Monday, September 23

Project 1 questions and overview

Project 1 testing

Functions defined in linked list macros



Project Requirements: Background

Spawn in Background
* Much of this is already in place in kthread.h

* But you have to change code to pass the
“detached” argument.

* You'll also have to change other system calls
as described in the spec.

* Don’t change arguments to Spawn_Program
and Spawn_With_Path.



Project Requirements: Kill

Kill Processes

How do you terminate a process? Exit() provides a
model, but the spec describes more issues.

Use the function Detach_Thread in kthread.c. Set up
the thread so the reaper will clean it up.

When a process dies, who might have pointers to its
kthread? What queues? (Next slide.)

What is different when a process calls Kill on itself?

There’s not a lot of code for this part, but it may be
where you spend the most time.




Project Requirements: Kill (cont.)

There is a list of all threads (s_allThreadList) and
several thread queues.

A partial list of thread queues:

* s_runQueue

* each kthread’s joinQueue

* wait queues for keyboard and block device requests

* s_graveyardQueue (threads that have already died)
and s_reaperWaitQueue (reaper only)

You only have to handle cases where the thread being
killed is on the run queue or a join queue.



Project Requirements: Process List

Process List
* How do you get a list of all processes?

* How do you determine process status? (And
what is the status of the process that called
Sys_PS?)

* Feel free to add fields to struct
User_Context.



Linked List Macros

Defined in include/geekos/list.h.

« DEFINE LIST(listName, ofStruct)

creates struct listName; has pointers to the list
head and tail

« DEFINE LINK(listName, ofStruct)
creates forward and backwards links within
struct ofStruct

« IMPLEMENT LIST(listName, ofStruct)

defines a ton of list functions; names of the form
Function Name_ ListName



Linked List Functions

For a list My_List of struct My_Thing:
The list is declared like
struct My List mylList;

We'll use someThing to denote a pointer to a node
of the list:

struct My Thing *someThing;
Then you can traverse the list with

Get Front Of My List(&mylList);

Get Next In My List(someThing);
Get_Next_In... returns NULL at the end of the list.



Linked List Notes

Some points that may be tricky:

* The macros define types and functions. You still have
to declare the variable for the list itself:
DEFINE LIST(My List, My Thing);
struct My List mylList;

* Each list type has its own functions. That is, you don't
have a generic “get front of list” function; you have one
for each type of list.

* A node can only be on one list of a given type, because
there’s only one set of forward and backward pointers
for each type. In many cases, there is only one list of a
type—for instance, All_Thread_List.



More Linked List Functions

You'll need to read the code in list.h for a complete list of functions.
Here, myList and myList2 are My_List structs, and someThing and
afterWhat are pointers to list nodes.

Clear My List(&mylList);

Is Member Of My List(&myList, someThing);

Add To Front Of My List(&myList, someThing);

Append My List(&myList, &mylList2);

Remove From_Front Of My List(&myList);

Remove From My List(&myList, someThing);

Insert_Into My List(&myList, afterWhat, someThing);

Is My List Empty(&mylList);

For each function that goes forward (front of list, go to next, etc.)

there is a corresponding one that goes backward (back of list, go to
previous, etc.).

Probably avoid Set_Next _In_My_List and Set_Prev_In_My_List.



