ATTACK

A blended threat is often referred as a ‘blended attack’. Some people refer to it as ‘combined
attacks’ or ‘mixed techniques’. We are not attempting to make a strong definition for this term,
but we wish our readers to understand that we use the term ‘blended attack’ in the context of
computer viruses where the virus exploits some sort of security flaw of a system or application
in order to invade new systems. A blended threat exploits one or more vulnerabilities as the main
vector of infection and may perform additional network attacks such as a denial of service
against other systems.

INTRODUCTION

Security exploits, commonly used by malicious hackers, are being combined with computer
viruses resulting in a very complex attack that in some cases goes beyond the general scope of
anti-virus software.

In general, a large gap has existed between computer security companies such as intrusion detec-
tion and firewall vendors and anti-virus companies. For example, many past popular computer
security conferences did not have any papers or presentations dealing with computer viruses.
Thus, apparently some computer security people do not consider computer viruses seriously as
part of security or ignore the relationship between computer security and computer viruses.
When the CodeRed worm appeared there was obvious confusion about which genre of computer
security vendors could prevent, detect and stop the worm. Some anti-virus researchers argued
that there was nothing that they could do about CodeRed, while others tried to solve the problem
with a various sets of security techniques, software and detection tools to support their custom-
ers’ needs.

Interestingly, such intermediate solutions were often criticized by anti-virus researchers. Instead
of realizing the affected customers’ need for such tools, some anti-virus researchers suggested
that there was nothing to do but to install the security patch.

Obviously, this step is very important in securing the systems. However, the installation of a
patch on thousands of systems may not be easy to deliver at large corporations. Furthermore,
corporations may have the valid fear that new patches could introduce a new set of problems,
compromising system stability.

CodeRed (and blended attacks in general) is a problem that needs to be taken care of by anti-
virus vendors as well as by other security product vendors so that multi-layered security solu-
tions can be delivered in a combined effort to deal with blended attacks.

BACKGROUND

The origin of blended attacks begins in November, 1988. 1988 was the year that the
Morris worm was introduced. The Morris worm exploited flaws in standard applications of
BSD systems:

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 3

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

• It tried to utilize remote shell commands to attack new machines by using rsh from
various directories. It demonstrated the possibility of cracking password files. The
worm attempted to crack passwords in order to get into new systems. This attack was
feasible because the password file was accessible and readable by everyone. Al-
though the password file was encrypted, someone could attempt to encrypt test
passwords and then compare them against the encrypted ones. The worm used a
small dictionary of passwords that the author of the worm believed to be common or
weak. Looking at the list of passwords in the author’s dictionary, we have the impres-
sion that this was not the most successful of the worm’s attacks.

• If the previous step failed, the worm attempted to use a buffer-overflow attack
against VAX based systems running a vulnerable version of fingerd. (More details on
this attack are available later on.) This resulted in the automatic execution of the
worm on a remote VAX system. The worm was able to execute this attack from
either VAX or Sun systems, but the attack was only successful against targeted VAX
systems. The code was not in place to identify the remote OS version and thus, the
same attack was used against the fingerd program of Suns running BSD. This re-
sulted in a core dump (crash) of fingerd on targeted Sun systems.

• The Morris worm also utilized the DEBUG command of the sendmail application.
This command was only available in early implementations of sendmail. The DE-
BUG command made it possible to execute commands on a remote system by send-
ing an SMTP (Simple Mail Transfer Protocol) message. This command was a poten-
tial mistake in functionality and was removed in later versions of sendmail. When the
DEBUG command was sent to sendmail, someone could execute commands as the
recipient of the message.

Nevertheless, the worm was not without bugs. Although the worm was not deliberately destruc-
tive, it overloaded and slowed down machines so much that it was very noticeable after repeated
infections occurred.

Thirteen years later, in July, 2001, CodeRed repeated a very similar set of attacks against vulner-
able versions of Microsoft Internet Information Server (IIS) systems. Using a well crafted buffer
overflow technique, the worm executed copies of itself (depending upon its version) on Windows
2000 systems running vulnerable versions of Microsoft IIS. The slowdown effect was similar to
that of the Morris worm.

Further information on the buffer-overflow attacks is made available in this paper (without any
working attack code).

TYPES OF VULNERABILITY

Buffer Overflows

Buffers are data storage areas, which generally hold a pre-defined amount of finite data. A buffer
overflow occurs when a program attempts to store data into a buffer, where the data is larger than
the size of the buffer.

4 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

For example, imagine an empty 33 cl. glass. This is analogous to a buffer. This buffer (empty
glass) can store 33 cl. of liquid (data). Now, imagine that I wish to transfer a pint, which is about
47 cl., of beer from my full pint glass into the empty 33 cl. glass. As I begin to fill the glass
(buffer) with beer (data), everything is fine until the end when beer begins to spill over the glass
and onto the table. This is an example of an overflow. Clearly, such an overflow is bad for beer
and unfortunately, even worse if such vulnerabilities exist in computer programs.

When the data exceeds the size of the buffer, the extra data can overflow into adjacent memory
locations, corrupting valid data and possibly changing the execution path and instructions. The
ability to exploit a buffer overflow allows one to possibly inject arbitrary code into the execution
path. This arbitrary code could allow remote system level access, giving unauthorized access to
not only malicious hackers, but also to replicating malware.

Buffer overflows are generally broken into multiple categories based both on ease of exploitation
and historical discovery of the technique. While there is no formal definition, buffer overflows
are, by consensus, broken into three generations. First generation buffer overflows involve
overwriting stack memory; second generation overflows involve heaps, function pointers, and
off-by-one exploits; and finally, third generation overflows involve format string attacks and
vulnerabilities in heap structure management.

For simplicity, the following explanations will assume an Intel CPU architecture, but the con-
cepts can be applied to other processor designs.

First Generation

First generation buffer overflows involve overflowing a buffer that is located on the stack.

Overflowing A Stack Buffer

For example, the following program declares a buffer that is 256 bytes long. However, the pro-
gram attempts to fill it with 512 bytes of the letter ‘A’ (0x41).

int i;
void function(void)
{
 char buffer[256]; // create a buffer

 for(i=0;i<512;i++) // iterate 512 times
 buffer[i]=’A’; // copy the letter A
}

The diagram opposite (top of page) illustrates how the EIP (where to execute next) is modified
due to the program overflowing the small 256 byte buffer. When data exceeds the size of the
buffer, the data overwrites adjacent areas of data stored on the stack including critical values
such as the instruction pointer (EIP), which define the execution path. By overwriting the return
EIP, an attacker can change what the program should execute next.

Exploiting A Stack Buffer

Overflow Instead of filling the buffer full of As, a classic exploit will fill the buffer with it’s own

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 5

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

malicious code. Also, instead of overwriting the return EIP (where the program will execute
next) with random bytes, the exploit will overwrite EIP with the address to the buffer which is
now filled with malicious code. This causes the execution path to change and causes the program
to execute injected malicious code.

While the above example demonstrates a classic stack-based (first generation) buffer overflow,
there are variations. The exploit utilized by CodeRed was a first generation buffer overflow that
is more complex and is described below.

Causes of Stack-based Overflow Vulnerabilities

Stack-based buffer overflows are caused by programs that do not verify the length of data being
copied into a buffer. This is often caused by using common functions that do not limit the
amount of data that is copied from one location to another.

For example, strcpy is a C programming language function that copies a string from one buffer
to another. However, the function does not verify if the receiving buffer is large enough and thus,
an overflow may occur. Many such functions have safer counterparts, such as strncpy which
takes an additional count parameter specifying the number of bytes that should be copied. On
BSD systems, even safer versions such as strlcpy are available.

Of course, if the count is larger than the receiving buffer, an overflow can still occur. Program-
mers often make counting errors and utilize counts that are off by one byte. This can result in a
second generation overflow called off-by-ones.

6 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Second Generation

Off-By-One Overflows

Programmers who attempt to use relatively safe functions such as strncpy do not necessarily
make their programs much more secure from overflows. Errors in counting the size of the buffer
can occur usually resulting in a single byte overflow known as an off-by-one.

Consider the following program where the programmer has mistakenly utilized ‘less than or
equal to’ rather than simply ‘less than’.

#include <stdio.h>

int i;
void vuln(char *foobar)
{

char buffer[512];

for (i=0;i<=512;i++)
buffer[i]=foobar[i];

}

void main(int argc, char *argv[])
{

if (argc==2)
vuln(argv[1]);

}

In this case, the stack will appear as:

While one is unable to overwrite EIP because the overflow is only one-byte, one can overwrite
the least-significant byte of EBP because it is a little-endian system. For example, if the overflow
byte is set to 0x00, the Old EBP will be set to 0x0012FF00.

Depending on the code, the fake EBP may be used in a variety of manners. Often, a mov esp,

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 7

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

ebp will follow causing stack frame pointer to now be in the location of buffer. Thus, buffer can
be constructed to hold local variables, an EBP, and more importantly an EIP that redirects to the
malicious code.

The local variables of the fake stack frame will be processed and the program will continue
execution at the fake return EIP, which has been set to injected code located in the stack. Thus, a
single byte overflow may allow arbitrary code execution.

