New Approximation Results for Resource Replication Problems

Samir Khuller*, Barna Saha ${ }^{\$}$ and Kanthi Sarpatwar*

* University of Maryland College Park
\$ AT\&T Labs-Research
at\&t

Resource Replication Problem

Resource Replication Problem

Resource Replication Problem

Min Sum Objective

MIN SUM COST: 95

Min Max Objective

MIN MAX COST: 20

Objectives

- Min Sum
- An LP based I0 approximation by Baev, Rajaraman and Swamy[SODA 200I, SIAM J. Compt. 2008].
- Not covered in this talk
- Min Max distance
- Studied by Ko and Rubenstein[2003,2004].
- This is the subject of current talk.

Motivation: Resource Replication

- Need of data replication arises in many contexts
- File replica distribution
- Reduce retrieval time: improves data locality
- Fault tolerance
- Distributed computation
- Distribution of loads: improves latency
- Channel allocation in wireless networks
- Channel capacity can improve if nodes assigned to the same channel are far apart: reduce interference

Resource Replication

- Basic Problem:
- Given K resources, N servers to host resources. Each client needs every resource.

Edge denotes distance I. Shortest Path Metric.

- Goal: minimize the maximum distance each client needs to travel to get all the required resources.

Resource Replication Problem

- Basic Problem:
- Given K resources, N servers to host resources. Each client needs every resource.

Edge denotes distance I. Shortest Path Metric.

- Goal: minimize the maximum distance each client needs to travel to get all the required resources.

Basic Resource Replication Problem

- Studied by Ko and Rubenstein[ICNP 2003]
- Distributed 3 approximation using local search
- Local search may not converge in polynomial time
- We give a very simple 3 approximation which can be implemented in a distributed scenario as well.
- Idea: Extending threshold graph technique for k center type algorithms

Ko and Rubenstein Algorithm

- Local Search Step-

Ko and Rubenstein Algorithm

- Local Search Step-

- Guaranteed to give a 3 approximation. Not polynomial time.

our Results.

Problem Variant	Approx. Achieved	Hardness of Approximatio n	Description
Basic Resource Replication (BRR) Problem	3 approx.	No 2- ε approx. possible	Every node requires every resource. Each node can store exactly one resource type.
Subset Resource Replication (SRR) Problem	3 approx.	No 3- ε approx. possible	Nodes require arbitrary subset of resource types. Each node has designated capacity.
BRR with Outliers	3 approx.	No 2- ε approx. possible	Same as BRR. Need to satisfy at least M nodes.

Our Results (Contd.)

Problem	Approx. Achieved	Hardness of Approximation	Description
SRR with Outliers	None	NP-Hard to approximate within any non-trivial approx..	Same as SRR. Need to satisfy at least M nodes.
BRR with Load Balancing	4 approx. with a violation of load capacity of factor 2.	No 2- ε arpprox.	Same as BRR. Each server can serve at most k clients.

Our Algorithm

- Based on the threshold graph technique - Similar to the k-center.
- 3 approx. in polynomial time.
- Can be implemented in a distributed fashion.

Graph G and resources $\{R, G, B\}$

Guess the optimal distance δ and Construct threshold graph.

- Keep picking nodes and delete nodes within two hops.

- Keep picking nodes and delete nodes within 2 hops. Call this set MIS.

- Keep picking nodes and delete nodes within two hops. Call this set MIS.

- Place k resources in each vertex of MIS's delta neighborhood.

Why does it work ?

- Every vertex is within 2 hops of MIS.
- Each vertex in MIS has degree at least k-I.
- Placing colors on MIS and neighbors makes sure that every vertex has every color within 3 hops.
- Hence, we obtain a 3 approximation.

Subset Resource Replication Problem

- Want all SUBSET of colors.
- Can store one s_{v} colors per server
- Same Min Max objective.
- Also studied by Ko and Rubenstein[2004]
- their heuristic does not provide any approximation guarantee.

Given G and resources $\{\mathrm{R}, \mathrm{G}, \mathrm{B}\}$

Guess $\delta \rightarrow$ threshold graph

Decompose into sub-graphs.

Compute MIS for each color graph

Compute a matching

Compute a matching

Compute a matching

Assigning the colors.

Subset Resource Replication Problem

- Theorem 1: There exists a polynomial time 3approximation algorithm for the Subset Resource Replication problem.

(3- ε) Hardness of Approximation

- Reduction from One Sided Domatic Number Problem (Feige, Halldorsson, Kortsarz and Srinivasan).
- Similar to the dominating set based reduction for the k-center problem.
- A similar reduction from Domatic Number Problem gives a (2- ε) hardness of approximation for Basic Resource Replication Problem.

One Sided Domatic Number.

One Sided Domatic Number.

Reduction:

Blue Nodes:
Require all colors.
0 Capacity
Distance Metric:
Each edge - I
Anti edge - 3

Other Vertices:
Unit capacity.
No resource required

Outlier Version

- Basic Resource Replication problem
- 3-approximation
- Basic Resource Replication problem with bounds on number of replicas of each resource
- 5-approximation
- Subset Resource Replication problem
- No nontrivial approximation factor unless $\mathrm{P}=\mathrm{NP}$

Outlier Version: Robust Subset Resource Replication Problem (RSRR)

- Theorem : Assuming $P \neq N P$, there is no polynomial time algorithm which gives a positive approximation ratio for Robust Resource Replication Problem.
- A polynomial time reduction of the densest k-subgraph problem to the problem of deciding the "feasibility" of RSRR.

Robust Subset Resource Replication Problem (RSRR)

- Decision version of densest k-sub-graph problem:
- Instance $\mathcal{I}=(G=(V, E), k, L),|V|=n,|E|=m$, decide if in G, there exists a sub-graph of size k containing L edges.
- Construct an instance of RSRR as follows:

$V_{1}:$ for k vertices in densest k-subgraph $\quad V_{2}:$ for m edges

Robust Subset Resource Replication Problem (RSRR)

- Construct an instance of RSRR as follows:

Color set contains one color for each vertex of G.

Future Direction

- Studying other objectives such as Min Sum with bound on number of replicas/ cost for replication
- Extending Load constraint to Subset Resource Replication problem/ Matching lower and upper bound for Basic Resource Replication Problem etc.

Questions ?

