Subgraph and Supergraph Problems in r-tournaments

Narayanaswamy N S Kanthi Kiran S

January 5, 2011

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

 Directed feedback vertex problem is fixed parameter tractable in general directed graphs but only tournaments have known O*(c^k) algorithms (c is a constant and k is the maximum solution size allowed).

January 5, 2011

- Directed feedback vertex problem is fixed parameter tractable in general directed graphs but only tournaments have known O*(c^k) algorithms (c is a constant and k is the maximum solution size allowed).
- We study a class of graphs, named r-tournaments, which naturally bridges the gap between tournaments and general graphs.

Definition

A directed graph is called r-tournament, if every pair of vertices has a directed path of length $\leq r \in \mathbb{N}$ connecting them.

Definition

A directed graph is called r-tournament, if every pair of vertices has a directed path of length $\leq r \in \mathbb{N}$ connecting them.

• Clearly by this definition, a 1-tournament is a tournament and a connected directed graph on *n* vertices is an n-tournament.

Feedback vertex set and c-dominating set in r-tournaments

Narayanaswamy N S Kanthi Kiran S () Subgraph and Supergraph Problems in r-te

January 5, 2011

An algorithm to test if a 2-tournament has a FVS of size atmost k in $O^*(c^k)$ time can be used to test if a directed graph has a FVS of size atmost k in $O^*(c^k)$ for some constant $c \in \mathbb{R}$

Thus the feedback vertex set has, in the parameterized sense, equivalent complexity in general directed graphs as tournaments.

• Given a graph G on n vertices, we encode each vertex using $\log_2 n$ bits.

э

- Given a graph G on n vertices, we encode each vertex using $\log_2 n$ bits.
- We add three groups of vertices: $\{u_1, u_2, ..., u_{\log_2 n}\}, \{w_1, w_2, ..., w_{\log_2 n}\}, \{z_1, z_2, ..., z_{\log_2 n}\}.$

- Given a graph G on n vertices, we encode each vertex using $\log_2 n$ bits.
- We add three groups of vertices: $\{u_1, u_2, ..., u_{\log_2 n}\}, \{w_1, w_2, ..., w_{\log_2 n}\}, \{z_1, z_2, ..., z_{\log_2 n}\}.$
- For every element u_i , we add an edge from u_i a vertex v of G if the i^{th} element of the latter's binary representation is 0. Otherwise we add an edge from v to u_i . Remaining connections are as shown in following example.

* Thick arrows imply every vertex of the color group is adjacent to the other color group preserving the direction.

January 5, 2011 6 / 27

• It is clear that the constructed graph is a 2-tournament.

- It is clear that the constructed graph is a 2-tournament.
- If k is the number of vertices to be deleted from G to destroy all directed cycles from it, to make the constructed graph acyclic we must delete exactly k + log₂ n

- It is clear that the constructed graph is a 2-tournament.
- If k is the number of vertices to be deleted from G to destroy all directed cycles from it, to make the constructed graph acyclic we must delete exactly k + log₂ n
- The key observation is that at least one of the color groups black, orange, yellow must be completely destroyed.

• Also by deleting all yellow vertices along with the k vertices of G we can completely destroy cycles in the constructed graph.

- Also by deleting all yellow vertices along with the k vertices of G we can completely destroy cycles in the constructed graph.
- To test if a given graph has a directed FVS of size k, we convert the graph into the above 2-tournament.

- Also by deleting all yellow vertices along with the k vertices of G we can completely destroy cycles in the constructed graph.
- To test if a given graph has a directed FVS of size k, we convert the graph into the above 2-tournament.
- If there is an algorithm to solve for FVS of size k in 2-tournament, running in time $O^*(c^k)$ the said procedure will yield an algorithm to test FVS of size k in general digraphs, with running time $O^*(c^{k+\log_2 n}) = O^*(c^k)$

Theorem (Landau)

The set containing the vertex of maximum outdegree in a tournament forms a minimum 2-dominating set.

January 5, 2011

Theorem (Landau)

The set containing the vertex of maximum outdegree in a tournament forms a minimum 2-dominating set.

Theorem (Extension of Landau's theorem)

Let T be a c-tournament and v a vertex with a maximum number of vertices at a directed distance at most c. Then $\{v\}$ is a (2c)-dominating set of T.

January 5, 2011

Proof

2

イロン 不聞と 不同と 不同と

 Let N_c(v) denote the set of vertices at directed distance atmost c. Let u ∈ T be a vertex such that v ∉ N_{2c}(v).