Heap Overflows

A common misconception by programmers is that by dynamically allocating memory (utilizing
heaps) they can avoid using the stack and thus, reduce the likelihood of exploitation. While stack
overflows may be the low-hanging fruit, utilizing heaps instead does not eliminate the possibility
of exploitation.

The Heap

A heap is memory that has been dynamically allocated. This memory is logically separate from
the memory allocated for the stack and code. Heaps are dynamically created (e.g., new, malloc)
and removed (e.g., delete,free).

Heaps are generally used because the size of memory needed by the program is not known ahead
of time or larger than the stack.

The memory where heaps are located generally do not contain return addresses such as the stack.
Thus, without the ability to overwrite saved return addresses, redirecting execution is potentially
more difficult. However, that does not mean by utilizing heaps, one is secure from buffer over-
flows and exploitation.

Vulnerable Code

Here is a sample program with a heap overflow. The program dynamically allocates memory for
two buffers. One buffer is filled with ‘A’s. The other one is taken in from the command line. If
one types too many characters on the command line an overflow will occur.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void main(int argc, char **argv)
{

char *buffer = (char *) malloc(16);
char *input = (char *) malloc(16);

strcpy(buffer,”AAAAAAAAAAAAAAA”);

// Use a non-bounds checked function
strcpy(input,argv[1]);
printf(“%s”,buffer);

}

With a normal amount of input, memory will appear as follows:

8 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Address Variable Value

00300350 Input BBBBBBBBBBBBBBBB
00300060 ????? ?????????????????
00300370 Buffer AAAAAAAAAAAAAAAA

However, if one inputs a large amount of data to overflow the heap, one can potentially overwrite
the adjacent heap.

Address Variable Value

00300350 Input BBBBBBBBBBBBBBBB
00300360 ?????? BBBBBBBBBBBBBBBB
00300370 Buffer BBBBBBBBAAAAAAAA

Exploiting the Overflow

In a stack overflow, one could overflow a buffer and change EIP. This allowed one to change EIP
to point exploit code usually in the stack.

By overflowing a heap, one does not typically affect EIP. However, overflowing heaps can
potentially overwrite data or modify pointers to data or functions. For example, on a locked
down system one may not be able to write to C:\AUTOEXEC.BAT. However, if a program with
system rights had a heap buffer overflow, instead of writing to some temporary file, someone
could change the pointer to the temporary file name to instead point to the string
C:\AUTOEXEC.BAT and thus, induce the program with system rights to write to
C:\AUTOEXEC.BAT. This results in user-rights elevation.

In addition, heap buffer overflows also generally can result in a denial of service allowing one to
crash an application.

Consider the following vulnerable program, which writes characters to C:\harmless.txt:

#include <stdio.h>
#include <tdlib.h>
#include <string.h>

void main(int argc, char **argv)
{

int i=0,ch;
FILE *f;
static char buffer[16], *szFilename;
szFilename = “C:\\harmless.txt”;

ch = getchar();
while (ch != EOF)
{

buffer[i] = ch;
ch = getchar();
i++;

}
f = fopen(szFilename, “w+b”);
fputs(buffer, f);
fclose(f);

}

Memory will appear like:

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 9

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Address Variable Value

0x00300ECB argv[1]
...
0x00407034 *szFilename C:\harmless.txt
...
0x00407680 Buffer
0x00407690 szFilename 0x00407034

Notice that buffer is close to szFilename. If one can overflow buffer, one can overwrite the
szFilename pointer and change it from 0x00407034 to another address. For example, changing it
to 0x00300ECB which is argv[1] allows one to change the filename to any arbitrary filename
passed in on the command line.

For example, if buffer is equal to: XXXXXXXXXXXXXXXX00300ECB and argv[1] is
C:\AUTOEXEC.BAT, memory appears as:

Address Variable Value

0x00300ECB argv[1] C:\AUTOEXEC.BAT
...
0x00407034 *szFilename C:\harmless.txt
...
0x00407680 Buffer XXXXXXXXXXXXXXX
0x00407690 szFilename 0x00300ECB

Notice that szFilename has changed and now points to argv[1], which is C:\AUTOEXEC.BAT.
So, while heap overflows may be more difficult to exploit than the average stack overflow,
unfortunately utilizing heaps does not guarantee one is invulnerable to overflow attacks.

Function Pointers

Another second generation overflow involves function pointers. A function pointer occurs
mainly when callbacks occur. If in memory, a function pointer follows a buffer, there is the
possibility to overwrite the function pointer if the buffer is unchecked. Here is a simple example
of such code.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int CallBack(const char *szTemp)
{

printf(“CallBack(%s)\n”, szTemp);
return 0;

}

void main(int argc, char **argv)
{

static char buffer[16];
static int (*funcptr)(const char *szTemp);

funcptr = (int (*)(const char *szTemp))CallBack;
strcpy(buffer, argv[1]); // unchecked buffer
(int)(*funcptr)(argv[2]);

}

10 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Here is what memory looks like: Address Variable Value 00401005 CallBack()

Address Variable Value

00401005 CallBack()
004013B0 system() ...
...
004255D8 buffer ????????
004255DC funcptr 00401005

So, for the exploit, one passes in the string ABCDEFGHIJKLMNOP004013B0 as argv[1] and
the program will call system() instead of CallBack(). In this case, usage of a NULL (0x00) byte
renders this example inert. Avoiding a NULL byte is left to the reader as to avoid exact exploit
code.

Address Variable Value

00401005 CallBack()
004013B0 system() ...
...
004255D8 buffer ABCDEFGHIJKLMNOP
004255EE funcptr 004013B0

This demonstrates another non-stack overflow that allows the attacker to run any command by
spawning system() with arbitrary arguments.

Third Generation

Format String Attacks

Format string vulnerabilities occur due to sloppy coding by software engineers. A variety of C
language functions allow printing of characters to files, buffers, and the screen. These functions
not only place values on the screen, but can format them as well.

The following listing are common ANSI format functions:

• printf – print formatted output to the standard output stream

• wprintf – wide-character version of printf

• fprintf – print formatted data to a stream (usually a file)

• fwprintf – wide-character version of fprintf

• sprintf – write formatted data to a string

• swprintf – wide-character version of sprintf

• vprintf – write formatted output using a pointer to a list of arguments

• vwprintf – wide-character version of vprintf

• vfprintf – write formatted output to a stream using a pointer to a list of arguments

• vwfprintf – wide-character version of vfprintf

The formatting ability of these functions allows programmers to control how their output is
written. For example, a program could print the same value in both decimal and hexadecimal.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 11

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

#include <stdio.h>
void main(void)
{

int foo = 1234;
printf(“Foo is equal to: %d (decimal), %X (hexadecimal)”, foo,

foo);
}

The above program would display:

Foo is equal to: 1234 (decimal), 4D2 (hexadecimal)

The percent sign ‘%’ is an escape character signifying the next character(s) represent the form
the value should be displayed. Percent-d (%d) for example, means display the value in decimal
format and %X means display the value in hexadecimal with uppercase letters. These are known
as format specifiers. See Appendix B, for the full list of ANSI C format specifiers.

The format function family specification requires the format control and then an optional number
of arguments to be formatted.

However, sloppy programmers often do not follow this specification. The below program will
print out Hello World! to the screen, but does not strictly follow the specification. The com-
mented line demonstrates the proper way the program should be written.

#include <stdio.h>
void main(void)
{

char buffer[13]=”Hello World!”;
printf(buffer); // using argument as format control!
// printf(“%s”,buffer); this is the proper way

}

This type of sloppy programming allows one to potentially control the stack and inject and
execute arbitrary code. The following program takes in one command line parameter and writes
the parameter back to the screen. Notice the printf statement is used incorrectly by using the
argument directly instead of a format control.

int vuln(char buffer[256])
{

int nReturn=0;
printf(buffer); // print out command line
// printf(“%s”,buffer); // correct-way
return(nReturn);

}

void main(int argc,char *argv[])
{

char buffer[256]=””; // allocate buffer
if (argc == 2)
{

strncpy(buffer,argv[1],255); // copy command line

format control DUJXPHQWV

printf(“Foo is equal to: %d (decimal), %X (hexadecimal)”, foo, foo);

12 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

}
vuln(buffer); // pass buffer to bad function

}

This program will copy the first parameter on the command line into a buffer. Then, the buffer
will be passed to the vulnerable function. However, since the buffer is being used as the format
control, instead of feeding in a simple string, one can attempt to feed in a format specifier.

For example, running this program with the argument “%X” will return some value on the stack
instead of “%X”:

C:\>myprog.exe %X
401064

The program interprets the input as the format specifier and returns the value on the stack that
should be the passed-in argument. To understand why this is the case, one needs to examine the
stack just after printf is called. Normally, if one uses a format control and the proper number of
arguments the stack will look similar to the following:

However, by using printf incorrectly, the stack will appear differently since one does not push on
the argument list and only the format control.

In this case, the program will believe the stack space after the format control is the first argu-
ment. Thus, by feeding in “%X” to our sample program, printf displays the return address of the
previous function call instead of the expected missing argument. In this example we display
arbitrary memory, but the key to exploitation from the point of view of a malicious hacker or
virus writer would be the ability to write to memory in order to inject arbitrary code.

