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Abstract

Background: The goal of this survey paper is to overview cellular measurements using optical microscopy imaging
followed by automated image segmentation. The cellular measurements of primary interest are taken from
mammalian cells and their components. They are denoted as two- or three-dimensional (2D or 3D) image objects of
biological interest. In our applications, such cellular measurements are important for understanding cell phenomena,
such as cell counts, cell-scaffold interactions, cell colony growth rates, or cell pluripotency stability, as well as for
establishing quality metrics for stem cell therapies. In this context, this survey paper is focused on automated
segmentation as a software-based measurement leading to quantitative cellular measurements.

Methods: We define the scope of this survey and a classification schema first. Next, all found and manually
filteredpublications are classified according to the main categories: (1) objects of interests (or objects to be segmented),
(2) imaging modalities, (3) digital data axes, (4) segmentation algorithms, (5) segmentation evaluations, (6)
computational hardware platforms used for segmentation acceleration, and (7) object (cellular) measurements.
Finally, all classified papers are converted programmatically into a set of hyperlinked web pages with occurrence and
co-occurrence statistics of assigned categories.

Results: The survey paper presents to a reader: (a) the state-of-the-art overview of published papers about automated
segmentation applied to optical microscopy imaging of mammalian cells, (b) a classification of segmentation aspects
in the context of cell optical imaging, (c) histogram and co-occurrence summary statistics about cellular measurements,
segmentations, segmented objects, segmentation evaluations, and the use of computational platforms for accelerating
segmentation execution, and (d) open research problems to pursue.

Conclusions: The novel contributions of this survey paper are: (1) a new type of classification of cellular measurements
and automated segmentation, (2) statistics about the published literature, and (3) a web hyperlinked interface to
classification statistics of the surveyed papers at https://isg.nist.gov/deepzoomweb/resources/survey/index.html.

Keywords: Cellular measurements, Cell segmentation, Segmented objects, Segmentation evaluation, Accelerated
execution of segmentation for high-throughput biological application

Background
Segmentation is one of the fundamental digital image
processing operations. It is used ubiquitously across all
scientific and industrial fields where imaging has become
the qualitative observation and quantitative measure-
ment method. Segmentation design, evaluation, and
computational scalability can be daunting for cell

biologists because of a plethora of segmentation publica-
tions scattered across many fields with reported segmen-
tation choices that are highly dependent on scientific
domain specific image content. Thus, the goal of this
survey paper is to overview automated image segmenta-
tions used for cellular measurements in biology.
In quantitative image-based cell biology, cellular mea-

surements are primarily derived from detected objects
using image segmentation methods. In order to report sta-
tistically significant results for any hypothesis or task, cel-
lular measurements have to be taken from a large number
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of images. This requires automated segmentation which
includes algorithm design, evaluation, and computational
scalability in high-throughput applications. This survey is
motivated by the need to provide a statistics-based guide-
line for cell biologists to map their cellular measurement
tasks to the frequently used segmentation choices.
The large number of publications reporting on both

the omnipresent image segmentation problem and cell
biology problems using image-based cellular measure-
ments was narrowed down by adding more specific cell
biology criteria and considering recent publications
dated from the year 2000 until the present. While gen-
eral survey papers are cited without any date constraints
to provide references to segmentation fundamentals,
statistics-based guidelines are reported for selected pub-
lished papers that focus on optical microscopy imaging
of mammalian cells and that utilize three-dimensional
(3D) image cubes consisting of X-Y-Time or X-Y-Z di-
mensions (or X-Y-Z over time). Although there are many
promising optical microscopy imaging modalities, we
have primarily focused on the conventional phase con-
trast, differential interference contrast (DIC), confocal
laser scanning, and fluorescent and dark/bright field mo-
dalities. In the space of mammalian cells and their cellu-
lar measurements, we included publications reporting in
vitro cell cultures. The goal of such cellular measure-
ments is to understand the spectrum of biological and
medical problems in the realm of stem cell therapies and
regenerative medicine, or cancer research and drug de-
sign. We introduce first the basic motivations behind
cellular measurements via microscopy imaging and seg-
mentation. Next we describe the types of results that
come from image segmentation and the requirements
that are imposed on segmentation methods.

Motivation
We address three motivational questions behind this
survey: (1) why is quantitative cell imaging important for
cell biology; (2) why is segmentation critical to cellular
measurements; and (3) why is automation of segmenta-
tion important to cell biology research? We analyze
image segmentation and cellular characterization as
software-based cellular measurements that are applied
to images of mammalian cells.
First, cell research has its unique role in understanding

living biological systems and developing next generation
regenerative medicine and stem cell therapies for repair-
ing diseases at the cellular level. Live cell imaging and
3D cell imaging play an important role in both basic sci-
ence and drug discovery at the levels of a single cell and
its components, as well as at the levels of tissues and or-
gans [1]. While qualitative cell imaging is commonly
used to explore complex cell biological phenomena,
quantitative cell imaging is less frequently used because

of the additional complexity associated with qualifying
the quantitative aspects of the instrumentation, and the
need for software-based analysis. If quantitative cell im-
aging is enabled then a wide range of applications can
benefit from high statistical confidence in cellular mea-
surements at a wide range of length scales. For example,
quantitative cell imaging is potentially a powerful tool
for qualifying cell therapy products such as those that
can cure macular degeneration, the leading cause of
blindness in adults (7 million US patients, gross domes-
tic product loss $30 billion [2]). On the research side,
quantitative cell imaging is needed to improve our under-
standing of complex cell phenomena, such as cell-scaffold
interactions, and cell colony behavior such as pluripotency
stability, and is especially powerful when these phenom-
ena can be studied in live cells dynamically.
Second, the segmentation of a variety of cell micros-

copy image types is a necessary step to isolate an object
of interest from its background for cellular measure-
ments. At a very low level, segmentation is a partition of
an image into connected groups of pixels that have se-
mantic meaning. Mammalian cell segmentation methods
can be found in literature that focus on biological and
medical image informatics. They aim to improve the
efficiency, accuracy, usability, and reliability of medical im-
aging services within the healthcare enterprise [3]. Seg-
mentation methods also become a part of quantitative
techniques for probing cellular structure and dynamics,
and for cell-based screens [4]. Cellular measurement with-
out image segmentation would be limited to statistics of ei-
ther a portion of a cell (i.e., portion of a cell interior
covered by one field of view) or mixture of a cell and its
background. Thus, accurate and efficient segmentation be-
comes critical for cellular measurements.
Third, with the advancements in cell microscopy im-

aging and the increasing quantity of images, the automa-
tion of segmentation has gained importance not only for
industrial applications but also for basic research. The
benefits of automation can be quantified in terms of its
cost, efficiency, and reproducibility of image segmenta-
tion per cell. The benefits motivate the design of auto-
mated segmentations while maximizing their accuracy.
However, with automation comes a slew of questions for
cell biologists about design and evaluations of accuracy,
precision, and computational efficiency.
Image segmentation results are objects of interest to

cell biologists that can be described by semantically
meaningful terms in cell biology and can also be charac-
terized by spectral intensity, shape, motion, or textural
measurements from acquired images. Fig. 1 illustrates
generic and cell specific labels assigned to a 2D image
pixel (or 3D image voxel) during segmentation. Specific
semantic labels depend on the type of experiment. For
instance, the stain choice in an experimental design
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followed by imaging modality and segmentation method
determines a semantic label of a segmentation result. It
is also common to incorporate a priori knowledge about
cells to obtain semantically meaningful segmentation re-
sults. For example, cell connectivity defines segmenta-
tion results at the image level to be connected sets of 2D
pixels or 3D voxels.

Segmentation results and imaging measurement pipeline
Given a connected set of 2D pixels or 3D voxels as a
segmentation result, one can obtain cellular measure-
ments about (1) motility of cells, (2) cell and organelle
morphology, (3) cell proliferation, (4) location and spatial
distribution of biomarkers in cells, (5) populations of cells
with multiple phenotypes, and (6) combined multiple
measurements per cell [5].

These cellular measurements from segmentation re-
sults depend on the entire imaging measurement pipe-
line shown in Fig. 2.
The pipeline for an imaging measurement is broken

down into three stages: sample preparation, image capture
and image processing. Reference materials, organized by
constituent parts (Fig. 2, orange boxes), can be used to
evaluate the performance of the stages of the pipeline.

Survey usefulness and organization
This survey paper reports statistics of classification cat-
egories for automated segmentation methods. The seg-
mentation classification categories are introduced to
provide multiple perspectives on an image segmentation
step. Segmentation can be viewed from the perspective
of a cell biologist as a cellular measurement, or from the

Fig. 2 Top: The pipeline for an imaging measurement. Bottom: Different types of reference materials that can be used to evaluate performance
of the different stages of the measurement pipeline

Fig. 1 Segmentation labels ranging from generic (foreground, background) to cell specific objects relevant to diffraction-limited microscopy
(DNA/RNA, protein, organelle, or cytoskeleton)
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perspective of a computer scientist as an algorithm.
Both, cell biologists and computer scientists, are inter-
ested in analyzing accuracy, error, and execution speed
of segmentation (i.e., evaluation perspective of segmen-
tation) as applied to cell measurements. We establish
multiple categories for various perspectives on segmen-
tation and classify each paper accordingly.
The term “statistics” refers to frequencies of occurrence

and co-occurrence for the introduced classification cat-
egories. The occurrence and co-occurrence values are also
known as 1st and 2nd order statistics. The terms “survey
statistics” indicate that we perform a survey of papers,
classify them into categories, and then report statistics of
the categories.
The usefulness of survey statistics lies in gaining the

insights about the community-wide usage of segmenta-
tion. With this insight, a principal investigator who is
not interested in applying segmentation to his images
can classify his/her cellular measurement problem and
follow the most frequently used segmentation in the
community. Thus, his work focusing on other aspects of
cell biology can just refer to all other papers that have
been reported with the same segmentation method. He
can justify the segmentation choice based on the usage
statistics in the cell biology community. On the other
hand, a principal investigator who is interested in doing
segmentation research can gain insights about which
segmentation methods have not been applied to certain
cellular measurements and hence explore those new seg-
mentation approaches.
Overall, this surveys aims at understanding the state-

of-the-art of cellular measurements in the context of the
imaging measurement pipeline yielding segmented ob-
jects. Following from Fig. 2 cellular measurements have
an intrinsic accuracy, precision, and execution speed

that depend on steps of the pipeline. In order to under-
stand the attributes of cellular measurements, we per-
formed a survey of published literature with the
methodology described in Methods section. The
segmentation-centric steps of the imaging measurement
pipeline are outlined in Results section. Statistical sum-
maries of classified publications can be found in Discus-
sion section. Finally, Conclusions section presents a list
of open research questions based on our observations of
the published papers.