- Let N_c(v) denote the set of vertices at directed distance atmost c. Let u ∈ T be a vertex such that v ∉ N_{2c}(v).
- The above assumption along with the condition that T is c-tournament implies that $N_c(v) \cup \{v\} \subseteq N_c(u)$.

- Let N_c(v) denote the set of vertices at directed distance atmost c. Let u ∈ T be a vertex such that v ∉ N_{2c}(v).
- The above assumption along with the condition that T is c-tournament implies that $N_c(v) \cup \{v\} \subseteq N_c(u)$.
- This is impossible as v has maximum cardinality of $N_c(v)$.

The c-dominating set problem restricted to c-tournaments is W[2] complete under standard parameterization.

The c-dominating set problem restricted to c-tournaments is W[2] complete under standard parameterization.

Also:

Narayanaswamy N S Kanthi Kiran S () Subgraph and Supergraph Problems in r-ti January 5, 2011

The c-dominating set problem restricted to c-tournaments is W[2] complete under standard parameterization.

Also:

• Every c-tournament has a c-dominating set of size $\log_2 n$. This results in an (brute force) algorithm to find out a c-dominating set, running in $O(n^{\log_2 n})$.

Outline of the reduction

Narayanaswamy N S Kanthi Kiran S () Subgraph and Supergraph Problems in r-to January 5, 2011

Given a tournament T, we replace each vertex of v ∈ T by a path of c vertices v_i ∋ i ∈ [c]. If (u, v) ∈ T, we add edges from u_i ∋ i ∈ [c] to v₁.

- Given a tournament T, we replace each vertex of v ∈ T by a path of c vertices v_i ∋ i ∈ [c]. If (u, v) ∈ T, we add edges from u_i ∋ i ∈ [c] to v₁.
- The resultant graph CT is a c-tournament and has a c-dominating set of size k iff T has a dominating set of size k.

Contd.

Narayanaswamy N S Kanthi Kiran S () Subgraph and Supergraph Problems in r-te January 5, 2011

イロト イヨト イヨト イヨト

If D is a dominating set of T then {u₁ ∋ u ∈ D} is a c-dominating set of CT, with the same cardinality.

- If D is a dominating set of T then {u₁ ∋ u ∈ D} is a c-dominating set of CT, with the same cardinality.
- If CD is a c-dominating set of CT, then the set of of vertices in D obtained by removing subscripts from elements of CD is a dominating set of size atmost |*CD*|.

- If D is a dominating set of T then {u₁ ∋ u ∈ D} is a c-dominating set of CT, with the same cardinality.
- If CD is a c-dominating set of CT, then the set of of vertices in D obtained by removing subscripts from elements of CD is a dominating set of size atmost |*CD*|.
- To see that D is indeed the dominating set of T, observe that if D does not dominate a vertex v ∈ T CD does not dominate v_c.

Example: 3-dominating set in 3-tournament

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Example: 3-dominating set in 3-tournament

Narayanaswamy N S Kanthi Kiran S () Subgraph and Supergraph Problems in r-te J

January 5, 2011 14 / 27

Part II

Graph Modification Problems

- A graph modification problem asks for an optimum number of modifications to a graph to obtain another one which satisfies some required property(A property is a class of graphs closed under isomorphism), example: the cluster editing problem .
- We study two problems requiring modifications (edge addition and deletions) to obtain 2-tournaments (a cluster of 2-tournaments in the first problem and a single 2-tournament in the second case).

Problem (2-tournament clustering by edge deletion)

Given a digraph G, remove atmost k edges to convert into a cluster of 2-tournaments.

Problem (2-tournament clustering by edge deletion)

Given a digraph G, remove atmost k edges to convert into a cluster of 2-tournaments.

Problem (2-tournament completion)

Given a digraph G, add atmost k edges to convert into a 2-tournament.

Problem (2-tournament clustering by edge deletion)

Given a digraph G, remove atmost k edges to convert into a cluster of 2-tournaments.

Problem (2-tournament completion)

Given a digraph G, add atmost k edges to convert into a 2-tournament.

We prove that both 2-tournament clustering and 2-tournament completion are NP-Complete. We also prove that while 2-tournament clustering is FPT, 2-tournament completion is W[2]-hard.