The format function families allow for the “%n” format specifier. This format specifier will store
(write to memory) the total number of bytes written. For example,

printf(“foobar%n”,&nBytesWritten);

will store ‘6’ in nBytesWritten since foobar consists of six characters. Consider the following:

C:\>myprog.exe foobar%n

When executed instead of displaying the value on the stack after the format control, the program

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 13

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

will attempt to write to that location. So, instead of displaying 401064 as demonstrated above,
the program will attempt to write the number 6 (the total characters in foobar) to the address
401064 and result in an application error message:

However, this demonstrates one can write to memory. With this ability, one would actually wish
to overwrite a return pointer (as in buffer overflows) redirecting the execution path to injected
code. Examining the stack more fully, one determines in the example program, the stack appears
as follows:

Knowing how the stack appears, consider the following exploit string:

C:>myprog.exe AAAA%x%x%n

The first format specifier, ‘%x’, is considered the Return Address (0x401064), the next format
specifier, ‘%x’, is 0x12FE84. Finally, %n will attempt to write to the address specified by the
next DWORD on the stack, which is 0x41414141 (AAAA). This allows an attacker to write to
arbitrary memory addresses.

Instead of writing to address 0x41414141, an exploit would attempt to write to a memory loca-
tion that contains a saved return address (such as in buffer overflows). In this example,
0x12FE7C is where a return address is stored. By overwriting the address in 0x12FE7C, one can
redirect the execution path. So, instead of using a string of As in the exploit string, one would
replace them with the value 0x12FE7C.

The return address should be overwritten by the address that contains the exploit code. In this
case, that would be at 0x12FE84 which is where the input buffer is located. Fortunately, the

14 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

format specifiers can include how many bytes to write using the syntax %.<bytestowrite>x.
Consider the following exploit string:

<exploitcode>%x%x%x%x%x%x%x%x%x%.622404x%.622400x%n\x7C\xFEx12

This will cause printf to write the value 0x12FE84 (622404+622400=0x12FE84) to 0x12FE7C if
the exploit code is two bytes long. This overwrites a saved return address causing the execution
path to proceed to 0x12FE84, which is where an attacker would place their exploit code.

Thus, by not following the exact specification, programmers can allow hackers to overwrite
values in memory and execute arbitrary code. While the improper usage of the format function
family is widespread, finding vulnerable programs is also relatively easy.

Therefore, most popular applications have been tested by security researchers for such
vulnerabilities. Nevertheless, new applications are developed constantly and unfortunately devel-
opers continue to use the format functions improperly leaving them vulnerable.

Heap Management

Heap management implementations vary widely. For example, the GNU C malloc is different
than the System V routine. However, malloc implementations all generally store management
information within the heap area itself. This information includes such data as the size of
memory blocks and is usually stored right before or after the actual data.

Thus, by overflowing heap data, one can modify values within a management information struc-
ture (or control block). Depending on the memory management functions actions (e.g., malloc
and free) and specific implementation, one cause the memory management function to write
arbitrary data at arbitrary memory addresses when it utilizes the overwritten control block.

Input Validation

Input validation exploits take advantage of programs that do not properly validate user supplied
data. For example, a web page form that asks for an email address and other personal informa-
tion should validate the email address is in the proper form and in addition does not contain
special escape or reserved characters.

However, many applications such as web servers and email clients do not properly validate
input; this allows hackers to inject specially crafted input that causes the application to perform
in an unexpected manner.

While there are many types of input validation vulnerabilities, URL canonicalization and MIME
header parsing are specifically discussed here due to their widespread usage in recent blended
attacks.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 15

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

URL Encoding and Canonicalization

Canonicalization is when a resource can be represented in more than one manner. For example,
C:\test\foo.txt and C:\test\bar\..\foo.txt are different full pathnames that represent the same file.
Canonicalization of URLs occurs in a similar manner where http://doman.tld/user/foo.gif and
http://domain.tld/user/bar/../foo.gif would represent the same image file.

A URL canonicalization vulnerability results when a security decision is based on the URL and
all of the URL representations are not taken into account. For example, a web server may allow
access only to the /user and sub-directories by examining the URL for the string /user immedi-
ately after the domain name. For example, the URL http://domain.tld/user/../../autoexec.bat
would pass the security check, but actually provide access to the root directory.

After more widespread exposure of URL canonicalization issues due to such an issue in
Microsoft Internet Information Server, many applications added security checks for the double-
dot string ‘..’ in the URL. However, canonicalization attacks were still possible due to encoding.

For example, Microsoft IIS supports UTF-8 encoding such that %2F represents a forward slash ‘/
’. UTF-8 translates US-ASCII characters (7 bits) to a single octet (8 bits) and other characters to
multi-octets. Translation occurs as follows:

0-7 bits 0xxxxxxx
8-11 bits 110xxxxx 10xxxxxx
12-16 bits 1110xxxx 10xxxxxx 10xxxxxx
17-21 bits 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

For example, a slash (0x2F, 0101111) would be 00101111 in UTF-8. A character with the hexa-
decimal representation of 0x10A (binary 100001010) has 9-bits and thus, a UTF-8 representation
of 11000100 10001010.

While standard encoding did not defeat aforementioned input validation security checks, inter-
estingly, Microsoft IIS still provides decoding, if one encodes a 7-bit character using the 8-11 bit
rule format.

For example, a slash (0x2F, 101111) in 8-11 bit UTF-8 encoding would be 11000000 10101111
(hexadecimal 0xC0 0xAF). Thus, instead of using the URL, http://domain.tld/user/../../
autoexec.bat one could substitute the slash with the improper UTF-8 representation, http://
domain.tld/user/..%co%af../autoexec.bat. The input validation allowed this URL since it did not
recognize the UTF-8 encoded forward slash, which gave access outside the web root directory.
Microsoft fixed this vulnerability with security bulletin MS00-78.

In addition, Microsoft IIS performs UTF-8 decoding on two separate occasions. This allows
characters to be double-encoded. For example, a backslash (0x5C) can be represented as %5C.
However, one can also encode the percent-sign (0x25), itself. Thus, %5C can be encoded as
%255c. On the first decoding pass, %255c is decoded to %5c and on the second decoding pass
%5C is then decoded to a backslash.

Thus, a URL such as http://domain.tld/user/..%5c../autoexec.bat will not pass the input validation
check, but http://domain.tld/user/..%255c../autoexec.bat would pass, allowing access outside the
web root directory. Microsoft fixed this vulnerability with security bulletin MS01-26.

The inability of webservers to properly provide input validation can then lead to attacks. For

16 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

example, in IIS, one can utilize the encoding vulnerabilities to break out of the web root direc-
tory and execute cmd.exe from the Windows system directory, allowing remote execution.
Win32/Nimda utilized such an attack to copy itself to the remote webserver and then
execute itself.

MIME Header Parsing

When Internet Explorer parses a file, the file can contain embedded MIME encoded files. Han-
dling of these files occurs by examining a header, which defines the MIME type. Using a lookup
table, these MIME types are associated with a local application. For example, the MIME type
audio/basic is generally associated with Windows Media Player. Thus, MIME encoded files
designated as audio/basic will be passed to Windows Media Player.

MIME types are defined by a Content-Type header. In addition to the associated application,
each type has a variety of associated settings including the icon, whether to show the extension,
and whether to automatically pass the file to the associated application when the file is being
downloaded.

When receiving an HTML email with Microsoft Outlook and some other email clients, code
within Internet Explorer actually renders the e-mail. If the e-mail contains a MIME embedded
file, Internet Explorer would parse the email and attempt to handle embedded MIME file. Vulner-
able versions of Internet Explorer would check whether the application should automatically be
opened (passed to the associated application without prompting) by examining the Content-Type
header. For example, audio/x-wav files are automatically passed to Windows Media Player for
playing.

However, a bug exists in vulnerable versions of Internet Explorer where files are passed to the
incorrect application. For example a MIME header may appear as:

Content-Type: audio/x-wav;
name=”foobar.exe”

Content-Transfer-Encoding: base64
Content-ID: <CID>

In this case, Internet Explorer determines the file should be automatically passed to the associ-
ated application (no prompting) since the content type is audio/x-wav. However, when determin-
ing what the associated application is, instead of utilizing the Content-Type header (and the file
header itself) Internet Explorer incorrectly relies on a default association which will be made
according to the extension. In this case, the extension is .EXE and thus, is passed to the operating
system for execution instead of passing the audio file to an associated application to be played.

Such a bug allows for the automatic execution of arbitrary code. Several Win32 mass mailers
send themselves via an email with a MIME encoded malicious executable with a malformed
header, and the executable will silently execute unbeknownst to the user. This occurs whenever
Internet Explorer parses the mail and thus can happen when simply reading or previewing email.
Thus, email worms can spread themselves without any user actually executing or detaching
a file.

Any properly associated MIME file type that has not set the “Confirm open after download” flag
can be utilized for this exploit. Thus, a definitive list is unavailable considering developers can

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 17

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

register their own MIME types.

Such an exploit was utilized by both Win32/Badtrans and Win32/Klez allowing them to execute
themselves upon reading or previewing an infected email.

Application Rights Verification

While improper input validation may give applications increased access such as with URL
canonicalization, other models simply give applications increased rights due to improper desig-
nation of code as safe. Such a design is employed by ActiveX and as a result numerous blended
attacks have also used ActiveX control rights verification exploits.