Methods
This survey was prepared based on an iterative process
denoted in literature as “a cognitive approach” [6]. This
approach starts with an initial definition of the scope of
this survey (i.e., see the search filters in Endnotes sec-
tion) and a classification schema. All found and manu-
ally filtered publications are classified into the categories
presented in Table 1. For the purpose of this survey, the
classification includes main categories of (1) objects of
interests (or objects to be segmented), (2) imaging mo-
dalities, (3) digital data axes, (4) segmentation algorithms,
(5) segmentation evaluations, (6) computational hardware
platforms used for segmentation acceleration, and (7) ob-
ject (cellular) measurements. The sub-categories in Table 1
come from specific taxonomies that are introduced in the
sub-sections of Results section.
The categories of objects of interest were chosen based

on foci of cell biology studies and capabilities of optical
microscopy. We have selected cell, nucleus, and synthet-
ically generated objects generated using a digital model
or a reference material. Synthetic objects are used for
segmentation evaluations. The category “Other” in-
cludes, for instance, Golgi apparatus boundary,

Table 1 Seven main classification criteria of publications (columns) and their categories

Object of interest Imaging modality Data
axes

Segmentation Segmentation
evaluation

Segmentation acceleration Objecta

measurement

Cell Phase contrast X-Y-T Active contours +
Level Set

Visual inspection Cluster Geometry

Nucleus Differential interference
contrast

X-Y-Z Graph-based Object-level
evaluation

Graphics Processing
Unit (GPU)

Motility

Synthetic (digital
model)

Bright-field X-Y-Z-T Morphological Pixel-level
evaluation

Multi-core CPU Counting

Synthetic (reference
material)

Dark-field Other Technique is not
specified

Single-core Central
Processing Unit (CPU)

Location

Other Confocal fluorescence Partial Derivative
Equations

Unknown Unknown Intensity

Wide-field fluorescence Region growing

Two-photon
fluorescence

Thresholding

Light sheet Watershed
aObject refers to the categories of an object of interest and clusters of objects
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extracellular space, heterochromatin foci, olfactory
glomeruli, or laminin protein.
The segmentation categories are based on published

techniques across a variety of applications domain. They
follow standard categories (e.g., thresholding, region
growing, active contours and level set) in segmentation
surveys [7–9] with additional refinements (e.g., water-
shed, cluster-based, morphological, or Partial Derivative
Equations (PDEs)). The taxonomy for segmentation cat-
egories is presented in Design of automated segmenta-
tion algorithms section.
The evaluation of automated segmentation is catego-

rized according to the level of automation as visual in-
spection (i.e., manual) and object-level or pixel-level
evaluation. The object-level evaluation is concerned with
the accuracy of the number of objects and/or approximate
location, for example, in the case of counting or tracking.
The pixel-level evaluation is about assessing accuracy of
object shape and location, for instance, in the case of
geometry or precise motility. Some papers do not report
evaluation at all (classified as “unknown”) while others re-
port results without specifying a segmentation evaluation
method (classified as “technique is not specified”).
The categories of segmentation acceleration reflect

current computational hardware platforms available to
researchers in microscopy labs and in high-throughput
biological environments. The platforms include single-
core CPU (central processing unit), multi-core CPU,
GPU (graphics processing unit), and computer cluster.
We have not found a segmentation paper utilizing a
supercomputer with a large shared memory. In addition,
some researchers report a multi-core CPU hardware
platform but do not mention whether the software was
taking advantage of multiple cores (i.e., algorithm imple-
mentations are different for multi-core CPU than for
single-core CPU platforms). Papers that do not report
anything about a computational platform or the effi-
ciency of segmentation execution are placed into the
category “Unknown”.
Finally, the object or cellular measurement categories

are derived from five types of analyses that are per-
formed with 2D + time or 3D cell imaging. These ana-
lyses are related to motility, shape, location, counting,
and image intensity. They are the primary taxa for mam-
malian cell image segmentation. Any other specific types
of analyses were included in these main five classes or
their combinations. For instance, monitoring cell prolif-
eration would be classified as motility and counting or
abundance quantification of intracellular components
would be classified as location and counting.
While we went over close to 1000 publications and

cross-referenced more than 160 papers, we classified only
72 papers according to the above criteria. We excluded
from the classification publications that presented surveys

or foundational material, did not include enough informa-
tion about a segmentation method, or were published be-
fore the year 2000. Co-authors of this survey sometimes
included a few of these papers into the main text to refer
to previously published surveys, to seminal publications,
or to the key aspects of segmentations demonstrated out-
side of the scope of this survey. Thus, there is a discrep-
ancy between the number of classified and cross-reference
papers. The 72 papers went through independent classifi-
cations by at least two co-authors. If a different category
was assigned by two co-authors then a third co-author
performed another independent classification. Although
this verification process doubled the amount of work, we
opted for classification quality rather than for quantity
given our limited resources.
Our method for validating the classification schema

presented above is to compute the occurrence of papers
that fall into each category, and the co-occurrence of the
classification categories in each paper. The list of papers
that are contributing to each occurrence or co-
occurrence number are converted programmatically into
a set of hyperlinked web pages and can be browsed
through at https://isg.nist.gov/deepzoomweb/resources/
survey/index.html. The publications and their statistical
summaries can be interpreted not only for validation
purposes (low values suggest removing a segmentation
category from classification) but also for identifying seg-
mentation methods that have not been applied to optical
microscopy images of mammalian cells.

Results
We organized the results into four main sub-sections
devoted to (1) experimental inputs to segmentation, (2)
automated segmentation, (3) evaluation of automated
segmentation, and (4) hardware platforms for computa-
tional scalability of automated segmentation as illus-
trated Fig. 3. The sections have a direct relationship to
the imaging pipeline presented in Fig. 2.
Due to the typical variations in microscopy image ap-

pearance, it is important to understand experimental cell
imaging inputs to automated segmentation. Variations in
cells, reagents, and microscope instrumentations have a
great impact on segmentation accuracy [10]. Thus, the
design of an automated segmentation algorithm is driven
by sensitivity of segmentation to the variations in cell
imaging inputs.
The choice of automated segmentation technique can

be facilitated by our understanding of segmentation algo-
rithm design, particularly the assumptions for image in-
variance, the mathematical model for obtaining segments,
and the model parameters. Numerical representations of a
mathematical model and techniques for optimizing model
parameters can also vary across implementations of the
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same automated segmentation method and determine
performance robustness to extreme inputs.
Evaluations of automated segmentation are critical for

the comparison-based choice of a segmentation algo-
rithm, for optimization of segmentation parameters, and
for the dynamic monitoring of segmentation results to
guarantee performance and consistency. However, evalu-
ations depend on designing task-specific metrics and on
either reference segmentation for supervised evaluations
or an objective cost function for unsupervised evaluations.
Finally, with the continuous advancements in micros-

copy, automated segmentations are deployed in increas-
ingly diverse research and industrial settings and applied
to exponentially growing volumes of microscopy images.
In order to create cost effective solutions when segment-
ing large amounts of images, computational scalability of
segmentation on a variety of hardware platforms be-
comes a selection criterion and has to be included in the
evaluations. With the emphasis on reproducibility of
biological experiments, computational scalability is not
only of interest to bio-manufacturing production envi-
ronments but also to research institutions conducting
large scale microscopy experiments to achieve high stat-
istical confidence of findings.

Experimental inputs to cell imaging and segmentation
While optical microscopy is frequently used as a qualita-
tive tool for descriptive evaluations of cells, the tool is
used increasingly to generate digital images that are seg-
mented and used to measure the shape, arrangement, lo-
cation and the abundance of cellular structures or
molecules. There are many advantages to quantitative
analysis by automated segmentation algorithms includ-
ing the capability to assess large datasets generated by
automated microscopy in an unbiased manner. In the

absence of computational analysis, researchers are often
limited to comparatively small sample sizes and presenting
microscopic data with a few “look what I saw” images.
The cellular measurements derived from image seg-

mentation can be strongly influenced by specimen prep-
aration [11] and the instrumentation [12] used to image
the specimens. The single most important factor for
good segmentations is high contrast between foreground
and background, and this is achieved by carefully consid-
ering four inputs: (1) Cells, (2) Reagents, (3) Culture
Substrate/Vessels, and (4) Optical Microscopy Instru-
mentation. Common sources of variability from these in-
puts are outlined in Table 2 and should be carefully
managed in order to provide high foreground intensity
and low background intensity. Images from the initial
observations that characterize a new biological finding
are not always the best for quantitative analysis. Refine-
ment and optimization of the sample preparation and
the imaging conditions can often facilitate quantitative
analysis. In the overview of the four experimental inputs,
we highlight reports that have used experimental tech-
niques to improve or facilitate downstream segmentation
and analysis. Interested readers can consult in-depth
technical reviews and books on reagents [13–16], culture
substrate/vessels [17–19], and optical microscopy instru-
mentation [20–22], The single most important factor for
good segmentations is high contrast between foreground
and background, and this is achieved by carefully consid-
ering four Common sources of variability from these in-
puts are outlined in Table 2 and should be carefully
managed in order to provide high foreground intensity
and low background intensity [1].
A final, but critical aspect of the inputs for cell im-

aging experiments is documenting metadata about how
cells, reagents and instrumentation were used [23].

