
IA∗: An Adjacency-Based Representation for Non-Manifold Simplicial Shapes
in Arbitrary Dimensions

David Caninoa, Leila De Floriania, Kenneth Weissb

aDepartment of Computer Science, University of Genova, Italy
bDepartment of Computer Science, University of Maryland, MD, USA

Abstract

We propose a compact, dimension-independent data structure for manifold, non-manifold and non-regular simplicial
complexes, that we call the Generalized Indexed Data structure with Adjacencies (IA∗ data structure). It encodes only
top simplices, i.e., the ones that are not on the boundary of any other simplex, plus a suitable subset of the adjacency
relations. We describe the IA∗ data structure in arbitrary dimensions, and compare the storage requirements of its
two-dimensional and three-dimensional instances with both dimension-specific and dimension-independent represen-
tations. We show that the IA∗ data structure is more cost effective than other dimension-independent representations
and is even slightly more compact than the existing dimension-specific ones. We present efficient algorithms for navi-
gating a simplicial complex described as an IA∗ data structure. This shows that the IA∗ data structure allows retrieving
all topological relations of a given simplex by considering only its local neighborhood and thus it is a more efficient
alternative to incidence-based representations when information does not need to be encoded for boundary simplices.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.6]: Methodology and
Techniques—Graphics data structures and data types

Keywords: Simplicial complexes; non-manifold data structures; topological data structures

1. Introduction

Simplicial complexes are commonly used to describe
non-manifold objects in several applications, including
finite element analysis, solid modeling, animation, ter-
rain modeling and visualization of scalar and vector
fields. Informally, a manifold (with boundary) is a com-
pact and connected subset of the Euclidean space for
which the neighborhood of each of its points is homeo-
morphic to an open ball, or to an open half-ball. Objects
that do not fulfill this property at one or more points are
called non-manifold, while they are called non-regular
if they also contain parts of different dimensions.

Existing modeling tools are generally designed to
handle only shapes with a manifold domain [6], since
they are topologically simpler. However, non-manifold
and non-regular objects arise in several applications.
For example, in the idealization process for preparing

Email addresses: canino@disi.unige.it (David Canino),
deflo@disi.unige.it (Leila De Floriani), kweiss@cs.umd.edu
(Kenneth Weiss)

an object for finite element simulations, regions repre-
senting beam or plate behavior are substituted with one-
dimensional lines or two-dimensional surfaces, respec-
tively, resulting in objects that contain non-manifold
singularities and parts of different dimensions.

In the literature, both dimension-specific and
dimension-independent data structures have been devel-
oped for cell and simplicial complexes. The former typ-
ically exploit properties of the embedding domain to re-
duce storage requirements, while the latter are indepen-
dent of the embedding domain. Dimension independent
incidence-based representations for cell [10] and sim-
plicial [4, 7] complexes encode all the cells of the com-
plex as well as a subset of the incidence relations among
the entities, and thus they tend to be quite verbose. In
the case of simplicial complexes, adjacency-based data
structures for manifold objects, and for 2D and 3D non-
manifold objects have been shown to be more compact
and efficient, since they encode only the top simplices,
i.e. those simplices not on the boundary of other sim-
plices, as well as the adjacency relations among such
simplices [6]. They have, therefore, been used in appli-

Preprint submitted to SMI 2011 March 8, 2011

cations which do not require an explicit encoding of all
the simplices.

Here, we propose a dimension-independent data
structure for simplicial complexes, that we call the
Generalized Indexed Data Structure with Adjacencies
(IA∗ data structure), which generalizes the well known
Indexed data structure with Adjacencies (IA data struc-
ture) [18]. We show that the IA∗ data structure is
able to retrieve all the relations among the simplices of
a simplicial complex very efficiently, it is more com-
pact than all the incidence-based representations and is
even slightly more compact than the dimension-specific
ones [8, 5]. This is interesting since the latter are able
to exploit dimension-specific properties of their embed-
ding space, such as the linear ordering of triangles and
tetrahedra around an edge in 3D, to reduce their stor-
age requirements. Furthermore, the IA∗ data structure
is highly scalable to the manifold case. This means
that, although it can handle arbitrary simplicial com-
plexes, it has negligible overhead, compared to the IA
data structure, in manifold regions of the dataset. This
is important since, in a typical modeling scenario, the
non-manifold irregularities in the shape arise in rela-
tively few localized regions of the shape.