Safe for Scripting ActiveX Controls

Generally by design, ActiveX controls are scriptable. They expose a set of methods and proper-
ties that can potentially be invoked in an unforeseen and malicious manner often via Internet
Explorer.

The security framework for ActiveX controls requires the developer to determine if their ActiveX
control could potentially be used in a malicious manner. If a developer determines their control is
safe, they may mark the control ‘safe for scripting’.

Microsoft notes that ActiveX controls that have any of the following characteristics must not be
marked safe for scripting.

• Accessing information about the local computer or user.

• Exposing private information on the local computer or network.

• Modifying or destroying information on the local computer or network.

• Faulting of the control and potentially crashing the browser.

• Consuming excessive time or resources such as memory.

• Executing potentially damaging system calls, including executing files.

• Using the control in a deceptive manner and causing unexpected results.

However, despite these simple guidelines some ActiveX controls with these characteristics have
been marked safe for scripting and thus, been used maliciously.

For example, VBS/Bubbleboy used the Scriptlet.Typelib ActiveX control to write out a file to the
Windows Startup directory. The Scriplet.Typelib contained properties to define the path and
contents of the file. Because this ActiveX control was incorrectly marked safe for scripting, one
could invoke a method to write a local file via a remote webpage or HTML email without trig-
gering any ActiveX warning dialog.

ActiveX controls that have been marked safe for scripting can be easily determined by examin-
ing the registry. If the safe for scripting CLSID key exists under the Implemented Categories key
for the ActiveX control, the ActiveX control is marked safe for scripting.

For example, the Scriptlet.Typelib control has a class ID of {06290BD5-48AA-11D2-8432-
006008C3FBFC} and the safe for scripting CLSID is {7DD95801-9882-11CF-9FA0-

18 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

00AA006C42C4}. In the registry an unpatched system would contain the key:

HKCR/CLSID/{06290BD5-48AA-11D2-8432-006008C3FBFC}/Implemented Cat-
egories/{7DD95801-9882-11CF-9FA0-00AA006C42C4}

allowing any remote webpage or incoming HTML email to create malicious files on the local
system. Clearly, leaving such security decisions to the developer is far from foolproof.

System Modification

Once malicious software gains access to the system, the system is often modified to disable
application or user rights verification. Such modifications can be as simple as eliminating a root
password or modifying the kernel allowing user rights elevation or previously unauthorized
access.

For example, CodeRed creates virtual webroots allowing general access to the compromised
webserver and Win32/Bolzano patches the kernel disabling user rights verification on Windows
NT systems.

Network Enumeration

Several 32-bit computer viruses enumerate the Windows networks using standard Win32 brows-
ing APIs such as WNetOpenEnum(), WNetEnumResourceA() of MPR.DLL. The first use of this
attack appeared in the Win32/ExploreZip.

The following figure shows the structure of a typical Windows network:

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 19

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Resources that do not contain other resources are called objects. In the preceding figure,
Sharepoint #1 and Sharepoint #2 are objects. A sharepoint is an object that is accessible across
the network. Examples of sharepoints include printers and shared directories.

Win32/Funlove virus was the first file infector to infect files on network shares using network
enumeration. Win32/FunLove caused major headache by infecting large corporate networks
world wide. This is because the network aware nature of the virus. Many people often share
directories without any security restrictions in place. Most people share more directories (such as
a drive C:) than they need to and often without any passwords. This enhances the effectiveness of
network aware viruses.

Some viruses such as Win32/HLLW.Bymer use the form \\nnn.nnn.nnn.nnn\c\windows\ (where
nnn-s describe an IP address) to access the C: drive of any remote systems that have a Windows
folder on it. Such an attack can be particularly painful for many home users running a home PC
that is typically not behind a firewall. Windows makes the sharing of network resources very
simple. However, extra attention is needed on the user’s part to use strong passwords, to limit the
access to the only necessary resources, and even further, to use other means such as personal
firewall software.

CURRENT AND PREVIOUS THREATS

The follow section describes a variety of blended attacks in more detail. These include the infa-
mous Morris worm and CodeRed, which use a buffer overflow; threats such as Win32/Badtrans
and Win32/Nimda, which use input validation exploits; and Win32/Bolzano and VBS/
Bubbleboy, which use application or user rights exploits.

Morris Worm

The Morris worm implemented a buffer overflow attack against the fingerd program. This pro-
gram runs as a system background process and satisfies requests based on the finger protocol on
the finger port (79 decimal). The problem in fingerd was related to its use of the gets() library
function. The gets() function contained an exploitable vulnerability (there were a couple of other
functions on BSD systems that had a similar problem).

Because fingerd declared a 512 byte buffer for gets() call without any bounds checking, it was
possible to exploit this and send a larger string to fingerd. The Morris worm crafted a 536 byte
“string” containing assembly code (so called shell code) on the stack of the remote system to
execute a new shell via a modified return address.

First the 536 byte buffer was initialized with zeros, filled with data and sent over to the machine
to be attacked, followed by an “\n” to indicate the end of the string for gets().

This attack worked only against VAX (Virtual Address eXtension) systems that were designed
and built from 1977 through to retirement of the system in 1999/2000.

VAX is a 32-bit CISC architecture. The system was a successor to PDP-11. VAX uses 16 regis-
ters that are numbered from r0-r15 but several of these registers are special and map to SP (Stack
Pointer), AP (Argument Pointer) and so on.

20 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

The actual instructions responsible for the attack were on the stack as follows, but inside the
originally reserved buffer at position 400 decimal.

DD8F2F736800 pushl $68732f ; ‘/sh\0’
DD8F2F62696E pushl $6e69622f ; ‘/bin’
D05E5A movl sp, r10 ; save pointer to command
DD00 pushl $0 ; third parameter
DD00 pushl $0 ; second parameter
DD5A pushl r10 ; push address of ‘/bin/sh\0’
DD03 pushl $3 ; number of arguments for chmk
D05E5C movl sp, ap ; Argument Pointer register = stack pointer
BC3B chmk $3b ; change-mode-to-kernel

The above code is an execve(“/bin/sh”, 0, 0) system call. [spaff88].

Bytes 0 through 399 of the attack buffer were filled with the 01 opcode (NOP). An additional set
of longword-s were also changed beyond the original buffer size, which in turn smashed the
stack with a new return address that the author hoped would point into the buffer and eventually
hit the shell code within it. When the attack worked the new shell took over the process and the
worm could successfully send new commands to the system via the open network connection.

The worm modified the original return address of main() on the stack of fingerd. When main()
(or any function is called) on a VAX machine with a calls or callg instruction, a call frame is
generated on the stack. Since the first local variable of fingerd was the actual buffer in question,
main’s call frame was placed next to the buffer. Overflow of the buffer causes the call frame to
be changed.

The Morris worm modified this call frame (rewriting 6 entries in it) and specified the return
address (in the position of the saved PC - Program Counter) that would hopefully point into its
own crafted buffer. (The PC is the equivalent of the EIP on the Intel CPU). The NOPs in the
worm’s attack buffer increase the chance that control will eventually arrive at the shell code. The
worm’s code specifies the call as a calls instruction by setting the S bit of the Mask field. The
following picture shows the call frame layout on a VAX:

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 21

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Eventually a ret instruction will access the altered call frame (which is likely to be very similar
to its original content except for the Saved PC), pick up the new PC and return to a location that
which will hit the shell code of the worm.

Shell code is always crafted to be as short as possible. In the case of the Morris worm, the shell
code is 28 bytes. Shell code often needs to fit in small buffers to exploit the maximum set of
vulnerable applications. In the case of the finger daemon, the actual available buffer size was 512
bytes, but obviously some other applications may not have “that much” space for the shell code.

Linux/ADM

In 1998, around the 10th anniversary of the Morris worm a group of hackers created a new Linux
worm, called Linux/ADM, which quickly spread in-the-wild. The worm utilized a buffer over-
flow technique to attack BIND (Berkeley Internet Name Domain) servers.

BIND is a service listening on the NAMESERVER_PORT (53 decimal). The worm attacked the
server with a malformed IQUERY (Inverse Query) by specifying a long request body (packet)
for the query. Certain BIND versions have had a couple of similar buffer overflow vulnerabilities
in several places, but the bug in question was in the ns_req.c module. A function called
req_iquery() is called to satisfy any incoming IQUERY request.

The packet size for the query is crafted so that it will be long enough to hit a return address. Thus
the function does not return but hopefully executes the attack buffer which is filled with NOP
instructions and shell code to call execve on Intel based Linux systems (Function=0x0b, INT
80h). Thus Linux/ADM’s attack is very similar to that of the Morris worm. Linux/ADM also
uses a shell code based attack and the important difference is that Linux/ADM recompiles itself
entirely while Morris worm did not have more than a short boot code that was compiled to target
platforms.

Linux/ADM worm consists of several C files as well as other script files in a TAR file. It com-
piled these modules as test, Hnamed, gimmeRAND, scanco and remotecmd respectively.

Once the worm is executed it looks for new hosts to infect at a random IP address generated
using gimmeRAND, and then by checking the vulnerable systems using scanco.

When a vulnerable system is detected, the module Hnamed is used with parameters passed to it.
The parameters to Hnamed specify the machine to be attacked as well as the attack shell string,
which is a piped /bin/sh command chain.