Fig. 3 Survey organization of the Results section with respect to the imaging measurement pipeline. Four sections are devoted quality of
segmentation inputs (Experimental inputs to cell imaging and segmentation), automation (Design of automated segmentation algorithms),
evaluation (Evaluations of automated segmentations) and computational scalability (Scalability of automated segmentations)
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Storing and accessing metadata describing a cellular im-
aging experiment has been the focus of several research
efforts including, ProtocolNavigator [24] and the Open
Microscopy Environment project [25, 26]. This metadata
serves as evidence for measurement reproducibility in
the cell image experiments. The irreproducibility of bio-
logical studies has recently be highlighted [27, 28]. A
benefit to performing cellular studies using measure-
ments derived from image segmentation is that they can,
in principle, be quantitatively reproduced. This means
that statistics can be applied to the data to determine
the measurement uncertainty. Because the measurement
uncertainty depends on the experimental inputs,
methods that can be used to monitor each input can be
valuable for assuring the reproducibility of a complex,
quantitative imaging pipeline. A tabulated list of sources

of variability and reference protocols and materials that
can be used to monitor the measurement quality in a
quantitative cell imaging analysis pipeline prior to seg-
mentation are provided in Table 2.

Input: cells
We focus this survey on the imaging of cultured mam-
malian cells because of the critical role these systems
play in drug screening, medical diagnostics, therapies,
and basic cell biology research. The complexity of cellu-
lar features observed during imaging can lead to challen-
ging segmentation problems. At the population level,
mammalian cells exhibit substantial phenotypic hetero-
geneity [29], even among a genetically homogeneous
population of cells. This means that it is important to
image and measure large numbers of cells in order to

Table 2 Sources of variability in a quantitative optical microscopy pipeline and methods for monitoring and assuring data quality

Stage of pipeline Measurement assurance strategy Source of variability assessed/addressed Reference

Sample Preparation -Establish well-defined protocols for
handling cells (ASTM F2998)

Cell culture variability (cell type,
donor, passage, history, culturing
protocol, user technique)

[23, 94]

-Use stable and validated stains
(e.g. photostable, chemically stable,
high affinity, well characterized
antibody reagents)

Instability of probe molecule and
non-specific staining

[95–98]

-Choose substrate with low and
homogeneous background signal
for selected imaging mode or
probe (ASTM F2998)

Interference from background [94, 99–101]

-Optimize medium [filter solutions
to reduce particulates, reduce
autofluorescence (phenol red,
riboflavin, glutaraldehyde, avoid
proteins/serum during imaging)

-Optimize experimental design to
the measurement (e.g., low seeding
density if images of single cells are
best) (ASTM F2998)

Interference from cells in contact [94, 102]

Image Capture -Use optical filters to assess limit
of detection, saturation and linear
dynamic range of image capture
(ASTM F2998)

Instrument performance variability
(e.g.) light source intensity fluctuations,
camera performance, degradation of
optical components, changes in focus)

[94, 103, 104]

-Optimize match of dyes, excitation/
emission wavelength, optical filters
& optical filters

Poor signal and noisy background [105, 106]

-Minimize refractive index mismatch
of objective, medium, coverslips &
slides

-Use highest resolution image capture
that is practical (e.g., balance throughput
with magnification, balance numerical
aperture with desired image depth)

-Calibrate pixel area to spatial area
with a micrometer

Changes in magnification [107, 108]

-Collect flat-field image to correct for
illumination inhomogeneity
(ASTM F2998)

Non-uniformity of intensity across
the microscope
field of view

[94, 109–112]
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obtain statistical confidence about the distribution of
phenotypes in the population.
Despite the challenges associated with segmenting and

identifying cells, in some cases experimental approaches
can be selected to facilitate automated analysis and seg-
mentation. In a recent example of this used by Singer et al.
[30], a histone-GFP fusion protein was placed downstream
of the Nanog promoter in mouse pluripotent stem cells.
In this way, the Nanog reporter was localized to the nu-
cleus. A similar example was used by Sigal et al. to probe
the dynamic fluctuations exhibited by 20 nuclear proteins
[31]. Without nuclear localization, the image analysis
would have been substantially more challenging as cells
were frequently touching, and the boundary between cells
was not well defined in the images. In such cases, a few
considerations in the design of the cellular specimen to be
imaged can greatly reduce the complexity of algorithms
required for segmentation and improve the confidence in
the numerical results.

Input: reagents
Reagents used as indicators for cellular function or as
labels for specific structures are central to quantita-
tive imaging experiments. The development of probes
has a rich history and researchers have access to a
large number of probe molecules, including labeled
antibodies, through commercial vendors. A description
of two recent surveys of probes is provided below so that
interested readers can navigate the wide range of tech-
nologies that are available. Giuliano et al. produced a par-
ticularly relevant review of reagents used within the
context of high content imaging [16]. Their work provides
a very good overview of the types of probes used in fluor-
escence microscopy and how they can be applied as
physiological indicators, immunereagents, fluorescent an-
alogs of macromolecules, positional biosensors, and fluor-
escent protein biosensors. In evaluating a fluorescent
reagent, they consider the following six critical probe
properties: fluorescence brightness (resulting from high
absorbance and quantum efficiency), photostability, chem-
ical stability, phototoxicity, non-specific binding, and per-
turbation of the reaction to be analyzed. Many references
to the papers describing the original development of the
probes themselves are included in the survey. Another
relevant review was produced by the authors Kilgore,
Dolman and Davidson who survey reagents for labeling
vesicular structures [13], organelles [14], and cytoskeletal
components [15]. This work includes experimental proto-
cols as well as citations to original articles where the
probes were applied.

Input: culture substrate/vessel
Cells are cultured on many different types of surfaces.
From the perspective of collecting digital images prior

to quantitative analysis, the ideal tissue culture sub-
strate would be completely transparent at all relevant
wavelengths, non-fluorescent, defect free and have a
spatially flat surface. These features would facilitate
segmentation because the substrate/vessel would not
produce any interfering signal with the structures of
interest in the image. In practice, cells are frequently
cultured on tissue culture polystyrene (TCPS) or glass,
both of which are suitable for subsequent analysis particu-
larly at low magnification.
A confounding factor for analysis of digital images of

cells is that substrates are frequently coated with extra-
cellular matrix (ECM) proteins that are necessary for the
proper growth and function of the cells. The protein
coating can make segmentation more challenging by
adding texture to the background, both by interfering
with transmitted light or by binding probe molecules
thus becoming a source of background signal that can
interfere with accurate segmentation [32]. Using soft
lithography to place ECM proteins in on a surface in a
2-dimensional pattern can simplify segmentation by con-
fining cells to specific locations and shapes. This ap-
proach facilitated the quantification of rates of
fluorescent protein degradation within individual cells
[33]. The approach of patterning has also been used to
facilitate live cell analysis of stem cell differentiation.
Ravin et al. used small squares patterned with adhesive
proteins to limit the migration of neuronal progenitor
cells to a field of view and that allowed for lineage pro-
gression within these cells to be followed for multiple
generations [34]. Without patterning the image analysis
problem is challenging because it requires both accurate
segmentation from phase contrast or fluorescent images
and tracking of cells as they migrate.

Input: optical microscopy instrumentation
The particular image acquisition settings for imaging
cells will have a profound impact on the segmentation
results, as has been shown by Dima et al. [10]. There-
fore, selecting the appropriate instrumentation and opti-
mal acquisition settings is critical. General guidelines for
choosing appropriate instrumentation are provided in
Frigault et al. in a flow chart [22]. The authors of this
article focus on live cell imaging in 3D, but the flow
chart can be applied to a wide range of cell imaging ex-
periments. The choice of instrumentation will depend on
the cellular specimen, the reagents used and the substrate.
When it comes to selection of the imaging mode, the
goals of the qualitative visualization and quantitative ana-
lysis are the same: to image the objects under conditions
that optimize the signal-to-noise ratio with minimal sam-
ple degradation. Therefore, the decision for how to image
the biological sample is the same for visualization and
quantitative analysis.
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While it can be argued that 3 dimensional culture of
cells is more physiologically relevant than culturing cells
on 2 dimensional substrates [35], imaging cells on 3D
scaffolds is more difficult. Cells on scaffolds are often
imaged using optical sectioning techniques (i.e., con-
focal) to reduce the large amount of out-of-focus light
that can obscure image details.
For confocal imaging, chromatic aberrations are in-

creased along the Z-axis causing the Z-resolution to
be approximately 3 times worse than the X-Y plane
[36, 37]. This causes blurring in the Z-direction
where spheres appear as ellipsoids. Deconvolution al-
gorithms have been used to remove blurring, but they
can be difficult to implement since they are highly
dependent on imaging parameters: excitation/emission
wavelengths, numerical aperture and refractive indices
(RI) of the sample, medium, optics and scaffolds. A
panel of reference spheres with narrow diameter dis-
tributions (15 μm +/− 0.2 μm) that are labelled with
a variety of fluorescent dyes [37] can be used to as-
sess the Z-axis aberrations for different wavelength
fluorophores, but the reference spheres are not per-
fect mimics for cells due to differences in RI. Refer-
ences spheres are made of polystyrene, RI of 1.58; RI of
phosphate buffered saline is 1.33; RI of culture medium is
1.35; and the RI of cells is challenging to measure, may de-
pend on cell type and has been observed to be within the
range of 1.38 to 1.40 [36, 38, 39].
In addition, the scaffolds used for 3D culture interfere

with imaging. Non-hydrogel forming polymers, such as
poly(caprolactone), can block light and obscure portions
of cells that are beneath scaffold struts. Hydrogel scaf-
folds, such as cross-linked poly(ethylene glycol) (PEG),
collagen, fibrin or matrigel scaffolds, can have differing
refractive indices causing chromatic aberrations and
light scattering effects in the imaging. In addition,
hydrogel samples can have spatial inhomogeneities
(polymer-rich or -poor phases) that can blur light. Some
flat materials may be reflective and bounce light back
into the detector resulting in imaging artifacts.
A potential solution could be the development of

reference spheres with RIs that match cells. These
could be spiked into cells during seeding into 3D
scaffolds, and then beads could be imaged along with
the cells. In this way, the reference spheres would be
imaged under conditions identical to the cells, which
would allow calibration of cell measurements against
the reference spheres. A potential candidate could be
PEG-hydrogel spheres containing fluorophores. Fabricat-
ing highly spherical PEG spheres with a narrow diameter
distribution may be a challenge. Multi-photon absorption
photopolymerization can generate highly uniform struc-
tures at 10 μm size scales and may be capable of achieving
this goal [40].

