Project 2: Signals

Signals

Interprocess communication
Several signals exist, identified by number

Target process “handles” the signal by
invoking a handler function

Handler runs when the target process is
next chosen to run—unlike interrupts,
signals don’t preempt other threads



Project 2: Signals

Two parts to this project:
* Make signals work (the big part)

* Send parents a signal when attached
children terminate and they haven’t waited,
so they know to collect status



Project 2: System Calls

Two more visible:
* Signal: registers handler for a given signal
 Kill: sends signal from one process to another

Two less visible—we will discuss soon:
 ReturnSignal: terminates signal handling

 RegDeliver:registers user function that calls
ReturnSignal

One more, WaitNoPID, for the second part



Project 2: Signal Machinery

How does the kernel make a process drop
what it was doing and execute its signal
handler?

Need to understand:
* how context switching works

* how function calls and the stack work (C
calling convention) - focus on parameters
and return address



Stack and Function Calls

During function
execution

local variable x

esp —>

local variable y




Stack and Function Calls

Function call
func(a, b);
or in assembly,

push b

push a

call func

e pushesreturn address

e sets instruction pointer to
start of func

We will ignore some things
(saving esp and ebp, saving
register values, return values,
etc.)

caller’s local variable x

caller’s local variable y

parameter b

parameter a

esp —>

return address




Stack and Function Calls

Return from function

void func(a, b) {

caller’s local variable x

caller’s local variable y

return;

parameter b

parameter a

}
esp —>
or in assembly, after ret

return address

restore esp to its value

when func was called
ret

e popsreturn address into

instruction pointer

The caller then increases esp to

take the parameters off the stack




Stack and Function Calls

Return from function

void func(a, b) {

caller’s local variable x

esp —> caller’s local variable y
return;
) after caller parameter b

sets it back

parameter a

or in assembly, return address

restore esp to its value

when func was called
ret

e popsreturn address into

instruction pointer

The caller then increases esp to

take the parameters off the stack




Context Switch (1)

Context = register values, including memory
segment selectors, instruction and stack
pointers, and general purpose registers

Values are saved on kernel stack when a
thread gets an interrupt or its time quantum
expires

Kernel stack: call stack when in kernel mode;
every kthread has a kernel stack, each user
process has a separate user stack



Context Switch (2)

The saved context is the Interrupt_State that
you've seen as the parameter to syscalls.

When the saved context is for a thread in user
mode, there are two more parameters: the
user stack pointer and stack segment selector.

(Note: selectors indicate what memory
segment to use. In GeekOS, there are two: one
for code, one for all data.)



Context and Signals (1)

How do we make a thread execute a system
handler instead of whatever it was doing?

Make up a new context for it! (But save the old
one first.)

How do we get it to go back to what it was
doing?

Put back the old context!



Context and Signals (2)

How do we know when we should put back
the old context?

Set the return address in our signal handler
context to a special function, the trampoline.

The trampoline issues a syscall to tell the
kernel to restore the old context.

How do we know where the trampoline is?

[t's registered at the beginning of every user
program, using another syscall.



The Project

In terms of concepts, the hard part is getting
the signal handler to execute and return. With
this background, see the description of

Setup Frame in the spec.

You will add fields to the user context to hold

signal handlers, flags for pending signals, and
perhaps other things.