The remainder of this paper is organized as fol-
lows. In Section 2, we summarize background no-
tions about simplicial complexes and topological rela-
tions, while in Section 3, we review related work. In
Section 4, we describe the IA∗ data structure, its 2D
and 3D instances and their storage costs. We present
navigation algorithms for efficiently retrieving topolog-
ical relations among the simplices of a complex in
Section 5. In Section 6, we compare the IA∗ data
structure with dimension-independent and dimension-
specific data structures for simplicial complexes. Fi-
nally, in Section 7, we draw some concluding remarks
and discuss our current implementation of the IA∗ data
structure as well as future developments.

2. Background notions

A Euclidean simplex σ of dimension d is the con-
vex hull of d + 1 linearly independent points in the n-
dimensional Euclidean space En, where d ≤ n is called
the dimension of σ and is denoted dim(σ). We refer to
a Euclidean d-simplex as a d-simplex: a 0-simplex is a
vertex, a 1-simplex is an edge, a 2-simplex is a trian-
gle, and a 3-simplex is a tetrahedron. Any Euclidean
k-simplex σ′, with k < d, generated by a set of vertices
Vσ′ ⊆ Vσ of cardinality k+1 ≤ d, is called a k-face of σ.
Where no ambiguity arises, the dimension of σ′ can be
omitted and σ′ is simply called a face of σ.

A finite collection Σ of Euclidean simplices forms a
Euclidean simplicial complex when (i) for each simplex
σ ∈ Σ, all the faces of σ belong to Σ, and (ii) for each
pair of simplices σ and σ′, either σ ∩ σ′ = ∅ or σ ∩ σ′

is a face of both σ and σ′. The maximal dimension d of
the simplices in Σ is called the order, or the dimension of
complex Σ. The domain, or carrier, of a d-dimensional
Euclidean simplicial complex Σ embedded in En, with
d ≤ n, is the subset of En defined by the union, as point
sets, of all the simplices in Σ.

The (combinatorial) boundary of a simplex σ is the
set of all the faces of σ in Σ, excluding σ. The star of
a simplex σ, denoted S t(σ) is the set of simplices in Σ

that have σ as a face. Any simplex σ such that S t(σ)
contains only σ is called a top simplex. The link of a
simplex σ, denoted Lk(σ), is the set of all the faces of
the simplices in S t(σ) which are not incident in σ.

Two simplices are incident to each other if one of
them is a face of the other, while they are k-adjacent if
they share a k-face: in particular, two vertices are called
adjacent if they are both incident at a common edge.
An h-path is a sequence of (h + 1)-simplices (σi)k

i=0 in
a simplicial complex Σ such that two consecutive sim-
plices σi−1 and σi in the sequence are h-adjacent. Two
simplicesσ andσ∗ are h-connected when there exists an
h-path (σi)k

i=0 such that σ is a face of σ0 and σ∗ is a face
of σk. A subset Σ∗ of a complex Σ is called h-connected
if and only if any two simplices of Σ∗ are h-connected.
Any maximal h-connected sub-complex of a complex Σ

is called an h-connected component of Σ.
A d-complex Σ in which all top simplices are d-

simplices is called regular. A regular (d−1)-connected
d-complex in which the star of all (d−1)-simplices con-
sists of one or two simplices is called a (combinatorial)
pseudo-manifold. A manifold simplicial complex is a
pseudo-manifold where the link of any k-simplex, with
k<d−1, is homeomorphic to the (d − k)-sphere.

Let us consider a simplicial d-complex Σ and a p-
simplex σ ∈ Σ, with 0 ≤ p ≤ d. The topological rela-
tions are defined over Σ in terms of the incidence and
adjacency among its simplices:
Boundary relation Rp,q(σ), with 0 ≤ q < p, consists

of the set of q-simplices that are faces of σ.
Co-boundary relation Rp,q(σ), with p < q ≤ d, con-

sists of the set of q-simplices incident in σ.
Adjacency relation Rp,p(σ) consists of the set of p-

simplices in Σ that are (p−1)-adjacent to σ (when
p>0), or the set of 0-simplices that are adjacent to
σ through an edge (when p=0).