Design of automated segmentation algorithms
Here, we focus on the design of segmentation methods
encountered in cellular and subcellular image processing
with two dimensional time sequence (x, y, t), three di-
mensional (x, y, z) or three dimensional time sequence
(x, y, z, t) datasets. These image datasets are acquired
using a subset of optical microscopy imaging modalities,
such as phase contrast, differential interference contrast
(DIC), confocal laser scanning, fluorescent, and bright/
dark field.
Next, we describe common segmentation algorithms,

their assumptions, models, and model parameters, as
well as the parameter optimization approaches. In com-
parison to previous surveys about cell microscopy image
segmentation [7], we provide more detailed insights into
the design assumptions and parameter optimization of
segmentation methods.

Algorithmic design and assumptions
We classified each paper found in the literature into eight
segmentation categories. The categories for our classifica-
tion are derived from a general taxonomy presented in
[41]. Figure 4 shows the used taxonomy of image segmen-
tations for mammalian cells. Table 3 shows eight categor-
ies and the frequency of papers using a segmentation
method from each category. The categories are used in a
disproportionate manner. Threshold based techniques are
the simplest and most commonly used techniques in the
literature, followed by Active contours. The third most
common category is Watershed and the fourth category is
the custom made segmentations. In our work, if a paper
described a method with multiple different approaches,
like thresholding followed by watershed then this paper
was classified in both thresholding and watershed categor-
ies. Co-occurrence of cellular measurements and segmen-
tation section provides more insight on segmentation
methods, image modality and image dimensionality.
Every segmentation technique is built with certain as-

sumptions about input images during an algorithmic de-
sign. Segmentation assumptions affect reported accuracy
of segmentation results if they are not met. Assumptions
are typically specific to each segmentation algorithm and
incorporate image properties of a segmented region. Ac-
cording to the surveyed literature about mammalian
cells and segmentation, segmentation assumptions can
be categorized into three classes: (1) Biological assump-
tions, (2) Algorithmic assumptions and (3) Image pre-
processing assumptions.
Biological assumptions in a segmentation algorithm are

those that are derived from the knowledge of a biologist.
For example, a nucleus is considered to have a round
shape or a mother cell is small, round, and bright before
mitosis in phase contrast images. Algorithmic assump-
tions are those made during the development of a
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segmentation algorithm. For instance, assumptions about
k-means clustered pixels as initial inputs to the level sets
functions, pixel intensities being distributed according to a
bi-modal distribution, etc. Image pre-processing assump-
tions are those that require image processing operations
to be applied before segmenting the images. Examples of
such pre-processing are a Hessian-based filtering or inten-
sity binning as necessary operations for improved

performance. A more detailed description about each as-
sumption class is presented in Table 4.

Tools, packages, code availability, languages
Several software packages include segmentation algo-
rithms that can be applied to images across different im-
aging modalities and cell lines. These packages range
from polished tools with graphical interfaces to simple

Table 3 Summary usage statistics of segmentation methods in the surveyed literature

Segmentation category Description Number of surveyed papers

Active contours + Level Set Parametric curves which fit to an image object of interest.
These curve fitting functions are regularized gradient edge
detectors

24

Graph-based Applies graph theories to segment regions of interest 2

Morphological Apply morphological operations to segment or clean a
pre-segmented image

2

Other The methods in this category are created for a specific
problem or cell line by a combination of existing techniques
or by creating a new concept

8

Partial Derivative Equations Groups pixels into different segment based on minimizing
a cost function using partial derivatives

2

Region growing Starts from a seed and grows the segmented regions
following some pre-defined criterion

2

Thresholding Threshold based techniques consider the foreground
pixels to have intensity values higher (or lower) than
a given threshold.

31

Watershed Mainly used to separate touching cells or touching subcellular
regions

15

Fig. 4 Taxonomy of image segmentation methods for mammalian cells
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Table 4 A summary of segmentation assumptions in the surveyed literature

Assumptions Sub-category Description References

Biological assumptions Image Contrast Strong staining to get high SNR
for actin fibers

[113]

Optophysical principle of image
formation is known

[44]

Cell brightness significantly higher
than background

[114, 115]

Cell signal higher than noise level
in an acquired z-stack

[49, 116–118]

Object Shape Biological assumptions about mitotic
events like mother roundness and
brightness before mitosis

[119–122]

Nucleus shape is round [123]

Specifically designed for dendritic cells [83]

Cell line falls into one a few object
models. Cell must have smooth borders.
E.coli model assumes a straight or curved
rod shape with a minimum volume darker
than background. Human cells assume
nearly convex shape.

[124]

Cells posses only one nucleus [125]

Algorithmic assumptions Background/Foreground Boundary Initializing level sets functions based
on k-means clustering

[126]

Background Background intensities are between
the low and high intensities in the image

[127]

Local background must be uniform [128, 129]

Background is piecewise linear and
its intensities are between the low
and high intensities in the image

[130]

Foreground Clear distinction between touching
cell edge pixel intensities

[122]

Foreground pixels are drawn from a
different statistical model than the
background pixels

[131]

Features computed based on their
gray-scale invariants

[132]

Time The first image of a time sequence
should be segmented first by another
algorithm like watershed

[69]

Intensity Distributions Image pixel intensities follow bi-modal
histogram

[42]

The statistical properties of the foreground
and background are distinct and relatively
uniform & foreground is bright, while
the background is dark

[133]

Foreground and background follow
Gaussinan distribution

[134]

Image pre-processing Background flatfield correction Image pre-processing: such as correcting
inhomogeneous illuminated background
intensities using a machine learning
based approach to resolve differences
in illumination across different locations
on the cell culture plate and over time

[81]

Filters Smoothing the image using Gaussian filter [132]

Downsampling (binning) the images [64]
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collections of segmentation libraries. A recent survey of
biological imaging software tools can be found in [26].
The list provided in Table 5 includes tools with segmen-
tation software packages encountered during this litera-
ture survey of segmentation techniques as well as
methods that could potentially be used for mammalian
cell segmentation. This table is inclusive to the segmen-
tation field we are surveying but it is not by any means
an exhaustive list of the available tools in that field.

Optimization of segmentation parameters
In many cases, segmentation techniques rely on opti-
mizing a parameter, a function or a model denoted as
optimized entities. The goal of optimizing these en-
tities is to improve segmentation performance in the
presence of noise or to improve robustness to other
cell imaging variables.
Around 40 % of the surveyed papers do not mention

any specific parameter, function or model optimization.
Based on the remaining 60 % of the papers, five categor-
ies of optimization entities were identified: (1) intensity
threshold, (2) geometric characteristics of segmented ob-
jects, (3) intensity distribution, (4) models of segmented
borders, and (5) functions of customized energy or en-
tropy. Almost 50 % of the papers that explicitly mention
parameter optimization rely on intensity threshold and/or
intensity distribution optimization. Parameters related to
the segmented object geometry are optimized in approxi-
mately 30 % of the papers while models of segmented
border location are optimized in approximately 15 % of
the surveyed publications. The remaining 5 % describe
algorithms that make use of customized energy or entropy
functions, whose optimization leads to efficient segmenta-
tion for specific applications.
Table 6 illustrates a summary of five representative

publications for the most highly occurring categories of
optimization entities (categories 1, 2 and 3 above) in
terms of the use of optimization.
Table 6 also shows how the segmentation workflow

often consists of a number of steps, such as seeded
watershed, various image filters, medial axis trans-
form, and morphological operations, which involve

different optimization entities. For instance, Al-Kofahi
et al. [42] employ Otsu thresholding [43], followed by
seeded watershed in order to correctly segment large
cells. Bise et al. [44] eliminate differential interference
contrast (DIC) microscopy artifacts by minimizing a
nonnegative-constrained convex objective function based
on DIC principles [45], and then the resulting images are
easily segmented using Otsu thresholding [43]. Ewers et
al. [46] initially correct for background and de-noise using
Gaussian filters. Local intensity maxima are then sought
based on the upper percentile, and are optimized based
on the (local) brightness-weighted centroid and on inten-
sity moments of order zero and two. We found several
examples of intensity thresholding combined with
geometry-based refinements [47], iterative procedures
[48], and global fitting steps [49]. Also shows how the
segmentation workflow often consists of a number of
steps, such as seeded watershed, various image filters,
medial axis transform, and morphological operations,
which involve different optimization entities. For in-
stance, Al-Kofahi et al. [42] employ Otsu thresholding
[43], followed by seeded watershed in order to correctly
segment large cells. Bise et al. [44] eliminate differential
interference contrast (DIC) microscopy artifacts by min-
imizing a nonnegative-constrained convex objective func-
tion based on DIC principles [45], and then the resulting
images are easily segmented using Otsu thresholding [43].
Ewers et al. [46] initially correct for background and de-
noise using Gaussian filters. Local intensity maxima are
then sought based on the upper percentile, and are opti-
mized based on the (local) brightness-weighted centroid
and on intensity moments of order zero and two. We
found several examples of intensity thresholding com-
bined with geometry-based refinements [47], iterative pro-
cedures [48], and global fitting steps [49].
Interesting optimization approaches can be also

found in applications of segmentation methods outside
of the scope of this survey. Such segmentation methods
use for instance artificial neural networks (ANN) and
optimize ANN weights [50], 3D active shape models
(ASM) and optimize shape variance [51], or geometrically
deformable models (GDM) which rely on finding optimal

Table 4 A summary of segmentation assumptions in the surveyed literature (Continued)

Image smoothing and automatic
seed placement are used

[56]

Hessian-based filtering for better
cell location and shape detection

[44]

Non-linear transformation Image pre-conditioning where the
image is transformed to bright field
before applying the threshold

[48]

Manual input Manual interactivity is needed to
compute segmentation

[84]

Bajcsy et al. BMC Bioinformatics  (2015) 16:330 Page 12 of 28



internal and external forces being applied to deform 2D
contours [52].