The worm can snatch its source from the attacker machine and restart the compilation process on
the new host. Linux/ADM makes sure to install an additional remote command prompt.

This remote command prompt gets particularly interesting since a former white hat security
person, Max Butler created a counter attack in the form of a worm to install security patches on
Linux systems to stop the Linux/ADM worm and similar attacks. Butler modified the worm to
install patches, but it appears that he forgot to remove the remote prompt which opened the
systems to outside attacks in the first place.

Max Butler was sentenced to 18 months in prison for launching the worm that crawled through
hundreds of military and defence contractor computers over a few days in 1998. [Security Focus]

22 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

CodeRed

The CodeRed worm was released to the wild in July of 2001. The worm replicated to thousands
of systems in a matter of a few hours. It was estimated that well over 300.000 machines were
infected by the worm within 24 hours. All of these machines were Windows 2000 systems run-
ning vulnerable versions of Microsoft IIS.

Interestingly enough the worm did not need to create a file on the remote system in order to
infect it, but existed only in memory of the target system. The worm accomplished this by get-
ting into the process context of the Microsoft IIS with an extremely well crafted attack via port
80 (web service) of the target system.

First the IIS web server receives GET /default.ida? followed by 224 characters, URL encoding
for 22 Unicode characters (44 bytes), an invalid Unicode encoding of %u00=a, HTTP 1.0, head-
ers, and a request body.

For the initial CodeRed worm, the 224 characters are N, but there were other implementations
that used other filler bytes such as X. In all cases, the URL encoded characters are the same (they
look like %uXXXX, where X is a hex digit). The request body is different for each of the vari-
ants known.

IIS keeps the body of the request in a heap buffer (probably the one it read it into after process-
ing the Content-length header indicating the size to follow). Note that a GET request is not
allowed to have a request body, but IIS dutifully reads it according to the header’s instructions
anyway. For this very reason, an appropriately configured firewall would cut the request body
(and the worm), and CodeRed could not infect the attacked system.

Buffer Overflow Details

While processing the 224 characters in the GET request, functions in IDQ.DLL overwrites the
stack at least twice (Figure 1) once when expanding all characters to Unicode, and again when
decoding the URL escaped characters. However, the overwrite that results in the transfer of
control to the worm body happens when IDQ.DLL calls DecodeURLEscapes() in QUERY.DLL.

The caller is supposed to specify a length in wide chars, but instead specifies a number of bytes.
As a result, DecodeURLEscapes() thinks it has twice as much room as it actually has, so it ends
up overwriting the stack. Some of the decoded Unicode characters specified in URL encoding
end up overwriting a frame-based exception block. Even after the stack has been overwritten,
processing continues until a routine is called in MSVCRT.DLL. This routine notices that some-
thing is wrong and throws an exception.

Exceptions are thrown by calling the KERNEL32.DLL routine RaiseException().
RaiseException() ends up transferring control to KiUserExceptionDispatcher() in NTDLL.DLL.
When KiUserExceptionDispatcher() is invoked, EBX is pointing to the exception frame that was
overwritten.

The exception frame is composed of 4 DWORDs, the second of which is the address of the
exception handler for the represented frame. The URL encoding whose expansion overwrote this
frame starts with the third occurrence of %u9090 in the URL encoding, and is:

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 23

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3

This decodes as the four DWORDs: 0x68589090, 0x7801CBD3, 0x90909090, and 0x00C38190.

The address of the exception handler is set to 0x7801CBD3 (2nd DWORD), and
KiUserExceptionDispatcher() calls there with EBX pointing at the first DWORD via CALL
ECX.

Address 0x7801CBD3 in IIS’s address space is within the memory image for the C runtime DLL
MSVCRT.DLL. MSVCRT.DLL is loaded to a fixed address. At this address in MSVCRT.DLL is
the instruction CALL EBX. When KiUserExceptionDispatcher() invokes the exception handler,
it calls to the CALL EBX, which in turn transfers control to the first byte of the overwritten
exception block. When interpreted as code, these instructions find and then transfer control to the
main worm code, which is in a request buffer in the heap.

The author of this exploit needed the decoded Unicode bytes to function both as the frame-based
exception block containing a pointer to the “exception handler” at 0x7801CBD3, and as runable
code. The first DWORD of the exception block is filled with 4 bytes of instructions arranged so
that they are harmless, but also place the 0x7801CBD3 at the second DWORD boundary of the
exception block. The first two DWORDs (0x68589090, 0x7801CBD3) disassemble into the
instructions: nop, nop, pop eax, push 7801CBD3h which accomplish this task easily.

Having gained execution control on the stack (and avoiding a crash while running the “exception
block”), the code finds and executes the main worm code.

This code knows that there is a pointer (call it pHeapInfo) on the stack 0x300 bytes from EBX’s
current value. At pHeapInfo+0x78, there is a pointer (call it pRequestBuff) to a heap buffer
containing the GET request’s body, which contains the main worm code. With these two key
pieces of information, the code transfers control to the worm body in the heap buffer. The worm
code does its work, but never returns - the thread has been hijacked (along with the request
buffer owned by the thread).

Exception Frame Vulnerability

This technique of usurping exception handling is complicated (and crafting it must have been
difficult). The brief period between the eEye description of the original exploit and the appear-
ance of the first CodeRed worm leads us to believe that this technique is somewhat generic.
Perhaps the exception handling technique has been known to a few buffer overflow enthusiasts
for some time, and this particular overflow was a perfect opportunity to use it.

Having exception frames on the stack makes them extremely vulnerable to overflows. In other
words the CodeRed worm relied on the Windows exception frame vulnerability to carry out a
quick buffer overflow attack against IIS systems.

Buffer Overflow Usage in Computer Viruses

Based on the set of previous examples, it is easy to see that computer worms typically attack
server systems; usually service processes and daemon programs that are waiting to handle in-
coming requests by listening on various TCP/IP ports. Any such communication service could

24 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

potentially contain flaws, as did the fingerd (in the case of Morris worm), the BIND (in the case
of the AMD worm) and Microsoft IIS (in the case of the CodeRed worm).

We should note that best practices prescribe the removal of all unneeded services from the sys-
tem. Any such services should be removed to make the execution environment safer and to
reduce the opportunities for malicious hackers and virus attacks to break into internal networks.
In the case of CodeRed, for example, the vulnerable IDQ.DLL was only loaded to support the
very rarely used indexing service. Had this service been disabled on systems that didn’t need it
(which was likely most systems), CodeRed would not have been so successful.

Win32/Badtrans.B@mm

Description

Win32/Badtrans.B@mm was discovered on November 24, 2001. Win32/Badtrans.B@mm is a
worm that emails itself out using different file names and steals data such as passwords from the
infected computer.

MIME Exploit

The worm used a MIME header exploit, which allowed the worm to execute when previewing or

Figure 1. Stack, Heap and Frame Layout of a CodeRed attack.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 25

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

reading an infected email message. Microsoft Outlook (Express) or potentially any mail client,
which utilizes Internet Explorer for rendering of HTML mail were affected. Users did not have
to detach or execute the attachment in order to become infected — simply reading or previewing
the message caused the attachment to be executed.

The MIME exploit utilized is described in the previous section MIME Header Parsing.

The MIME header vulnerability was corrected by Microsoft in security bulletin MS01-20 in
March, 2001 yet the worm was still effective in November, eight months later. If a vulnerable
system was patched, the risk would have been significantly lower.

Unfortunately, many machines today are still vulnerable to this exploit. All variants of W32.Klez
(first discovered in October of 2001) uses the same exploit and topped the virus infection charts
in May, 2002 more than a year after a patch has been available.

Win32/Nimda.A@mm

Description

Win32/Nimda.A@mm is a worm that utilizes multiple methods to spread itself. The worm sends
itself out by email, searches for open network shares, attempts to copy itself to unpatched or
already vulnerable Microsoft IIS web servers, and is a virus infecting both local files and files on
remote network shares.

The worm uses the Web Server Folder Traversal exploit to infect IIS web servers and a MIME
header exploit allowing it to be executed just by reading or previewing an infected email.

Win32/Nimda.A@mm began infecting around 12:00 GMT on September 18, 2001. Within the
first twelve hours, Win32/Nimda.A@mm infected at least 450,000 unique hosts with 160,000
hosts simultaneously infected at the peak rate of infection. The ability to infect IIS web servers
via an input validation exploit and auto-execute upon reading or previewing email played a large
role in Win32/Nimda.A@mm’s ability to spread so rapidly.

 IIS Exploit Explained

Win32/Nimda.A@mm exploits the Microsoft Internet Information Server MS01-026 vulnerabil-
ity or previously compromised installations to copy itself to the server via TFTP and then ex-
ecutes itself remotely.

First, Win32/Nimda.A@mm probes the server by issuing a dir command using an exposed
cmd.exe from a previously compromised machine or winnt\system32\cmd.exe by using multiple
variations of a URL canonicalization and encoding vulnerability as described earlier.

If the server responds with a ‘200’ success message, Win32/Nimda.A@mm records that the
server is vulnerable and begins its uploading routine. If the server does not respond with a suc-
cess message another malformed URL is tried. In total, Win32/Nimda.A@mm attempts thirteen
different URL encoding attacks and four specific URLs for servers that have been previously
compromised.