We call constant any relation which involves a constant
number of entities, while relations which involve a vari-
able number of entities are called variable. In general,

2

the co-boundary and adjacency relations in a simplicial
complex are variable, while the boundary relations are
constant. A constant relation should be retrieved by
a data structure representing Σ in constant time, while
variable relations for a simplex σ should be retrieved by
examining a local neighborhood of σ. If the retrieval of
a relation requires examining all the simplices of a spe-
cific dimension, then the data structure does not support
an efficient retrieval of that relation.

3. Related work

Dimension-independent data structures, such as the
cell-tuple [1] and the n-G-map [14], have been proposed
for encoding d-dimensional manifold cell complexes.
The Incidence Graph (IG) [10] represents a general cell
complex by encoding all the cells of the complex as well
as boundary relations Rp,p−1 and co-boundary relations
Rp−1,p. It provides a complete, but verbose, description
of the complex. Simplified versions of the incidence
graph specific for simplicial complexes have been pro-
posed in [4, 7]. Both data structures encode all the sim-
plices in a simplicial complex and subsets of the rela-
tions (which we denote as R∗p,q) represented in the IG.
The Indexed data structure with Adjacencies (IA) is a
dimension-independent data structure for manifold sim-
plicial d-complexes embedded in the n-dimensional Eu-
clidean space [18]. It encodes only the d-simplices in
the complex together with boundary relation Rd,0 and
adjacency relation Rd,d. Encoding an additional top d-
simplex in the star of each vertex (i.e. R∗0,d) enables the
efficient retrieval of all topological relations.

Several dimension-specific data structures have been
developed for manifold two-dimensional cell com-
plexes [6], whereas some are specific for triangle
meshes, e.g. the corner table [19]. Data structures
have been proposed for modeling non-manifold and
non-regular objects whose boundary is discretized as
a cell complex. The Partial Entity (PE) data struc-
ture [13] is the most scalable to the manifold case,
but it is still verbose when applied to simplicial 2-
complexes [6]. Dimension-specific data structures
have been also proposed for encoding simplicial 2-
complexes [2, 8, 17]. The Loop Edge-use (LE) [17] and
the Directed Edge (DE) [2] data structures are for regu-
lar simplicial complexes in which non-manifold singu-
larities occur only at edges. The former is a special-
ization of the PE data structure, while the latter is an
extension of the half-edge data structure [16] to non-
manifold shapes. The Triangle-Segment (TS) data struc-
ture [8] is is an adjacency-based representation for sim-
plicial 2-complexes embedded in 3D space. It encodes

all the triangles and vertices of the complex, but only the
edges which are top simplices. A comparison among
such data structures, presented in [6], shows that the TS
data structure requires about half of the space compared
to the other two. The eXtended Map (X-Map) [3] data
structure generalizes the combinatorial maps described
in [1, 14], to handle non-manifold and non-regular sim-
plicial 2-complexes embedded in E3, and can be more
expensive than the IG and its variants.

Only a few representations have been proposed
in the literature for three-dimensional manifold com-
plexes. The Facet-Edge (FE) [9] and the Handle-
Face (HF) [15] data structures both describe three-
dimensional cells implicitly by encoding the manifold
complexes that form their boundary. In [12], a scalable
data structure for manifold tetrahedral complexes has
been proposed, which extends the corner table [19] to
the 3D case. An efficient extension of the corner table to
tetrahedral meshes has been recently proposed in [11].
The Non-Manifold Indexed data structure with Adjacen-
cies (NMIA) [5] is a dimension-specific extension of the
IA data structure for non-manifold tetrahedral meshes
embedded in 3D space. It encodes all tetrahedra, but
only the top triangles and edges.

4. The IA∗ data structure

In this section, we introduce a new compact
dimension-independent data structure for representing
Euclidean simplicial complexes in arbitrary dimensions,
that we call the Generalized Indexed data structure with
Adjacencies (IA∗ data structure), which generalizes the
IA data structure [18] to non-manifold and non-regular
objects discretized as simplicial complexes.