Evaluations of automated segmentations
We focus on accuracy and precision evaluations of auto-
mated segmentation algorithms. The evaluation ap-
proaches have been classified according to the taxonomy
in [53]. They have been expanded by object and pixel level
evaluations in Table 7. The object level evaluation is im-
portant for the studies focusing on counting, localization

or tracking. The pixel level evaluation is chosen for the
studies measuring object boundaries and shapes.
The majority of evaluations found in the literature of

interest to this survey fall under empirical methods with
supervised and unsupervised evaluation approaches.
Next, we overview both unsupervised and supervised

segmentation evaluation approaches and highlight sev-
eral segmentation quality criteria and metrics, as well as
challenges with creating reference segmentation results
and selecting samples for the reference segmentations.
Finally, we summarize evaluations methods employed in

Table 5 A summary of software packages encountered during this literature survey

Software name Description Tool availability Reference

Ilastik A tool for interactive image classification,
segmentation, and analysis

S [135]

FARSIGHT Toolkit of image analysis modules with
standardized interfaces

S [136]

ITK Suite of image analysis tools S [137]

VTK Suite of image processing and visualization tools S [138]

CellSegmentation3D Command line segmentation tool E [139]

ImageJ/Fiji Image processing software package consisting
of a distribution of ImageJ with a number of
useful plugins

E + S [78]

Vaa3D Cell visualization and analysis software package E + S [140]

CellSegM Cell segmentation tool written in MATLAB S [141]

Free-D Software package for the reconstruction of 3D
models from stacks of images

E [142]

CellExplorer Software package to process and analyze 3D
confocal image stacks of C. elegans

S [143]

CellProfiler Software package for quantitative segmentation
and analysis of cells

E + S [144]

Kaynig’s tool Fully automatic stitching and distortion correction
of transmission electron microscope images

E + S [145]

KNIME Integrating image processing and advanced analytics E + S [146]

LEVER Open-source tool for segmentation and tracking
of cells in 2D and 3D

S [31, 147]

OMERO Client–server software for visualization, management
and analysis of biological microscope images.

E + S [148]

Micro-Manager Open-source microscope control software E + S [149]

MetaMorph Microscopy automation and image analysis software PE [124]

Imaris Software for data visualization, analysis, segmentation,
and interpretation of 3D and 4D microscopy datasets.

PE [150]

Amira Software for 3D and 4D data processing, analysis,
and visualization

PE [151]

Acapella High content imaging and analysis software PE [85]

CellTracer Cell segmentation tool written in MATLAB E + S [124]

FogBank Single cell segmentation tool written in MATLAB E + S [122]

ICY Open community platform for bioimage informatics. E + S [65]

CellCognition Computational framework dedicated to the automatic
analysis of live cell imaging data in the context of
High-Content Screening (HCS)

E + S [152]

Tool Availability options are (P)roprietary, (E)xecutable Available, (S)ource Available
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several past grand segmentation challenges that have been
conducted in conjunction with bio-imaging conferences.

Unsupervised empirical evaluation design
Unsupervised evaluation of segmentation methods are
also known as stand-alone evaluation methods and
empirical goodness methods. A relatively broad survey
of such methods is presented in [53]. Unsupervised
evaluations do not require a creation of ground truth
segmentation. Thus, they scale well with the increasing
number of segmentation results that have to be evalu-
ated for accuracy. Furthermore, these methods can be
used for tuning segmentation parameters, detecting im-
ages containing segments with low quality, and switch-
ing segmentation methods on the fly.
In this class of evaluation methods, the goodness of seg-

mentation is measured by using empirical quality scores
that are statistically described, and derived solely from the
original image and its segmentation result. One example of
a quality score is the maximization of an inter-region vari-
ance in threshold-based Otsu segmentation [43]. Unfortu-
nately, there is no standard for unsupervised evaluation of
automated segmentation because the segmentation good-
ness criteria are application dependent. Moreover, applica-
tion and task specific criteria are often hard to capture in a
quantitative way because they come from descriptions
based on visual inspections. As a consequence, unsuper-
vised segmentation evaluations are rarely reported in the

literature focusing on optical 2D and 3D microscopy images
of cells. We did not find a single paper that reported com-
parisons of task-specific segmentation methods using un-
supervised evaluation methods. On the other hand, a few
researchers utilized elements of unsupervised evaluations in
their segmentation pipeline in order to improve their final
segmentation result. We describe three such examples next.
Lin et al. in [54] and [55] segment cellular nuclei of dif-

ferent cell types. The initial segmentation is performed
with a modified watershed algorithm to assist with nu-
cleus clustering and leads to over-segmentation. The au-
thors estimate the confidence in segmenting a nucleus as
the object composed of a set of connected segments with
a probability. This probability can be seen as an unsuper-
vised segmentation quality score and is used for merging
of connected segment into a nucleus object.
Padfield et al. in [56] perform a segmentation of a

spatio-temporal volume of live cells. The segmentation
is based on the wavelet transform. It results in the 3D
set of segmented “tubes” corresponding to cells moving
through time. Some of the tubes touch at certain time
points. The authors use the likelihood of a segment be-
ing a cell-like object as an unsupervised segmentation
score for merging or splitting separate cell tracks.
Krzic et al. in [57] segment cellular nuclei in the early em-

bryo. The initial segmentation is performed by means of
local thresholding. The authors use volume of the candidate
object as a score for the decision whether the volume split

Table 7 Taxonomy of segmentation evaluation approaches

Taxonomy of segmentation evaluation Subjective

Objective System Level

Direct Analytical

Empirical Unsupervised Object level (counts, centroids)

Pixel level (boundaries)

Supervised Object level (counts, centroids)

Pixel level (boundaries)

Table 6 A summary of five publications in terms of their use of segmentation parameter optimization

Optimized entity Optimization approach Segmentation workflow Reference

Intensity threshold, intensity distribution Otsu technique [43] to minimize
intra-class variance

Thresholding→Morphological seeded
watershed

[42]

DIC-based nonnegative-constrained convex
objective function minimization→ Thresholding

[44]

Intensity threshold, intensity distribution,
geometric characteristics of segmented
objects

Find threshold that yields expected
size and geometric characteristics

Gaussian filtering→Exponential fit to intensity
histogram→Thresholding→ Morphological
refinements

[49]

Thresholding→Morphological refinements [47]

Intensity distribution, geometric characteristics
of segmented objects

Hessian-based filtering and medial axis
transform for enhanced intensity-based
centroid detection

Iterative non-uniformity correction→
Hessian-based filtering→Weighted
medial axis transform→Intensity-based
centroid detection

[48]
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operation should be performed. If the volume is greater
than the mean volume plus one standard deviation then
the watershed algorithm is applied to the candidate object.

Supervised empirical evaluation design
Supervised empirical evaluation methods, also named
empirical discrepancy methods are used to evaluate seg-
mentations by comparing the segmented image against a
ground-truth (or gold-standard) reference image. These
methods often give a good estimation of the segmenta-
tion quality, but can be time-consuming and difficult for
the expert in charge of manually segmenting the refer-
ence images. We overview publications that address a
few challenges related to the creation of a reference seg-
mentation, sampling, and evaluation metrics.

Creation of databases with reference cell segmentations
There is growing availability of reference segmentations
on which to evaluate segmentation methods. A number
of research groups have created databases of images and
segmentation results that span a range of imaging mo-
dalities, object scales, and cellular objects of interest.
Reference images are needed to test 3D segmentation al-
gorithms across the variety of imaging modalities and
over a wide variety of scales from cell nuclei to thick
sections of biological tissues. We summarized a few cell
image databases in Table 8.
Gelasca et al. in [58] describe a dataset with images

covering multiple species, many levels of imaging scale,
and multiple imaging modalities, with associated manual
reference data for use in segmentation algorithm com-
parisons and standard evaluation of algorithms. The
database includes images from light microscopy, con-
focal microscopy, and microtubule tracking and objects
from one micron to several hundred microns in diam-
eter. They also provide analysis methods for segmenta-
tion, cell counting, and cell tracking. For each data set in
the database, the number of objects of interest varies
with the data set.
Martone et al. in [59] have created the Cell Centered

Database for high-resolution 3D light and electron mi-
croscopy images of cells and tissues. This database offers
hundreds of datasets to the public. They have developed

a formal ontology for subcellular anatomy which de-
scribes cells and their components as well as interactions
between cell components.
A database developed based on the work of Blackshaw

et al. in [60] and accessible at http://cepko.med.harvard
.edu/, contains imaging data to investigate the roles of
various genes in the development of the mouse retina.
Various clustering methods are available to understand
the relationships between sets of genes at different stages
of development. A review of biological imaging software
tools summarizes the current state of public image re-
positories in general, including those with and without
reference data sets [26], contains imaging data to investi-
gate the roles of various genes in the development of the
mouse retina.

Sampling of objects to create reference cell images
When creating reference cell image databases, there is a
question of cell sampling. For the reference databases in
Table 8, little information is available describing the
sampling method and how the number of reference ob-
jects for each set is chosen, or how the variability across
a population of images is found.
In general, cell image samples for inclusion into the

reference database can be drawn from (1) multiple cell
lines, (2) multiple biological preparations, (3) one experi-
mental preparation with many images (X-Y-T or X–Y-Z),
(4) one image containing many cells, and (5) regions of a
cell. A sampling strategy would be applied to select im-
ages of cells, nuclei, or cell clusters. This topic of image
sampling using fluorescence images of different bio-
logical objects has been explored by Singh et al. in [61].
By performing uniform random sampling of the ac-
quired images and comparing their variability for differ-
ent sample sizes, one can estimate the size of the image
to sample to stay within a specified variance. Similarly,
Peskin et al. in [62] offer a study that estimated the vari-
ability of cell image features based on unusually large
reference data sets for 2D images over time. The authors
showed that the range of sample numbers required de-
pends upon the cell line, feature of interest, image ex-
posure, and image filters.

Table 8 Examples of reference cell image databases

Cell image databases Biological content Scale of objects Axes of acquired data References

Biosegmentation benchmark Mammalian cell lines Nuclear to multi-cellular X-Y-Z [58]

Cell Centered Database Variety of cell lines, initial
data of nervous system

Subcellular to multi-cellular X-Y-Z, X-Y-T, X-Y-Z-T [59]

Systems Science of Biological
Dynamics (SSBD) database

Single-molecule, cell, and
gene expression nuclei.

