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Input: Graph, G = (V,E) 
Output: Min cost dominating set that induces a connected 
sub-graph. 

Connected Dominating Set (CDS) 
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Dominating Set 

Connected  
Dominating set 



Motivation for CDS 

Good basic model for virtual backbone in ad hoc 
networks [BD 97]. 
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disclaimer: from Internet  



Approximation Results for CDS 
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Arbitrary Graphs (max degree Δ) : ln Δ + 3  [GK 97] 

Planar Graphs [DH 05] 
Geometric Graphs [CHLWD 03]  

PTAS  in Special 
Graphs 

On general graphs, it is set cover hard. We cannot hope 
for better than O(log 1-εΔ). 

Distributed Setting : O(log n)  [DMPRS 97] 
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Partial CDS (PCDS) 

Connected sub-graph that covers all a given fraction of 
the vertices – CDS Partial CDS (PCDS) 
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Input:   
•  Graph, G=(V,E) 
•  Quota, Q 
Output: 
Find a min cost connected sub-
graph that covers at least Q vertices 

Quota Q = 5 



Budgeted CDS (BCDS) 
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Budget k = 2 
Coverage = 5 

Input:   
•  Graph, G = (V,E) 
•   Budget, k 
Output: 
Find a connected sub-graph on k 
vertices that dominates a 
maximum number of  vertices 

Dual problem of  PCDS – Budgeted CDS (BCDS) 



Prior Work on PCDS and BCDS 
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No prior non-trivial approximation known for either of  
the problems. 

Heuristics based study done in 
sensor networks[LL 05]. 

Problems also studied in a “local information 
setting”[ABNRT 13, KL 12]. 



Related Work 
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minimum spanning tree [BRV 96, Garg 97-05, AK 00] 
 
Steiner tree [CRW 06] 
 
Steiner forest [HJ 06, SS 06, GHNR 08, AK 08] 
 
k-center, k-median, facility location [CKMN 01] 
 
vertex cover [HS 02, Mestre 09 ] 

Partial and Budgeted variants of  several optimization 
problems have been studied in literature 
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Our Results 
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A polynomial time algorithm for the PCDS problem with an 
approximation guarantee 4 ln Δ + 2.  

A polynomial time algorithm for the BCDS problem with an 
approximation guarantee (1/13)(1-1/e).  



Further generalizations 
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Special submodular function: We call a function (with 
domain as the vertex set of  a graph) special submodular if  it 
is submodular and has the property that for any subsets A 
and B of  the domain, such that the vertices of  A and B do 
not share neighbors, then f(A U B) = f(A) + f(B). 

A polynomial time algorithm for the special submodular 
BCDS problem with an approximation guarantee (1/13)
(1-1/e).  

A polynomial time algorithm for the special submodular 
PCDS problem with an approximation guarantee 4 ln Q + 2.  
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Quota Steiner Tree (QST) 
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Input  
•  Graph, G=(V,E) 
•  Cost function, c: E -> Z+ 

•  Profit function, p: V -> Z+ 

•  Quota, Q 
Output 
•  Min cost tree with total 

profit at least Q 

There is a 2-approximation for QST [JMP 00, Garg 05] 

QST with Q = 18 



Our Algorithm: Main Idea 

PCDS QST 

We obtain a reduction from PCDS to QST with a O(log Δ) 
factor loss in approximation factor 

Approximate the submodular function by a linear profit 
function 
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Non-linear but submodular 
profit function 

Linear profit function 



Candidates for approximate linear functions 
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How about the degree function, p(v) = d(v) + 1 ? 



Candidates for approximate linear functions 
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How about the degree function, p(v) = d(v) + 1 ? 

Not a good idea !!  Quota = 8 

Red nodes give a profit of  8 according to the linear degree 
function. But the coverage is only 4.  



Candidates for approximate linear functions 
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Using the greedy algorithm for dominating set to define the 
linear function 



Candidates for approximate linear functions 
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For each vertex, compute the number of  vertices that will 
be covered for the first time. 



Candidates for approximate linear functions 
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We choose the vertex with maximum profit. Re-compute 
the new profit function.    



Candidates for approximate linear functions 
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Tie breaking is arbitrary.    