The worm uploads itself by executing tftp.exe on the remote server again using a malformed
URL to break out of the web root. The worm uses the TFTP client to connect back to the infect-

26 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

ing server, downloading a copy of itself as the filename httpodbc.dll.

Once copied to the victim web server, Win32/Nimda.A@mm then executes itself by simply
performing a HTTP GET request of itself on the remote web server (e.g., GET /directory/<ex-
ploit string>/<filename>.dll).

Win32/Bolzano

Description

 Win32/Bolzano is a direct action appending virus that infects PE files. While the virus replica-
tion routine is simple, the modification of the Windows NT kernel to turn off user rights verifica-
tion was novel.

Kernel Modification

Viruses such as Win32/Bolzano (and later Win32/FunLove with the same trick) modify kernel
files on the machine to give a virus an advantage.

Win32/Bolzano as well as Win32/FunLove needs administrative rights on a Windows NT server
or Windows NT workstation during the initial infiltration. Therefore it is not a major security
risk, but still a potential threat. Viruses can always wait until the Administrator or someone with
equivalent rights logs on.

In such a case, Win32/Bolzano has the chance to patch ntoskrnl.exe, the Windows NT kernel,
located in the WINNT\SYSTEM32 directory. The virus modifies only 2 bytes in a kernel API
called SeAccessCheck() that is part of ntoskrnl.exe. In this way, Win32/Bolzano is able to give
full access to all users for every file regardless of its protection whenever the machine is booted
with the modified kernel. This means that a Guest -having the lowest possible rights on the
system- will be able to read and modify all files including files that are normally accessible only
by the Administrator.

This is a potential problem since the virus can spread everywhere it wants to regardless of the
actual access restrictions on the particular machine. Furthermore after the attack, no data can be
considered protected from any user. This happens because the modified SeAccessCheck() API is
forced to return 1 always, instead of 0 or 1. 1 means that the particular user has the necessary
rights to access a particular file or directory placed on an NTFS partition while 0 means the user
has no access. SeAccessCheck() is called each time when the file access rights should be
checked.

Unfortunately, the consistency of ntoskrnl.exe is checked in only one place. The loader, ntldr, is
supposed to check ntoskrnl.exe when loading it into physical memory during machine boot-up.
If the kernel gets corrupted ntldr is supposed to stop loading ntoskrnl.exe and display an error
message even before a “blue screen” appears. In order to avoid this particular problem, Win32/
Bolzano also patches the ntldr so that no error message will be displayed and Windows NT will
boot just fine even if its checksum does not match with the original.

Since no code checks the consistency of ntldr itself, the patched kernel will be loaded without
notification to the user. Since ntldr is a hidden, system, read-only file Bolzano changes the at-
tributes of it to “archive” before it tries to patch it. (The modification of ntoskrnl.exe and other

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 27

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

system executables were somewhat resolved by the System File Checker feature of Windows
2000/XP systems. Unfortunately, malicious code can easily disable this feature. Furthermore, the
primary function of SFC is not virus protection, but a solution to the so called “DLL hell” prob-
lem.)

On certain other systems such as Linux, the kernel source files are commonly directly available
on the systems (even on those not used for development). Therefore any virus or other malware
can easily alter the source of the system to gain root privileges once the kernel is recompiled
(assuming the virus has write access to the source at some point).

VBS/Bubbleboy

Description

VBS/BubbleBoy is a Visual Basic Script worm that works under English and Spanish versions
Windows 98 and Windows 2000. The worm emails itself out to every email address in the
Microsoft Outlook address book. The worm utilizes an ActiveX control safe for scripting exploit
to execute itself without the user detaching or executing the attachment. This exploit was first
used by JS/Kak.

ActiveX Safe for Scripting Exploit

VBS/Bubbleboy uses the Scriptlet.Typelib control to create a malicious HTA (HTML Applica-
tion) file in the Windows Startup directory. Thus, the next time the computer is restarted, the
HTA file executes the replication routine. By exploiting a safe for scripting vulnerability, the file
is created when one simply reads or previews email using a vulnerable version of Internet Ex-
plorer 5.

Scriptlet.Typelib allows one to dynamically generate a type library for a Windows Script Compo-
nent. Such a type library would normally contain information about its interfaces and members.
Type libraries are useful for statement completion in Visual Basic and also for displaying ex-
posed properties and methods in the Object Browser.

Thus, Scriptlet.Typelib provides a Path property specifying where the type library will be written
and a Doc property, which is normally used for a string with the type library information. Fi-
nally, the Write method creates the type library file.

Unfortunately, the Scriptlet.Typelib control was marked safe for scripting. This allowed remote
scripts (scripts files in the Internet Zone such as HTML email or remote webpages) to utilize the
methods and properties of Scriptlet.Typelib and thus, write out a file (which normally would be a
.tlb type library file) to the local system with arbitrary content defined by the Doc property.
The following code snippet demonstrates how to use Scriptlet.Typelib to write out a file.

Set oTL = CreateObject(“Scriptlet.Typelib”)
oTL.Path=”C:\file.txt” ‘ .tlb path/filename
oTL.Doc=”Hello World!” ‘ .tlb file contents
oTL.Write ‘ write out file to local disk

Microsoft provided a patch to fix this problem in security bulletin MS99-032 on August 31,
1999.

28 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Win32/Blebla

Description

This worm uses variable subject lines and has two attachments named Myjuliet.chm and
Myromeo.exe. Once a message is read or previewed in vulnerable installations of Microsoft
Outlook (Express), the two attachments are automatically saved and launched. When launched,
this worm attempts to send itself out to all names in the Microsoft Outlook address book using
one of several Internet mail servers located in Poland.

ActiveX and Cache Bypass Exploit Explained

Win32/Blebla uses a combination of an ActiveX control, which is marked safe for scripting and
another vulnerability that allows saving files locally to known locations.

The worm uses the showHelp method of the HHCtrl (HTML Help) ActiveX control. This
method allows one to display (and thus, execute) CHM (Compiled HTML) files via scripting.
Originally, showHelp contained a vulnerability that allowed one to provide a full UNC path as
the filename to open. This allowed one to locally launch remote CHM files. Microsoft fixed this
vulnerability in security bulletin MS00-37.

However, while the ability to launch remote CHM files was corrected, the control was still
marked safe for scripting. Furthermore, the control could still launch local CHM files. Thus, one
can launch local CHM files via remote scripts (such as HTML email and remote webpages). This
wasn’t viewed a vulnerability since the malicious CHM file would already need to exist on the
local system.

Thus, the worm combines using the local execution ability of showHelp along with a cache
bypass vulnerability. Normally, when receiving HTML e-mail, inline files such as images () are automatically saved to the Temporary Internet Files folder. By design, this
cache directory is treated as the Internet Zone and is off limits to remote scripts. Thus, even if
Win32/Blebla was able to save a local CHM file to this directory, showHelp would not have
permission to load files from that directory.

Using a cache bypass vulnerability in Microsoft Outlook, the worm was able to save a CHM file
to the known location of C:\Windows\Temp, bypassing the requirement to utilize the restricted
Temporary Internet Files directory.

Once the malicious file is saved to C:\Windows\Temp, the worm then launches the malicious
CHM file using the showHelp method.

This demonstrates a dual-vulnerability attack. The showHelp method by itself is not vulnerable.
However, by combining the showHelp method with another vulnerability, one is able to remotely
execute arbitrary code on the local system.

Microsoft fixed the cache bypass vulnerability in security bulletin MS00-046.

If the HHCtrl ActiveX control is simply marked not safe for scripting, then this type of attack
can not take place whether or not another vulnerability exists. Unfortunately, today, the HHCtrl
is still marked safe for scripting and thus, can be used remotely to launch local files.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 29

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

CURRENT SECURITY

Many of these blended threats are effective today because most current security products can not
prevent the threats. Furthermore, only some products can detect the threats once they have ar-
rived on the system or simply alert an attack has taken place.

For example, traditional anti-virus products do not scan Windows memory. This means blended
threats such as CodeRed, which reside solely in memory might remain undetected. In addition,
most intrusion detection products merely alert rather than block when a signature matches. Thus,
while an administrator may receive an alert, the worm has already infected the machine. Some
modern intrusion detection systems employ gated technology, which means threats are actually
blocked when detected.

One of our own solutions included the use of a memory scanner to detect the worm in memory.
The program also determined the need for the patch. Unfortunately, CodeRed’s code can appear
on the heap of IIS processes that are not vulnerable to the attack. Therefore a scanning solution
had to prove the active existence of the worm on the machine. (Appendix A. shows some de-
tailed of thread information on a system infected by two different variants of CodeRed).

Such on-demand memory scanning solutions are still unable to prevent the worm from entering
the system. Active protection for such an attack needs to be identified elsewhere.

Firewall software can be configured to prevent certain types attacks from happening in the first
place. Symantec Raptor Firewall stopped CodeRed without requiring new rules because it en-
forces the rule that GET requests are not allowed to have a body. Since CodeRed’s main code
was sent as the body of a malformed GET request, Raptor dropped the illegal body and
CodeRed’s main code could not reach its intended target.