Single-molecule to cellular X-Y-T [153]

Mouse Retina SAGE Library Mouse retina cells Cellular X-Y-Z-T [60]
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The number of objects selected for analysis varies with
the type of object in the image and its scale. Nuclear im-
ages tend to have larger numbers of objects in associated
analyses. Examples include studies on rat hippocampus
[55], various human tissues [63], and a variety of other
species, for which the numbers of nuclei per image
range from 200 to 800. These numbers are high com-
pared with images of larger objects, such as breast can-
cer cells [58] or rat brain cells [55], for which the
number of objects in the entire study is much lower, i.e.
50 to 150. The vast majority of studies do not explain
exactly how the number of objects is selected, or the
shapes of the distributions of resulting data (Gaussian or
non-Gaussian).
In this survey, we encountered 44 papers that referred

to different sampling methods including exhaustive
sampling (13), manually selected samples (11), statistical
sampling (13, random or stratified), or systematic sam-
pling (7, regular sub-sampling of data or simply choosing
the first N samples). These sampling techniques were used
for selecting objects or interest to create reference seg-
mentations. We found 49 papers that described the
creation of reference segmentations by using automatic
(4), semi-automatic (4), manual (38), and visual (3) ap-
proaches. The manual approaches created a reference seg-
ment representation while visual approaches provided just
a high level label. There were several papers that reported
creation of reference segmentations but did not report
sampling of objects of interests. Some papers used combi-
nations of sampling strategies (4) or creation methods (6).
Future research involving the availability and utility of

a reference data set will depend upon the extent of ef-
forts made to manually create sets that represent true
image variability for a very wide range of applications.
As more reference data is collected, one can begin to
ask relevant questions about required sampling sizes for
different types of applications.

Segmentation accuracy and precision measures
Following the classification in the survey of evaluation
methods for image segmentation [9], the measures used in
supervised empirical segmentation evaluation methods
can be classified in four main categories: measures based
on (1) the number of mis-segmented voxels, (2) the pos-
ition of mis-segmented voxels, (3) the number of objects,
and (4) the feature values of segmented objects. We sum-
marized measures, metrics and cellular measurements in
Table 9, and describe each category of segmentation
evaluation measures next.

(1)Measures based on the number of mis-segmented
voxels
These measures view segmentation results as a cluster
of voxels, and hence evaluate segmentation accuracy

using statistics such as the Jaccard and Dice indices.
These indices for a class can be written as:

Jaccard R; Sð Þ ¼ R∩Sj j
R∪Sj j ð1Þ

Dice R; Sð Þ ¼ 2 R∩Sj j
Rj j þ Sj j ð2Þ

where R is the set of voxels of the reference segmentation
and S is the set of voxels obtained by the tested algorithm.
To define a metric on the entire image, one can take the
average of those indices over all the classes. These two
measures were the most commonly used in the reviewed
papers, notably in [61, 64–68].
Another common measure is the F-measure which is

based on precision and recall:

Precision R; Sð Þ ¼ R∩Sj j
Sj j ð3Þ

Recall R; Sð Þ ¼ R∩ Sj j
Rj j ð4Þ

F R; Sð Þ ¼ 2 � Precision R; Sð Þ � Recall R; Sð Þ
Precision R; Sð Þ þ Recall R; Sð Þ ð5Þ

where R and S have the same meaning as before. The
F-measure has been used in [69, 70].
These measures based on the number of mis-

segmented voxels have the advantage of being simple to
compute. However, they do not take into account the lo-
cation of a mis-segmented voxel. The location might be
important since a mis-segmented voxel close to a seg-
ment boundary might not contribute to a segmentation
error as much as one far away.

(2)Measures based on the position of mis-segmented
voxels
Measuring the segmentation discrepancy by taking
into account only the number of mis-segmented
voxels may not be sufficient to rank several segmen-
tations of the same objects. While two segmentation
results can be similar when measuring the number
of mis-segmented voxels, they might be dissimilar
when measuring positions of mis-segmented voxels.
The most common measure based on positions of
mis-segmented voxels is the Hausdorff distance [71].
It is defined as the maximum of the sets of mini-
mum distances of two compared shapes and has
been used to evaluate 3D nuclei segmentation in
[72]. Another approach is to use the position dis-
tances between 3D boundary voxels of ground truth
and segmented objects in 2D slices as used by S.
Takemoto and H. Yokota in [73].
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(3)Measures based on the number of objects
Measures at voxel level have the disadvantage of
measuring performance without considering
aggregations of voxels that form semantically
meaningful objects. Measures based on the number
of objects are trying to address this issue. Depending
on a specific study and its spatial resolution, the
objects are usually colonies, cells or nuclei. Once

semantically meaningful objects are defined, one can
use the same measures as those introduced for
measuring the number of mis-segmented voxels. As
examples, two such studies have reported the use of
the Jaccard index [74] and the F-measure [70]. With
object-based measurements, however, the challenge
lies in matching the objects from the automatically
segmented images with the objects specified as

Table 9 A summary of segmentation evaluation metrics

Measures based on Metric name Cellular measurement Reference

Number of Mis-segmented voxels Jaccard Synthetic [65]

Dice Cell [120, 129, 154]

Synthetic [154]

Other [66]

F-Measure Synthetic [155]

Adjusted Rand Index Cell [122]

Custom measure Nucleus [61]

Cell [67]

Misclassification error Nucleus [156]

Other [156]

Accuracy (ACC) Cell [157, 158]

Position of mis-segmented voxels Average distance Cell [56]

Synthetic [117]

Other [116]

Root square mean of deviation Synthetic [159]

Histogram of distances Nucleus [138]

Number of objects Object count Nucleus [55, 56, 123, 160–162]

Cell [81, 119, 163]

Precision/Recall Nucleus [54, 84]

Cell [44, 69, 84, 127]

F-measure Nucleus [84]

Cell [69, 84]

Bias index Cell [69]

Sensitivity Nucleus [138, 164]

Custom measure Cell [67]

Cell detection rate Cell [165]

Feature values of segmented objects Velocity histogram Cell [166]

Object position Nucleus [167]

Cell [151, 163, 166]

Synthetic [168]

Pearson’s correlation slope and
intercept for velocity measurements

Cell [166]

Voxel intensity based Synthetic [159]

Other [73]

Object area and shape based Cell [151]

Other [73]

Structural index Cell [151]
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ground truth. This step is not trivial since the
automatic segmentation can result in false
positives (object does not exist in ground truth),
false negatives (missing object in automatic
segmentation), splits (object detected as multiple
objects) and merges (multiple objects detected as
one object). One possible solution can be found
in [74] where a reference cell R and a segmented
cell S match if |R∩ S| > 0.5 |R|.

(4)Measures based on the feature values of segmented
objects
Image segmentation can be viewed as a necessary
step to extract properties of segmented objects. The
extraction goal leads to segmentation evaluations
based on one or several extracted features
(properties) of a segment. The evaluation objective is
to verify that features extracted from the segmented
object are equivalent to features measured on the
original object (reference features). In other words,
conclusions derived from measured features over
segmented objects will be the same for the original
and the segmented object. This type of evaluation is
used by S. Takemoto and H. Yokota in [73]. They
use a custom similarity metric combining
intensity-based and shape-based image features
measurements and ranking several algorithms for
a given 3D segmentation task based on the
distance between feature vectors. Similarly,
centroids of segments are used as features in
[56] and [58] which can be viewed as an
extension of measuring the position of mis-
segmented voxels.

Among the aforementioned measures, the most com-
mon ones are the measures based on the number of mis-

segmented voxels, such as the well-known Dice or Jaccard
indices. Nonetheless, other measures can be found in lit-
erature that are based on either a custom design [61] or a
combination of several existing measures [73]. It is also
important to note that due to the amount of labor needed
to establish 3D reference segmentation manually from
volumetric data, evaluations are sometimes performed
against 2D reference segmentations of 2D slices extracted
from 3D volumetric data [61, 73, 75].Among the afore-
mentioned measures, the most common ones are the
measures based on the number of mis-segmented voxels,
such as the well-known Dice or Jaccard indices. Nonethe-
less, other measures can be found in literature that are
based on either a custom design [61] or a combination of
several existing measures [73]. It is also important to note
that due to the amount of labor needed to establish 3D
reference segmentation manually from volumetric data,
evaluations are sometimes performed against 2D reference
segmentations of 2D slices extracted from 3D volumetric
data [61, 73, 75].

Confidence in segmentation accuracy estimates
Sampling method and the sample size of reference ob-
jects determines the confidence in segmentation evalu-
ation accuracy. We have extracted the information about
the number of reference objects (sample size) from the
classified papers and summarized them in Fig. 5. The
numbers are presented per Segmentation Evaluation cat-
egory introduced in Table 1. The papers that did not
specify the sample size in units matching the object cat-
egories (i.e., cells, nuclei, etc.) but rather in time frames
were labeled as “unknown” number of reference objects.
The histogram in Fig. 5 shows 50 out of 72 papers that
report the number of reference objects. It illustrates the
distribution of the papers relying on qualitative/visual
evaluations (2, 4, 5, 3, 0) and quantitative segmentation

Fig. 5 A histogram of the number of evaluation objects used in surveyed papers that reported segmentation evaluation
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evaluations (0, 0, 6, 10, 4) as the number of reference
objects increases.

Evaluations of segmentation grand challenges
In the past, segmentation accuracy evaluation of bio-
medical images has been formulated as grand challenges
by several conferences. The majority of challenges have
been affiliated with the Medical Image Computing and
Computer-Assisted Intervention (MICCAI) conference
and the IEEE International Symposium on Biomedical
Imaging (ISBI): From Nano to Macro (see http://grand-
challenge.org/All_Challenges/). Other conferences, such
as SPIE, ECCV, and ICPR for computer vision and pat-
tern recognition communities, have recently introduced
such biomedical image challenges as well.
Although the specific biomedical imaging domain varies

in these challenges, almost all of them include a segmen-
tation step. For example, among the grand challenges affil-
iated with the 2015 ISBI conference, seven out of the eight
included segmentation. Out of those seven, two challenges
are related to mammalian cell segmentation (Cell Track-
ing Challenge and Segmentation of Overlapping Cervical
Cells from Multi-layer Cytology Preparation Volumes).
These challenges run over two to three years since the
segmentation problem remains an open problem in gen-
eral. In addition, the challenges transition from segment-
ing 2D to 3D data sets which increases the difficulty of
designing an accurate solution.
In terms of challenge evaluation, the challenge of seg-

mentation of overlapping cervical cells is assessed using
the average Dice Coefficient against manually annotated
cytoplasm for each cell and nucleus, and against a data-
base of synthetically overlapped cell images constructed
from images of isolated cervical cells [76, 77]. The cell
tracking challenge is evaluated using the Jaccard index,
and against manually annotated objects (the ground
truth) consisting of the annotation of selected frames
(2D) and/or image planes (in the 3D cases) [74].

