16 October: Project 3

Scheduler
Lots of GeekOS integration
Your algorithm can be simple or complex

Semaphores
Not much GeekOS integration—more like pipes
Some care is needed on P and V

Both: You choose your design



Scheduling (1)

Thread A is running along. It’s been on the CPU
for a long time.
* Timer interrupt! The handler runs. (More on
this, next slide.)
— Each timer interrupt is one “tick”
— Timer_Interrupt Handler in timer.c
— Don’t worry about timer events

 kthread structure records the number of ticks
it'’s had the cpu

* If numTicks >= quantum, set g needReschedule



Scheduling (2)

The handler is actually called from lowlevel.asm, Handle_Interrupt
* Save context for g_currentThread

* Run the actual handler (e.g., Timer_Interrupt_Handler)

* Handler returns. If g_needReschedule:

— Reset numTicks to zero

— Make_Runnable on g_currentThread
* puts it on the run queue

— Get_Next_ Runnable to choose the next thread
* chooses thread, removes it from the run queue, returns it
* lowlevel.asm does the assignment to g_currentThread

— clear g_needReschedule

* [tthen calls signal handling code and resumes the new
g_currentThread.



Scheduling (3)

Thread A was CPU bound. What about B, which
just asked for a file from disk?

* B calls Wait(someWaitQueue)
— adds B to whatever wait queue it indicated
— calls Schedule()

e Schedule switches to some new thread
— Get_Next Runnable to choose a thread
— Switch To Thread to start it

Switch_To _Thread is in lowlevel.asm, does much
the same stuff as Handle_Interrupt.




Round Robin Scheduler

Key RR data structures and fields
* s_runQueue
* kthread.priority

s_allThreadList is not a scheduling structure;
you should keep it as is

Key RR functions
* Find_Best



What do you need to do? (1)

2 parts: the scheduler machinery, and the syscall that
sets policy.
Scheduler:

Make a flag that indicates what scheduler is in use
If you need a different data structure, define it
Set up your new scheduler in Init_Scheduler

Change Get_Next_Runnable (and perhaps
Make_Runnable) so their behavior depends on the
scheduler flag

May add to the timer interrupt handler if you need
to do anything when a thread finishes its quantum



What do you need to do? (2)

Set_Scheduling_Policy:
* Set the flag

* If you are using a different data structure,
when the policy changes, you must make sure
kthreads are on the appropriate structure

[f you're not using s_runQueue, you might want
to change your Sys_PS implementation so you
can still see what's runnable. However, we will
not test this.



Algorithm Choice

What scheduler will you implement?
e Multilevel feedback queue

* Shortest job first

* Any other thoughts?

* [sit worth implementing a fancier data
structure, like a priority queue?



Semaphores

Much less GeekOS integration than the
scheduler.

You'll define and manipulate your own data
structure. You may need to declare
initialization functions, etc. in sem.h.

Wait (P) with Wait
Signal (V) with Wake_Up or Wake_Up_One
P and V do need some care.