2-tournament clustering is NPC: Reduction from clique clustering problem

• Given a graph G = (V, E), we construct G' = (V', E') as following:

$$V' = \{u_+, u_- : u \in V\}.$$
 (1)

$$E' = \{ (v_+, v_-) : v \in V \} \cup \{ (v_-, u_+), (u_-, v_+) \}$$
(2)

2-tournament clustering is NPC: Reduction from clique clustering problem

• Given a graph G = (V, E), we construct G' = (V', E') as following:

$$V' = \{u_+, u_- : u \in V\}.$$
 (1)

January 5, 2011

$$E' = \{ (v_+, v_-) : v \in V \} \cup \{ (v_-, u_+), (u_-, v_+) \}$$
(2)

The following is the series of steps involved in proving the NP-Hardness:

- Any subgraph of G' which is a 2-tournament must have atmost one +ve signed vertex without a pair and atmost one -ve vertex without a pair.
- There is a minimum solution M for the problem of 2-tournament edge clustering such that every vertex of G' has its pair in one component.
- For each $k \ge 0$, an undirected graph G has a clique clustering edge set of size atmost k if and only if G' has a 2-tournament clustering edge set of size 2k.

Lemma

Let G be a directed graph which is not a 2-tournament such that the underlying directed graph is connected. There exist two vertices for which the distance in the undirected graph is at most 3 but are not at directed distance 2 in G.

Proof.

- Let S be the set of pairs of vertices not having a directed path of length 2 connecting them. Let u,v be a pair of vertices having least undirected distance among all pairs of S. Let the shortest undirected path connecting them be P(u,v) = {u,v₁,v₂,v₃..v}.
- Let if possible $|P(u,v)| \ge 4$. This means that $v_3! = v$ and (u, v_3) does not belong to S. Hence there is a 2-path connecting u, v_3 which would imply P is not the shortest path.

- A simple search tree algorithm is based on the following observation: If there given graph is not a cluster of 2-tournament the earlier lemma gives us a pair of vertices which are not in the at a directed distance 2 but are at an undirected distance atmost 3.
- These vertices cannot be in the same component of the solution graph. Hence atleast one of the edges on the path connecting u, v must be included in the final solution. Branching on each of these solutions yields a $O^*(3^k)$ algorithm.

January 5, 2011

We prove the NPCompleteness and W[2] hardness of the following problem:

Problem (Single Vertex Satisfaction)

Given a directed graph G = (V, E) and a vertex $v \in V$ add atmost k edges to G such that in the resultant graph every vertex of G is either at directed distance at most 2 from v or has it at a directed distance at most 2.

SVS is NPC and W[2] hard

- Reduction from dominating set problem which is NPC and W[2]C.
- Let $G = A \cup B$ (partitions A, B) be a bipartite graph. We add a new vertex v to G and direct the edges from A to B to get G', as shown.

SVS is NPC and W[2] hard

- Reduction from dominating set problem which is NPC and W[2]C.
- Let $G = A \cup B$ (partitions A, B) be a bipartite graph. We add a new vertex v to G and direct the edges from A to B to get G', as shown.

Proof outline

 If D is a dominating set of G, by adding edges edges from v to all vertices of D∩A and from all vertices of D∩B to v we get a graph in which v satisfies all the 2-tournament property with all vertices.

Proof outline

 If D is a dominating set of G, by adding edges edges from v to all vertices of D∩A and from all vertices of D∩B to v we get a graph in which v satisfies all the 2-tournament property with all vertices.

- Let M be a (edge set) solution to the SVS instance (G', v). We prove that there is a dominating set of size |M|.
- Let $M = M_G \cup M_v$, where M_G edges whose end points are in G and M_v has edges incident on v.
- Let $D_{G'}$ be the minimum dominating set of (underlying undirected graph) G' and D_G be the minimum dominating set of G.

Reduction: Contd.

• Adding k edges to graph G reduces the dominating set size by k atmost:

$$D_{G'} \ge DG - |M_G| \tag{3}$$

 Since v is at distance 2 from all the vertices in the underlying undirected graph and M_v is its neighborhood, the latter is a dominating set of G'.

$$D_{G'} \le |M_v| \tag{4}$$

25 / 27

• From the above equations we have:

$$|M_G| + |M_v| = k \ge D(G) \tag{5}$$

2-tournament completion is NPC and W[2] hard: Reduction from Single Vertex Satisfaction

Given a graph G = (V, E) we construct G' = (V', E') in the following way. G' has an SVS edge set of size k iff G has a 2-tournament completion edge set of size k:

۲

۵

$$V' = V \cup V_1 \cup \{v_{ex}\}$$

$$V_1 = \{v_{u,w} : \forall \{u, w\} \in V - \{v\}\}$$
(6)

$$E' = E \quad \cup \quad \{(u, v_{u,w}), (v_{u,w}, w), \forall v_{u,w} \in V_1\} \\ \cup \quad \{(u, v_{ex}), \forall u \in V\} \cup \{(v_{ex}, v_{u,w}), \forall v_{u,w} \in V_1\} \\ \cup \quad \{(u, v) \forall \{u, v\} \in V_1\}$$
(7)