Summary of segmentation evaluation
Evaluation of automated segmentation methods is a key
step in cellular measurements based on optical micros-
copy imaging. Without the evaluations, cellular mea-
surements and the biological conclusions derived from
them lack error bars, and prevent others from compar-
ing the results and reproducing the work.
The biggest challenge with segmentation evaluations is

the creation of reference criteria (unsupervised approach)
or reference data (supervised approach). The reference
criteria are often hard to capture in a quantitative way be-
cause they are based on observations of experts’ visual in-
spections. As a consequence, unsupervised segmentation
evaluations are rarely reported in the literature using op-
tical microscopy images of cells. If segmentation

parameters have to be optimized then some papers use
“goodness criteria” for this purpose.
The challenge with creating reference data is the

amount of labor, human fatigue, and reference consistency
across human subjects. Software packages for creating ref-
erence segmentation results have been developed [78, 79].
These software packages provide user friendly interfaces
to reduce the amount of time needed. However, they do
not address the problem of sampling for reference data,
and do not alleviate too much the human aspects of the
creation process.
Finally, there are no guidelines for reporting segmenta-

tion evaluations. For example, evaluations of segmenta-
tion objects are summarized in terms of the total
number of cells, frames or image stacks, or a sampling
frame rate from an unknown video stream. These
reporting variations lead to ambiguity when attempts are
made to compare or reproduce published work.

Scalability of automated segmentations
We have focused our survey of the segmentation litera-
ture on the use of desktop solutions with or without ac-
celerated hardware (such as GPUs), and the use of
distributed computing using cluster and cloud resources.
These advanced hardware platforms require special con-
siderations of computational scalability during segmen-
tation algorithm design and execution. The categories of
hardware platforms in Table 1 can be placed into a tax-
onomy based on the type of parallelism employed, as
given in Table 10.
Based on our reading of the literature that meets the

survey criteria, the topic of computational scalability is
currently not a major concern for the 3D segmentation
of cells and subcellular components. While algorithms
in other application areas of 2D and 3D medical image
segmentation are often developed to support scalability
and efficiency [80], most of the papers we surveyed
made no claims about computational efficiency or run-
ning time. Of the works that did claim speed as a fea-
ture, only a few exploited any kind of parallelism, such
as computer clusters [81], GPUs [82], or multi-core
CPUs [83–87]. Some other algorithms made use of the
GPU for rendering (e.g. Mange et al. [83]) rather than
for the segmentation itself. For algorithms that did

Table 10 Taxonomy of hardware platforms

Taxonomy of hardware platforms Parallel MIMD Cluster

Multi-core CPU

SIMD GPU

Serial Single-core CPU

SIMD is Single Instruction, Multiple Data streams, MIMD is Multiple Instruction,
Multiple Data streams [169]
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exploit parallelism for the actual segmentation, it was
generally either to achieve high throughput on a large
data set (e.g. on clusters for cell detection in Buggenthin
et al. [81]) or to support a real-time, interactive applica-
tion (e.g. on multi-core CPUs for cell tracking in Mange
et al. [83] and for cell fate prediction in Cohen et al.
[88]). We did not find any works which made use of
more specialized hardware, such as FPGAs.
In addition to algorithmic parallelism and computa-

tional scalability, the segmentation result representation
plays an important role in the execution speed of ren-
dering and post-processing of segments. The output of
most cell segmentation algorithms is in the form of
pixels or voxels, which are a set of 2D or 3D grid points,
respectively, that sample the interior of the segmented
region. Some other works produce output in the form of
a 3D triangle mesh (e.g. Pop et al. [89]), or its 2D equiva-
lent, a polygon (e.g. Winter et al. [87]). While the triangu-
lar mesh representation is very amenable to rendering,
especially on the GPU, it is less suitable than a voxel rep-
resentation for certain types of post-segmentation analysis,
such as volume computation.
Spherical harmonics is another representation used in

some works (e.g. Du et al. [64], Eck et al. [66]). Du et al.
[64] first compute a voxel-based segmentation to which
they fit spherical harmonic basis functions, while Eck et
al. [66] directly compute the spherical harmonic seg-
mentation. While in general a spherical harmonics rep-
resentation takes some extra effort to render and
analyze, it enables analyses such as shape comparison, as
in Du et al. [64]. A disadvantage of spherical harmonics
representations is that they can only represent objects
with a spherical topology. Delgado-Gonzalo et al. [65]
represent their segmentations as exponential B-splines,
which offer fast computation and are amenable to user
manipulation during semi-automatic segmentation. This
representation does, however, require additional process-
ing before rendering or analysis.

Discussion
We summarized statistics about papers in the following
ways: (1) a co-occurrence of publications that reported

various types of cellular measurements and the segmen-
tations used to obtain those measurements, (2) statistics
about segmentation inputs and outputs, (3) a co-
occurrence of publications that reported various types of
segmented objects and evaluation approaches, and (4)
statistics about segmentation software.

Co-occurrence of cellular measurements and
segmentation
Table 11 might provide insights about pairs of segmenta-
tion methods and specific cellular measurements. It
could be observed that the most frequently use segmen-
tation method is thresholding with a variety of threshold
optimization approaches (see a survey devoted to the
optimization topic in [90]. The papers classified under
“Other” segmentation methods are many times using
thresholding but are a part of a multi-stage complex al-
gorithm. The hyperlinks in the table point to the web
pages with the list of publications.
Tables 12 and 13 offer similar statistics but with

regards to Imaging Modality and data Dimensionality.
These three tables are very useful as a guide to what was
used to segment images similar to one’s experiment. For
example from Table 11, one can conclude that water-
shed was not used to measure cell geometry but rather
active contours and threshold were mainly used for that
measurement. From Table 12 a developer of segmenta-
tion algorithm may consider to use a custom built seg-
mentation method for segmenting objects in DIC image
modalities since none of the popular segmentation
methods were used on that imaging modality. These
three tables should be a start to narrow down the re-
search papers and the segmentation methods used to
solve a similar project at hand.

Statistics about inputs and outputs
The reviewed publications reported 40 data sets with X-
Y-T dimensions, 27 data sets with X-Y-Z dimensions,
and 7 data sets with X-Y-Z-T dimensions. Of the works
that used X-Y-T, most treated T as a separate dimension,
first performing an algorithm on each X-Y slice separ-
ately and then iterating over T. However, some works
(e.g. Padfield et al. [56, 91]) treated X-Y-T as a unified

Table 11 Co-occurrence statistics of surveyed publications: segmentation method versus cellular measurements

Thresholding Watershed Region growing Active contours
+ Level Set

Other Morphological Graph-based Partial derivative
equations (PDE)

Motility 11 4 1 12 2 1 0 0

Counting 6 4 1 1 4 0 0 0

Location 8 7 0 7 2 1 1 1

Geometry 9 1 1 6 3 0 2 1

Intensity 3 3 0 0 0 0 0 0
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3D volume and performed an algorithm over all dimen-
sions simultaneously.
In terms of imaging modalities Table 14 shows that

confocal fluorescence imaging is the most frequently
used cell imaging modality.
The output of the segmentation algorithm in most of

the works surveyed was in the form of pixels or voxels.
Some other works contained algorithms that generated
(a) polygons or triangle meshes [87, 89] (b) spherical
harmonics [64, 66], or (c) B-splines [65].

Co-occurrence of segmented objects and evaluation
approaches
In terms of segmentation evaluations, Table 15 shows
another summary of a co-occurrence of publications that
reported segmentation evaluation approaches and seg-
mented objects. The column “Visual Inspection” is for
papers reporting visual inspection of segments usually
by a biologist. A biologist would assess whether the seg-
mented results are within his/her visual tolerance, with-
out manually segmenting images. The columns “Object-
level evaluation” and “Pixel-level evaluation” are for pa-
pers where a concrete segmentation accuracy measure

was applied against a segmentation reference, usually
established by manual segmentation. This reference can
have pixel-level information, for instance, manual seg-
mentation of the shape of the object of interest, or
object-level information, for instance, object centroid
position or cell counts. Sometimes, a visual inspection is
also performed as an additional verification. The column
“Unknown” is for papers not mentioning a segmentation
evaluation for the corresponding segmented object in
comparison to the column “techniques is not specified”
but results are reported. We also distinguished two types
of synthetic objects that can be used for segmentation
evaluation in two separate rows: computer-generated
digital models and reference material (e.g., beads).

