Cryptography and Java

I Cryptography and Java

Java provides cryptographic functionality using
I two APls:

* JCA — Java Cryptography Architecture
— security framework integrated with the core Java API
* JCE — Java Cryptography Extension

- Extensions for strong encryption (exported after
2000 US export policy)

I Basic Architecture

I * Provider based architecture

I Design principles

* Algorithm independence
I — Specification of engine classes

* Algorithm extensibility
— easy updation of engine classes with new
algorithms

* Implementation independence
— use of cryptographic service providers

* Implementation interoperability
— providers working with each other

I Engine classes

* Cryptographic operations are classified into
I classes in JCA/JCE. This classes are called
as engines.

- JCA engines
- JCE engines

JCA engines

MessageDigest (produces hash value)
Signature (produces digital signature)

- KeyPairGenerator (produces pair of keys)
KeyFactory (breaks down a key)

KeyStore (manages and stores keys)
SecureRandom (produces random numbers)

— AlgorithmParameters (encoding and decoding)

— AlgorithmParameterGenerator (generates parameters)
CertificateFactory (public key cert, revocation)
CertPathBuilder (establish relationship chains between certs)
CertStore (stores certificates and revocation lists)

JCE engines

Cipher (encryption/decryption)

KeyGenerator (produces secret keys used by ciphers)
SecretKeyFactory (operates on SecretKey objects)
KeyAgreement (key agreement protocol)

Mac (message authentication code functionality)

I Location

* JCA engines are located in java.security
I package

* JCE engines are located in javax.crypto
package

Getting started

* Example 1: Generate a DES/AES key and
use cipher to encrypt a message.

byte[] message = "I am a superman, sshhh don't tell anyone".getBytes();

KeyGenerator keygenerator = KeyGenerator.getinstance("DES");
SecretKey desKey = keygenerator.generateKey();

Cipher desCipher = Cipher.getinstance("DES/ECB/PKCS5Padding");
// Initialize the cipher for encryption
desCipher.init(Cipher.ENCRYPT_MODE, desKey);

// Encrypt message and return
byte[] encryptedMessage = desCipher.doFinal(message);

* Example 2: Generate random bytes using
SecureRandom.

import java.security.SecureRandom;

public class Main {
public static void main(String[] argv) throws Exception {
SecureRandom secRandom = SecureRandom.getlinstance("SHA1PRNG");
secRandom.setSeed(711);
byte[] bytes = new byte[20];
secRandom.nexitBytes(bytes);
}
}

I Your Best Friend

— Java.security
— javax.crypto

* JCA reference guide
— http://java.sun.com/j2se/1.5.0/docs/guide/security/CryptoSpec.html

I * Look up API docs for the relevant packages

Appendix

I Algorithm extensibility - example

MessageDigest ultrafastimplementation =

MessageDigest.getinstance("UltraFastHash");

Implementation independence

* Offers the developer a choice of how to
handle the presence of providers

MessageDigest Dev1MdSImplementation =

MessageDigest.getinstance("MDS", "Provider1");

Implementation interoperability

* Providers are interoperable

* The developer might use provider A to
generate a key pair, passing that key pair
along to provider B's signature algorithm

Adding providers

There are two ways
* Adding statically
* Adding dynamically

Static addition:

— Copy the JCE provider JAR file to java-home/jre/lib/ext/
— Stop the Application Server
— Edit the 'java-home/jre/lib/security/java.security' properties file in any

text editor. Add the JCE provider you've just downloaded to this file.
security.provider.n=provider-class-name

Adding providers

Static addition (cont..)

security.provider.2 = org.bouncycastle.jce.provider.BouncyCastleProvider

* Dynamic addition

// create a provider object

Provider bountyProvider = new org.bouncycastle.jce.provider.BouncyCastleProvider();
// Add the bountycastle Provider to the current list of

// providers available on the system.

Security.addProvider (bountyProvider);