However, we know that firewall software by itself will never prevent virus attacks entirely. In
addition, firewalls will not prevent against all new kinds of threats and will require expertise in
dynamic maintenance of firewall configuration. Using a firewall to mitigate the risk is not limited
to the standard enterprise firewall, but also includes personal firewall. Personal firewall can
perform similar tasks, but geared for a single workstation rather than a whole network. The
combination of personal and enterprise firewall can be extremely powerful to deal with not only
incoming but also outbound attacks. Half of the damage is done when the attack enters the
internal network; the other half occurs when it leaves the internal network. The secondary dam-
age can often be more costly than the primary damage.

Host based IDS solutions also need to be considered. Such software exists for a various operat-
ing systems, but we need to realize that providing protection on all of the platforms in a diversi-
fied internal network can be very complex. Nevertheless, even if attacks are stopped only on Intel
and Windows platform host systems, a large part of possible virus problems can be prevented
effectively. IDS needs to cover a wild variety of operating systems managed from a single central
location.

Other quick “solutions” have included a counter attack (causing a buffer overflow to crash the
attacker process) on the infected nodes. Some individuals even implemented worms to attack
vulnerable machines and execute the appropriate patch. Obviously these solutions have some
interesting ethical context.

30 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Unfortunately, once a machine has been compromised, full system reinstallation should be
considered based on the location of the system on the network.

COMBATING BLENDED THREATS IN THE FUTURE

Combating future threats requires the interaction of multiple existing technologies including host
and network based IDS and anti-virus software and future scanning technologies. Combining the
technologies will provide for more comprehensive coverage and clearly protective measures
must be deployed at all levels of the enterprise.

Anti-virus scanners need to implement memory scanning. Otherwise, threats that are injected
directly into memory will be undetected. Currently, anti-virus products do have DOS memory
scanning, but not the equivalent for Windows or other operating systems. Such memory scanning
functionality is already in development by many vendors and will most likely be implemented
on-demand.

Preventing threats that inject themselves into memory via the network requires scanning incom-
ing network data via IDS. Current anti-virus scanners generally detect threats only when they
have been saved to disk. For example, when Win32/Funlove infects via network shares, anti-
virus programs can only detect the infections once they have taken place. Worms that copy
themselves over network shares similarly will only be detected once they have actually finished
copying themselves. This poses a variety of problems.

Occasionally, Win32/Funlove may accidentally corrupt files when infecting via network shares.
Anti-virus products can’t prevent this from happening, but can only detect the virus (and cor-
rupted file) after the infection (and corruption) has already taken place. Thus, the customer is
effectively left unprotected and anti-virus becomes only an alerting mechanism rather than a
prevention mechanism. Furthermore, Win32/Funlove repeatedly infects open network shares and
thus, a loop occurs where anti-virus products disinfect files and then Win32/Funlove infects them
again, over and over again.

Thus, future technologies might require anti-virus scanners to scan incoming network data
similarly to network IDS, which could reduce this problem considerably. (However network
performance problems might arise.) For example, an anti-virus scanner may detect Win32/
Funlove transferring over its code via Microsoft Networking and block the stream of data pre-
venting files from becoming infected on the open share. Network scanning technology could also
detect CodeRed transferring itself over port 80 and block it from injecting itself into memory.
Furthermore, networked based IDS can help to find the source of an attack that is crucial to
remove infected host from the internal network as quickly as possible.

In addition, anti-virus solutions need to incorporate modern behavior blocking technology. A set
of new patent pending features will be available in new versions of Symantec Norton AntiVirus
to not only prevent script treats but mass mailing Win32 worms also. Such technology will need
to be extended further to prevent infections of network shares and local systems. Although host
based behavior blocking technology is not new, it needs to evolve as new attacks appear.

These solutions will not be deployed in a stand-alone fashion, but integrated into a network of
products that communicate and correlate data. For example, in the future a local anti-virus-like

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 31

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

scanner may detect a suspicious file on the system, which appears to have a malicious e-mailing
routine. However, this alone isn’t enough to trigger on the file. A behavior analysis component
then notices this file has actually made a connection to a mail server. Next, a network traffic
scanner tracks the file being sent to another machine on the network. While still suspicious, the
actions may be legitimate. A local file scanner on the victim machine then verifies the file is the
same as the original one on the original host machine adding even more evidence that the threat
is malicious.

The same components continue to track the actions from one machine to another. Other anoma-
lous behavior is also tracked such as unusual network traffic or system modifications. Once, a
pattern is developed where the file is seen to be automatically sent from one machine to another
and to another, an automated signature or filtering is created and the mail server is auto-updated
to block the transfer of the file. Furthermore, all the scanning products are updated to block at
their scanning point in the network. The file and logs can then be automatically sent to the ven-
dor for analysis and confirmation. The correlation of data can help to reduce the number of
events.

The aforementioned smart scanning scenario is in development already today. Cooperation of
multiple scanning components allows them to build a bigger picture of what is occurring on the
network. By combining this data, blended threats may be more easily detected and in many cases
prevented.

SUMMARY

While blended threats have existed for more than ten years, their reappearance today is of greater
concern. In the past, the usage of networking and the Internet was limited to governments and
university research. Today, Internet usage is main stream and being utilized in many aspects of
business.

Blended threats can spread faster and further than classic virus threats and unfortunately, effec-
tive solutions are still only on the horizon. The best line of protection still remains vigilance in
applying critical patches. Host and network based vulnerability assessment tools can help to
identify outdated systems with security holes inside the internal networks quicker and thus
security patches can be delivered faster. Furthermore vulnerability assessment tools can help to
ensure that passwords are set up in accordance to the corporate requirements and they can iden-
tify unneeded and insecure system services that need to be uninstalled. Enterprise and personal
firewall software can help to fight with inbound and outbound attacks reliably. Preventing tech-
nologies needs to be installed on the workstations, servers and the gateways respectively.

Simple email worms are now considered the last generation threat. Today and the near future
will be composed of blended threats and their damage is still yet unseen. A downed mail server
is now the least of our worries when threats can now effectively shutdown Internet backbones.
Hopefully, the appearance of threats such as Win32/CodeRed and Win32/Nimda has given
security professionals a wake-up call to prepare for the future as either threat could easily have
been more damaging.

32 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

REFERENCES

[spaff88] Eugene H. Spafford, The Internet Worm Program: An Analysis.

[Gordon88] Sarah Gordon, ‘The worm has turned’, Virus Bulletin, August, 1998.

[McCorkendale-Szor] ‘Code Red Buffer Overflow’, Virus Bulletin, September 2001.

http://www.cve.mitre.org/, (Common Vulnerabilities and Exposures).

http://www.cert.org/.

[Szor99] ‘Memory Scanning Under Windows NT’, Int. Virus Bull. Conf., 1999, pp.325–346, also
see http://securityresponse.symantec.com/avcenter/reference/memory.scanning.winnt.pdf.

[Szor2000] ‘Bolzano Bugs NT’, Virus Bulletin, September 1999.

[Litchfield] Windows 2000 Format String Vulnerabilities, May 8, 2002.

[Howard-LeBlanc] Writing Secure Code, Chapter 12.

[Personal Communication] Bruce McCorkendale, Frederic Perriot.

[One] Smashing The Stack For Fun And Profit, Phrack 49, Vol. 7, Issue #49, File 14.

http://www.peterszor.com/badtrans.pdf ‘Bad Transfer’, Virus Bulletin, February 2002.

http://msdn.microsoft.com/workshop/components/activex/safety.asp.

http://msdn.microsoft.com/library/en-us/script56/html/letcreatetypelib.asp.

APPENDIX A.

This is a partial log of the threads inside INETINFO.EXE process (Microsoft’s IIS) after being
infected by both CodeRed I and CodeRed II. Any thread is identified as an active one and de-
tected based on the signature of the virus code found at a thread start address. This is to ensure
complete avoidance of ghost positives that could appear since unsuccessful worm attacks could
still place worm code to application heap in inactive form. In tests, attempts to freeze the de-
tected CodeRed threads were successful in stopping the worm from spreading further, and in
gaining sufficient CPU time for patch installation processing.

Notice the high context switch number for worm related threads even after only a few seconds of
infections. CodeRed II infections were new fresh and they have a lower context switch number,
but notice that most CodeRed II thread have almost identical context switches values.

PID: 0x03b0

Threads:
TID CTXSWITCH LOADADDR WIN32STR STATE
3ac 63 77e878c1 01002ec0 Wait:Executive
260 458 77e92c50 77dc95c5 Wait:Userrequest
410 927 77e92c50 78002432 Wait:Userrequest
414 921 77e92c50 78002432 Wait:Userrequest
418 131 77e92c50 00000000 Wait:Lpcreceive
41c 459 77e92c50 77dc95c5 Wait:Userrequest
.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 33

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

.