Statistics about segmentation software
We found 51 papers presenting novel techniques that
also discussed implementation details, source code, or
tool availability. Of these 51 papers, 23 either declared
their segmentation code as open source or provided ac-
cess to it on request. The remaining 28 papers discussed
implementation details such as the programming lan-
guage used, but did not mention code availability. The
programming languages used to implement novel seg-
mentation techniques are summarized in Table 16.
MATLAB was occasionally supplemented with compiled

C/C++ code. Similarly, C++ was paired with IDL
(Interactive Data Language). Implementations in C or C++
were sometimes supported by toolkits or libraries; for ex-
ample QT, GTK, OpenCV, ITK, and VTK. It is assumed
that any publication without reference to a development
language used other widely available tools, for example,
ImageJ/Fiji.
Of the 72 papers surveyed for computational plat-

forms, most either did not report the hardware on which
they were tested or did not explicitly claim support for
any sort of parallelism. Of the works that did claim sup-
port for parallelism, one ran on a cluster [81], one ran

Table 12 Co-occurrence statistics of surveyed publications: segmentation method versus imaging modality

Phase
contrast

Wide-field
fluorescence

Bright-field Confocal
fluorescence

Differential interference
contrast

Dark-field Two-photon
fluorescence

Light
sheet

Thresholding 10 11 2 11 3 1 1 0

Watershed 4 11 1 5 0 0 0 1

Region growing 0 1 1 0 0 0 0 0

Active contours +
Level Set

3 5 2 15 0 0 0 0

Other 5 2 3 2 1 0 0 0

Graph-based 0 1 0 1 0 0 0 0

Partial Derivative
Equations (PDE)

0 0 0 2 0 0 0 0

Morphological 0 0 0 1 1 0 0 0

Table 13 Co-occurrence statistics of surveyed publications:
segmentation method versus axes of digital data

X-Y-T X-Y-Z X-Y-Z-T

Thresholding 19 13 2

Watershed 9 5 1

Region growing 2 0 0

Active contours + Level Set 11 9 4

Other 7 2 0

Graph-based 1 0 1

Partial Derivative Equations (PDE) 0 1 1

Morphological 1 1 0
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on a GPU [82], and five had explicit support for multi-
core CPUs [83–87]. It is possible, however, that even
code that was not explicitly designed to support parallel-
ism might still support it, perhaps even unbeknownst to
the code’s authors, through the lower-level libraries on
which the code is based. For example, Matlab provides
built-in multithreading for several functions, such as fft
and sort [92]. This ambiguity may suggest a need for an
improved standard in the literature for the reporting of
the platform on which algorithms are benchmarked.

Conclusions
This survey provides information about capabilities and
limitations of segmentation techniques that have been ap-
plied to cellular measurements of mammalian cells from
optical microscopy images. We categorized the types of
cellular measurements, segmentation algorithms, seg-
mented objects, segmentation evaluations, and hardware
platforms for accelerating image segmentation-based cellu-
lar measurements. Occurrence and co-occurrence statistics
of published work since 2000 are presented here and on-
line. These statistics provide an insight for cell biologists
and computer scientists about the choice of a segmenta-
tion method, its evaluation approach, and a computational
scalability in the context of cellular measurements.
While preparing this survey, we have identified a few

open research questions and topics for which future re-
search would need additional documentation [93].
Open research questions:

� One of the frequent questions is: What should I do
to segment my images? To reduce the amount of
time spent developing new segmentation algorithms
for problems that have existing solutions, there is an
open problem of designing a recommendation
system which can automatically recommend
segmentation algorithms based on input
information, such as the imaging mode and cellular
model system. Such a smart system could lead to a
very general image analysis solution pipeline for
biologists.

� Segmentation evaluation is an open problem due to
the dependency on reference segmentations and its
creation process, the lack of sampling considerations
during manual segmentation as a reference, and the
difficulty in comparing multiple evaluation
measures. Reference materials and “cell phantoms”
might be useful as a starting point.

� As the imaging measurement pipeline consists of
several computations, there is a need to understand
the associated uncertainties and to combine them
into a “combined standard uncertainty” for the
object metrics. There are methods for assessing
uncertainty in different parts of the pipeline, but
there is not an approach for expressing the
uncertainties with the measured object metrics.

� There is an open research question about
consolidating terms used in publications. One
example is an unclear taxonomy for segmentation
evaluations that include simulated data, reference
materials such as beads or cell phantoms, manually
contoured segments, and manually selected
parameters of segmentations.

Topics for which future research needs additional
documentation:

� The lack of exploitation of advanced hardware
platforms and segmentation parallelism in the
surveyed literature opens up the question of

Table 14 A summary of conventional optical imaging modalities reported in the surveyed publications

Imaging
Modality

Bright
Field

Dark
Field

Confocal
fluorescence

Wide-Field
Fluorescence

DIC Phase
contrast

Two-photon
fluorescence

Light
sheet

Occurrence 7 1 33 22 4 19 1 1

Table 15 Summary statistics of pairs of segmented objects and
segmentation evaluation approaches based on the surveyed
literature

Unknown Object-level
evaluation

Pixel-level
evaluation

Visual
inspection

Technique
not
specified

Cell 16 9 16 10 1

Other 2 1 4 4 0

Nucleus 4 9 5 7 0

Synthetic
(digital
model)

1 1 6 7 0

Synthetic
(reference
material)

1 0 0 0 0

Table 16 A summary of implementation languages
encountered during this literature survey

Programming
language

Matlab C++ Java C Matlab with
C/C++

R C++ with
IDL

Occurrence 20 9 6 4 4 2 2
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whether there are more computationally complex
algorithms that might provide higher accuracy.

� While segmentation algorithm speed is increasing in
importance, we found it difficult to compare
algorithm execution times based on information in
publications. Similarly, reference segmentation
objects were reported in various “units” and at
object- or pixel-levels. This opens a question about
introducing a guideline for reporting segmentation
evaluations.

� The lack of machine learning based approaches to
segmentation in the surveyed literature might
suggest that data-driven approaches to segmentation
are under explored. With the advances in deep and
other learning methods, there is a question whether
segmentation of biological objects could be learned
from large collections of images.

� There is a need for a number of reference materials
to assess and document the performance of various
steps in the imaging measurement pipeline
○ Reference optical filters or reference solutions to
benchmark microscope performance

○ Reference images of cells that have been analyzed
by a consortium and have been assigned
measurement tolerances for object metrics

○ Reference slides of 2D cells or 3D scaffolds with
cells that have been imaged and analyzed by a
consortium, and have been assigned
measurement tolerances

○ Reference 3D structures with known geometries
that can be imaged and processed to assess
performance of the imaging pipeline, especially
fluorescent reference spheroids with refractive
indices that match cells.

Endnotes
The papers selected for this survey were targeted to
meet the criteria reflected in the survey title. The survey
criteria can be described at a high level as follows:

� biological focus: mammalian cells AND
� measurement instrument: optical microscope AND
� cellular measurement: derived from [x, y, time] or

[x, y, z] observations AND
� image processing step: automated segmentation.

In order to identify the core set of papers for this sur-
vey, we explored a variety of search strings, for the date
range 2000–2015, and two databases: Web of Science
and PubMed. The example search strings are below:

(1)Mammalian cell* AND (2D OR two dimension* OR
2 dimension* OR 3D OR three dimension* OR three
dimension*) AND optical AND (phase contrast OR

confocal OR Differential Interference contrast OR
DIC OR fluorescent OR Selective Plane Illumination
Microscopy OR SPIM) AND (design OR
segmentation)

Web of Science Result: 2 records; PubMed Result: 1
record

(2)optical microscopy AND imag* AND segmentation
AND cell*
Web of Science Result: 145 records; PubMed Result:
95 records

(3)optical microscopy AND imag* AND segmentation
AND cell* AND (3D OR three dimension* OR 3
dimension* OR tracking)
Web of Science Result: 80 records; PubMed Result:
50 records

(4)optical microscopy AND imag* AND segmentation
AND cell* AND (3D OR three dimension* OR 3
dimension* OR tracking) NOT (MRI OR magnetic
resonance imaging OR PET OR positron electron
tomography OR CT OR computer tomography)
Web of Science Result: 72 records; PubMed Result:
48 records

As seen above, our initial definition of the search
strings included the key words, such as “optical micros-
copy”, “segmentation”, “cell”, “three dimensions”, and
“mammalian”. The word “mammalian” was eliminated
later because many papers focusing on mammalian cells
do not use the word explicitly. The words “three dimen-
sions” or 3D were also not specific enough to select
papers focusing on segmentation of 3D data including
2D + time and X-Y-Z or time sequences of X-Y-Z
(denoted as X-Y-Z-Time). These data types are tacitly
assumed in publications while referring to problems, for
instance, cell tracking (X-Y-Time or X-Y-Z-Time), or
cell-scaffold interaction (X-Y-Z). In many cases segmen-
tation is addressed in one sentence in the methods sec-
tion. A search of “segmentation” and “3D imaging” is
unreliable since “segmentation” is rarely used as an
indexing term or mentioned in the title/abstract by cell
biologists. We also observed that the search key words
“optical microscopy” were sometimes matched with the
optical flow technique applied to microscopy images.
In several automated searchers, we also explicitly ex-

cluded the key words “magnetic resonance imaging” or
“positron electron tomography” or “computer tomog-
raphy”. These key words are frequently found in the
medical imaging domain focusing on segmentation of
mammalian organs in conjunction with microscopy image
analysis (histopathology). We focused this survey on cell
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imaging modalities that exclude the above imaging modal-
ities. As a result, we used the above inclusion and exclu-
sion key words for searching but had to manually filter all
publications found by the automated search. For this sur-
vey, we searched specifically the Web of Science and
PubMed databases in addition to the Internet.
We would also like to mention that the segmentation

survey is primarily focused on 3D data sets. While the
data sets with [x, y, time] dimensions could be seg-
mented in 2D and then post-processed in 3D, we did
not consider those papers that focused on 2D segmenta-
tion. The reasons lie in the survey focus on cellular mea-
surements derived from 3D data, and the explosion of
the number of publications if 2D segmentation would be
included. Thus, the topics related to 2D segmentation or
cell tracking that perform 2D segmentation independ-
ently of the cell correspondence over time are not cov-
ered since they would need their own surveys. In the
case of object tracking, we included the methods that
perform segmentation and object correspondence in tan-
dem since they operate on 3D data sets.
During the manual inspection process, co-authors of

this survey went over close to 1000 publications. They
decided to include some papers that demonstrate key as-
pects of segmentation although the measurements were
not applied to cells, as well as to exclude some papers
that use less frequently used cell imaging modalities than
phase contrast or DIC or confocal laser scanning or
fluorescent or dark/bright field modality. Many co-
authors followed chains of related papers. The assump-
tion is that a high quality paper will cite many other
papers relevant to the topic. Following these citation
links often finds relevant new papers that a search
missed. Unfortunately, while this approach produces
useful papers, it does not allow for an algorithmic defin-
ition of the paper search.

Availability of supporting data
The spread sheet with the literature classification is
available on-line at https://isg.nist.gov/deepzoomweb/
resources/survey/SegmSurvey_classifications.txt.
The histogram and co-occurrence tables at https://

isg.nist.gov/deepzoomweb/resources/survey/index.html
have hyperlinks to web pages that show the list of
publications contributing to each statistical entry.
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