Candidates for approximate linear functions 
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Tie breaking is arbitrary.    



Candidates for approximate linear functions 
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This algorithm defines a natural linear profit function.   



Candidates for approximate linear functions 
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The profit function  
 p:V->N, is defined as  

p(v) = Number of  newly covered vertices when v is chosen 
           0,  if  the vertex is not chosen 



Candidates for approximate linear functions 
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But is it a good 
approximation to the 
submodular 
function? 



Candidates for approximate linear functions 
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Surprisingly ...   
           YES !! 



Our Algorithm 
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Run the greedy dominating set algorithm and compute the 
linear profit function as the number of  newly covered 
vertices. 

Step 1 

Step 2 

Solve the QST instance defined by this linear function. 
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Analysis: Main Idea 

2-approx. for QST 4logΔ +2 approx. for 
PCDS 

30 

There exists a tree T with size at most  (2 ln Δ+1) OPT(PCDS) 
 and p(T) ≥ Q.  

Optimal  solution size for the PCDS 
instance. OPT(PCDS) 



Analysis: Analyzing the Optimal 
Neighborhood 

L1  = OPT 

Optimal Solution for PCDS. 
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Analysis: Analyzing the Optimal 
Neighborhood 

L1  = OPT L2 

L2 = Neighbors of  L1 , not in L1 
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Analysis: Analyzing the Optimal 
Neighborhood 

L1  = OPT L3 L2 

L3 = Neighbors of  L2 , not in L1 or L2 
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Analysis: Analyzing the Optimal 
Neighborhood 

L1  = OPT L3 L2 R 

R = Rest of  the vertices 
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Greedy algorithm picks white vertices in the order 
- v1, v2, v3 , …, vd 

 

L1  = OPT L3 L2 R 

v1 
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vd 

vl 

vl+1 
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L1  = OPT L3 L2 R 

v1 

v2 

v3 
v4 

vl+2 

v5 

v6 

vd-1 

vd 

vl 

vl+1 

Pick vertices from L1, L2, L3 in the same order as 
greedy until the total profit is ≥ Q 
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L1  = OPT L3 L2 R 

v1 

v2 

v3 
v4 

vl+2 

v5 

v6 

vd-1 

vd 

vl 

vl+1 

Pick vertices from L1, L2, L3 in the same order as 
greedy until the total profit is ≥ Q 

White vertices from 
R are not chosen 
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L1  = OPT L3 L2 R 

v1 

v2 

v3 
v4 

vl+2 

v5 

v6 

vd-1 

vd 

vl 

vl+1 

Pick vertices from L1, L2, L3 in the same order as 
greedy until the total profit is ≥ Q 

White vertices from 
R are not chosen 

These vertices are not 
chosen as the quota is 

complete. 38 



L1  = OPT L3 L2 R 

v1 

v2 

v3 
v4 

vl+2 

v5 

v6 

vn-1 

vd 

vl 

vl+1 

We show that number of  red vertices is at most       
|OPT| ln Δ and by definition they have a total 

profit of  at least Q !! 
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L1  = OPT L3 L2 R 
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We show that number of  red vertices is at most       
|OPT| ln Δ and by definition they have a total 

profit of  at least Q !! 
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L1  = OPT L3 L2 R 

v1 

v2 

v3 
v4 
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vd 

vl 
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Fortunately, we can connect them easily by adding 
only a few more vertices.  
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L1  = OPT L3 L2 R 
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Observe that adding L1 connects all the red 
vertices in L1 and L2.   
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L1  = OPT L3 L2 R 
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Now for every red vertex in L3, we add at most 
one vertex in L2 to the solution.   
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L1  = OPT L3 L2 R 
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Thus there is tree of  size at most  
|OPT| (2 ln Δ+ 1) with total profit at least Q  
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L1  = OPT L3 L2 R 
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Using the 2-approximation for QST we obtain a   
|OPT| (4 ln Δ+ 2) approximation.  
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Future Work 

•  Our algorithms are tight up to a constant factor. 
Can we improve the constants 

•  CDS has good approximation algorithms in the 
distributed setting. Can we obtain similar 
algorithms for the partial and budgeted CDS 
problems ? 
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    THANK YOU FOR LISTENING !! 
                       QUESTIONS?  
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