Project 4, Part |

* User address space changes
— also implement Copy_To_User, Copy_From_User

* Demand paging: let the user stack grow

* Paging to disk



User address space changes

* Changes in uservm.c; copy from userseg.c
* Most changes in Load_User_Program

* Also need to write Destroy_User_Context and
Switch_To_Address_Space

* Set up new paging directory, reference from
User_Context

* Segmentation changes: base at 0x80000000

* Code and data (read from .exe file) at bottom of user
space

» Stack and argument block (constructed in kernel) at
top of user space



Demand paging

* User stack at top of address space; there is
tons of virtual memory between bottom of

stack and top of code

* With nested function calls, stack (easily)
orows beyond 4K

* Modify page fault handler to allocate an
extra stack page when fault is within a page
of user stack pointer

e What if a function has 8K of local variables?



Paging to disk

* Much work is already done in
Alloc_Pageable_Page()

* GeekOS paging file contains only pages that
have been paged out, not those resident in
memory

* You write the functions that manage the
paging file



Paging file management functions (1)

 Initialization needs

— find size and location of paging file
(Get_Paging_Device)

— initialize data structure for free space

 Functions in bitset.c are useful to track free
space (and will come back in Project 5)

* Read and write paging file, using Block_Read
and Block_Write

— These handle one 512-byte sector at a time; 8
sectors to a page

— Interrupts must be on to do disk i/o!



Paging file management functions (2)

* Decide what page to page out when physical
memory is full

— “Pseudo-LRU” (least recently used); algorithms
described in text

— Use accessed bit to determine what pages have
been used (CPU sets it, you have to clear it)

— Clock algorithm is good but name is misleading:
it doesn’t have anything to do with time

* Page fault handler must recognize (and
bring back) pages that have been paged out