The IA∗ data structure encodes all the top simplices
of a d-dimensional simplicial complex Σ embedded in
the n-dimensional Euclidean space (with d ≤ n) plus
the following relations:

Rp,0(σ): boundary relation for each top p-simplex σ,
where 0 < p ≤ d;

R∗p,p(σ): partial adjacency relation for each top p-
simplex σ, where p > 1: it consists of all top p-
simplices adjacent to σ along a (p − 1)-face;

R∗p−1,p(τ): partial co-boundary relation for each (p−1)-
simplex τ on the boundary of more than two top
p-simplices, with 0 < (p− 1) < d: it consists of all
top p-simplices incident to τ;

R∗0,1(v): partial co-boundary relation for each vertex v:
it consists of all top 1-simplices in the star of v;

R∗0,p(v): partial co-boundary relation for each vertex v,
with 2≤p≤d: it consists of one arbitrarily selected

3

top p-simplex for each (p − 2)-connected compo-
nent Σ′ of the link of v, Lk(v), where Σ′ is formed
by top (p − 1)-simplices in Lk(v);

Relation R∗p−1,p(τ) encodes the co-boundary relation
of the (p−1)-faces τ of a top p-simplex σ such that there
are more than two top p-simplices adjacent toσ along τ.
This facilitates an efficient encoding for relation R∗p,p(σ)
along a (p − 1)-face τ as either a single top p-simplex
adjacent to σ along τ or as a pointer to the list of all top
p-simplices incident in τ (i.e. R∗p−1,p(τ)).

Note that for each d-simplex σ, the encoded R∗d,d(σ)
is actually the full adjacency relation Rd,d(σ) since all d-
simplices are top simplices. When d = n, any simplicial
d-complex is a pseudo-manifold in the d-dimensional
Euclidean space. In this case, Rd,d(σ) is a constant rela-
tion consisting of one simplex adjacent to σ along each
of its (d − 1)-faces. Consequently, R∗d−1,d(σ) is empty.

When the complex is regular, all top simplices are d-
simplices, so the cardinality of partial co-boundary rela-
tion R∗0,d(v) for a vertex v is equal to the number of con-
nected components of the link of v. Since there are no
top simplices of dimension less than d, the only bound-
ary relations stored are Rd,0.

If the domain of Σ is a manifold, the IA∗ data structure
reduces to the IA data structure. Specifically, R∗0,p(v) is
empty for any 0 < p < d, and R∗0,d(v) contains just one
d-simplex since the link of a vertex v consists of a single
(d − 2)-connected component. Furthermore, since there
are no non-manifold simplices, R∗p−1,p is always empty.

4.1. The IA∗ data structure in 2D and 3D

We consider here two instances of the IA∗ data struc-
ture for simplicial 2- and 3-complexes in 3-dimensional
Euclidean space E3, that we call, for brevity, the
IA∗(2D) and IA∗(3D) data structures.

The IA∗(2D) data structure encodes the vertices as
well as all triangles (top 2-simplices) and all wire edges
(top 1-simplices), i.e., edges not on the boundary of any
triangle, plus the following relations:

R1,0(σ): boundary relation for each wire edge;
R2,0(σ): boundary relation for each triangle;
R2,2(σ): adjacency relation for each triangle σ: it con-

sists of all triangles adjacent to σ along an edge;
R1,2(e): co-boundary relation for non-manifold edge e,

consisting of all triangles incident to e;
R∗0,1(v): partial co-boundary relation for each vertex v:

it consists of all wire edges in the star of v;
R∗0,2(v): partial co-boundary relation for each vertex v:

it consists of one triangle from each 0-connected
component of Lk(v) formed by at least one edge.

Figure 1: a simplicial 2-complex embedded
in E3. Partial adjacency relations R∗2,2 for
a triangle f1 (red) along non-manifold edge
e points to R∗1,2(e) = { f1, f2, f3, f4}, which
is encoded only once for all triangles inci-
dent to e. Encoded co-boundary relations for
vertex v are: R∗0,1(v) = {w1,w2,w3,w4} and
R∗0,2(v) = { f1}, where f1 is arbitrarily selected.