.
494 2 77e92c50 6a176539 Wait:Userrequest
498 8 77e92c50 6d703017 Wait:Userrequest
49c 7 77e92c50 69de3ce1 Wait:Userrequest
4a0 1 77e92c50 69e0d719 Wait:Eventpairlow
4a4 1 77e92c50 69e0d719 Wait:Eventpairlow
4a8 1 77e92c50 69e0d719 Wait:Eventpairlow
4ac 1 77e92c50 69e0d719 Wait:Eventpairlow
4b0 186 77e92c50 69dda9b7 Wait:Userrequest
4b4 2 77e92c50 77d4b759 Wait:Lpcreceive
4b8 2 77e92c50 74a82a31 Wait:Userrequest
4bc 178 77e92c50 6783b085 Wait:Userrequest
348 10507 77e92c50 730c752b Wait:Userrequest
594 6 77e92c50 730c75e6 Wait:Lpcreply
2a4 702 77e92c50 6e9036de Wait:Userrequest
598 10509 77e92c50 010ce918 CodeRed I Thread
59c 10509 77e92c50 0230fe7c CodeRed I Thread
5a0 10510 77e92c50 0234fe7c CodeRed I Thread
5a4 10509 77e92c50 0238fe7c CodeRed I Thread
5a8 10509 77e92c50 023cfe7c CodeRed I Thread
5ac 10510 77e92c50 0240fe7c CodeRed I Thread
5b0 10510 77e92c50 0244fe7c CodeRed I Thread
5b4 10510 77e92c50 0248fe7c CodeRed I Thread
5b8 10511 77e92c50 024cfe7c CodeRed I Thread
5bc 10509 77e92c50 0250fe7c CodeRed I Thread
5c0 10510 77e92c50 0254fe7c CodeRed I Thread
5c4 10509 77e92c50 0258fe7c CodeRed I Thread
5c8 10509 77e92c50 025cfe7c CodeRed I Thread
5cc 10510 77e92c50 0260fe7c CodeRed I Thread
5d0 10509 77e92c50 0264fe7c CodeRed I Thread
5d4 10509 77e92c50 0268fe7c CodeRed I Thread
5d8 10509 77e92c50 026cfe7c CodeRed I Thread
5dc 10509 77e92c50 0270fe7c CodeRed I Thread
5e0 10509 77e92c50 0274fe7c CodeRed I Thread
5e4 10509 77e92c50 0278fe7c CodeRed I Thread
5e8 10509 77e92c50 027cfe7c CodeRed I Thread
5ec 10509 77e92c50 0280fe7c CodeRed I Thread
5f0 10510 77e92c50 0284fe7c CodeRed I Thread
5f4 10509 77e92c50 0288fe7c CodeRed I Thread
.
.
.
708 10509 77e92c50 039cfe7c CodeRed I Thread
70c 10509 77e92c50 03a0fe7c CodeRed I Thread
710 10510 77e92c50 03a4fe7c CodeRed I Thread
714 10509 77e92c50 03a8fe7c CodeRed I Thread
718 10509 77e92c50 03acfe7c CodeRed I Thread
71c 10509 77e92c50 03b0fe7c CodeRed I Thread
720 10509 77e92c50 03b4fe7c CodeRed I Thread
724 2 77e92c50 03b8fe7c CodeRed I Thread
26c 65 77e92c50 00000000 Wait:Lpcreceive
518 1 77e92c50 6d70175a Wait:Eventpairlow
320 7 77e92c50 6d70175a Wait:Eventpairlow
568 839 77e92c50 004202a1 CodeRed II Thread
58c 810 77e92c50 004202a1 CodeRed II Thread

34 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

390 810 77e92c50 004202a1 CodeRed II Thread
4d8 810 77e92c50 004202a1 CodeRed II Thread
190 810 77e92c50 004202a1 CodeRed II Thread
564 810 77e92c50 004202a1 CodeRed II Thread
294 810 77e92c50 004202a1 CodeRed II Thread
4dc 810 77e92c50 004202a1 CodeRed II Thread
488 811 77e92c50 004202a1 CodeRed II Thread
120 810 77e92c50 004202a1 CodeRed II Thread
.
.
.
800 814 77e92c50 004202a1 CodeRed II Thread
804 7868 77e92c50 74fd68fd Wait:Eventpairlow
808 813 77e92c50 004202a1 CodeRed II Thread
80c 812 77e92c50 004202a1 CodeRed II Thread
810 812 77e92c50 004202a1 CodeRed II Thread
814 812 77e92c50 004202a1 CodeRed II Thread
818 812 77e92c50 004202a1 CodeRed II Thread
81c 812 77e92c50 004202a1 CodeRed II Thread
820 812 77e92c50 004202a1 CodeRed II Thread
.
.
.
b3c 812 77e92c50 004202a1 CodeRed II Thread
b40 812 77e92c50 004202a1 CodeRed II Thread
b44 814 77e92c50 004202a1 CodeRed II Thread
b48 812 77e92c50 004202a1 CodeRed II Thread
b4c 812 77e92c50 004202a1 CodeRed II Thread
b50 812 77e92c50 004202a1 CodeRed II Thread
b54 812 77e92c50 004202a1 CodeRed II Thread

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2002 • 35

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

&KDUDFWHU 7\SH 2XWSXW�IRUPDW
F LQW�RU�ZLQWBW :KHQ�XVHG�ZLWK�SULQWI�IXQFWLRQV��VSHFLILHV�D�VLQJOH�E\WH�FKDUDFWHU�

ZKHQ�XVHG�ZLWK�ZSULQWI�IXQFWLRQV��VSHFLILHV�D�ZLGH�FKDUDFWHU�

G ,QW 6LJQHG�GHFLPDO�LQWHJHU�
L LQW 6LJQHG�GHFLPDO�LQWHJHU�
R LQW 8QVLJQHG�RFWDO�LQWHJHU�
X LQW 8QVLJQHG�GHFLPDO�LQWHJHU�
[,QW 8QVLJQHG�KH[DGHFLPDO�LQWHJHU��XVLQJ��DEFGHI��
; ,QW 8QVLJQHG�KH[DGHFLPDO�LQWHJHU��XVLQJ��$%&'()��
H 'RXEOH 6LJQHG�YDOXH�KDYLQJ�WKH�IRUP�>�±�@G�GGGG�H�>VLJQ@GGG�ZKHUH�G�LV�D

VLQJOH�GHFLPDO�GLJLW��GGGG�LV�RQH�RU�PRUH�GHFLPDO�GLJLWV��GGG�LV
H[DFWO\�WKUHH�GHFLPDO�GLJLWV��DQG�VLJQ�LV���RU�±�

('RXEOH ,GHQWLFDO�WR�WKH�H�IRUPDW�H[FHSW�WKDW�(�UDWKHU�WKDQ�H�LQWURGXFHV�WKH
H[SRQHQW�

I 'RXEOH 6LJQHG�YDOXH�KDYLQJ�WKH�IRUP�>�±�@GGGG�GGGG��ZKHUH�GGGG�LV�RQH�RU
PRUH�GHFLPDO�GLJLWV��7KH�QXPEHU�RI�GLJLWV�EHIRUH�WKH�GHFLPDO�SRLQW
GHSHQGV�RQ�WKH�PDJQLWXGH�RI�WKH�QXPEHU��DQG�WKH�QXPEHU�RI�GLJLWV
DIWHU�WKH�GHFLPDO�SRLQW�GHSHQGV�RQ�WKH�UHTXHVWHG�SUHFLVLRQ�

J 'RXEOH 6LJQHG�YDOXH�SULQWHG�LQ�I�RU�H�IRUPDW��ZKLFKHYHU�LV�PRUH�FRPSDFW
IRU�WKH�JLYHQ�YDOXH�DQG�SUHFLVLRQ��7KH�H�IRUPDW�LV�XVHG�RQO\�ZKHQ
WKH�H[SRQHQW�RI�WKH�YDOXH�LV�OHVV�WKDQ�±��RU�JUHDWHU�WKDQ�RU�HTXDO�WR
WKH�SUHFLVLRQ�DUJXPHQW��7UDLOLQJ�]HURV�DUH�WUXQFDWHG��DQG�WKH
GHFLPDO�SRLQW�DSSHDUV�RQO\�LI�RQH�RU�PRUH�GLJLWV�IROORZ�LW�

* 'RXEOH ,GHQWLFDO�WR�WKH�J�IRUPDW��H[FHSW�WKDW�(��UDWKHU�WKDQ�H��LQWURGXFHV�WKH
H[SRQHQW��ZKHUH�DSSURSULDWH��

Q 3RLQWHU�WR�LQWHJHU 1XPEHU�RI�FKDUDFWHUV�VXFFHVVIXOO\�ZULWWHQ�VR�IDU�WR�WKH�VWUHDP�RU
EXIIHU��WKLV�YDOXH�LV�VWRUHG�LQ�WKH�LQWHJHU�ZKRVH�DGGUHVV�LV�JLYHQ�DV
WKH�DUJXPHQW�

S 3RLQWHU�WR�YRLG 3ULQWV�WKH�DGGUHVV�RI�WKH�DUJXPHQW�LQ�KH[DGHFLPDO�GLJLWV�
V 6WULQJ :KHQ�XVHG�ZLWK�SULQWI�IXQFWLRQV��VSHFLILHV�D�VLQJOH�E\WH±FKDUDFWHU

VWULQJ��ZKHQ�XVHG�ZLWK�ZSULQWI�IXQFWLRQV��VSHFLILHV�D�ZLGH�
FKDUDFWHU�VWULQJ��&KDUDFWHUV�DUH�SULQWHG�XS�WR�WKH�ILUVW�QXOO�FKDUDFWHU
RU�XQWLO�WKH�SUHFLVLRQ�YDOXH�LV�UHDFKHG�

APPENDIX B

Source: MSDN Library January 2002.

36 • CHIEN & SZÖR, BLENDED ATTACKS

VIRUS BULLETIN CONFERENCE ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