In a simplicial 2-complex embedded in E3, an edge e
is non-manifold if more than two triangles are incident
to e. Consequently, we can encode R2,2 along a non-
manifold edge e as a pointer to the list of all triangles
incident to e, i.e. R∗p−1,p(e). Figure 1 illustrates the rela-
tions encoded by the IA∗(2D) data structure for a small
simplicial 2-complex in E3.

The IA∗(3D) data structure encodes the vertices as
well as the tetrahedra (top 3-simplices), the dangling
faces (top 2-simplices) and wire edges (top 1-simplices)
plus the following relations:

Rk,0(σ): boundary relation for each top k-simplex σ;
R3,3(σ): adjacency relation for each tetrahedron σ: it

consists of the four tetrahedra adjacent to σ along
the triangles bounding σ;

R∗1,2(e): partial co-boundary relation for each non-
manifold edge e on the boundary of a top triangle:
it consists of all top triangles incident to e;

R∗2,2(σ): partial adjacency relation for each dangling
face σ: it consists of all top 2-simplices adjacent
to σ along their edges;

R∗0,1(v): partial co-boundary relation for each vertex v:
it consists of all top 1-simplices in the star of v;

R∗0,2(v): partial co-boundary relation for each vertex v:
it consists of one one triangle for each 0-connected
component in Lk(v) that consists only of top 1-
simplices in Lk(v);

R∗0,3(v): partial co-boundary relation for each vertex v:
it consists of one tetrahedron for each 1-connected
component of Lk(v) formed by triangles in Lk(v);

In a simplicial 3-complex embedded in E3, an edge e
is non manifold when its link consists of more than one
connected component. Thus, we can encode relation
R2,2 along a non-manifold edge e as a pointer to all
dangling triangles (top 2-simplices) incident in e, i.e.
R∗1,2(e). Figure 2 illustrates relations encoded by the
IA∗(3D) data structure for a simplicial 3-complex in E3.

4.2. Implementation and storage costs

In our implementation of the IA∗ data structure, each
simplex is indexed through an integer value. The ver-
tices are encoded in an array storing the coordinates

4

Figure 2: Simplicial 3-complex in E3. Ad-
jacency relations among the tetrahedra are
R3,3(t1) = {t2} and R3,3(t2) = {t1}. Partial
adjacency relations R∗2,2 for the four top tri-
angles fi along non-manifold edge e points to
R∗1,2(e) = { f1, f2, f3, f4}. Co-boundary rela-
tions for vertex v are R∗0,1(v) = {w}; R∗0,2(v) =

{ f1} (red), which is arbitrarily selected from
the single 0-connected component of edges in
Lk(v); and R∗0,3(v) = {t1} (green), which is ar-
bitrarily selected from the single 1-connected
component of triangles in Lk(v).

plus partial co-boundary relations R∗0,p(v), with p ≥ 1.
which are encoded as variable-sized arrays. Boundary
relations for top p-simplices (with p > 1) are stored in
arrays of dimension p + 1. For efficiency, partial adja-
cency relation R∗p,p(σ) is encoded as an array with (p+1)
elements, each corresponding to a (p − 1)-face τ of σ.
If τ is manifold, the element of the array correspond-
ing to τ contains the index of the only p-simplex adja-
cent to σ along τ. Otherwise, it contains a pointer to a
variable-size array encoding R∗p−1,p(τ), which contains
the indexes of all top p-simplices incident in τ.

In a simplicial d-complex Σ, we denote with si the
total number of its i-simplices, and with st

i the number
of its top i-simplices, with i = 1, 2, ..., d. The IA∗ data
structure for encoding a d-dimensional simplicial com-
plex Σ embedded in the n-dimensional Euclidean space
stores the following number of integer values:
• (d + 1) · sd for boundary relation Rd,0;
• (j + 1) · st

j for partial boundary relations R∗j,0, for
1 ≤ j < d;

• (d + 1) · sd for adjacency relation Rd,d;
• (k + 1) · st

k for partial adjacency relation R∗k,k re-
stricted to the top k-simplices, with 1 < k < d;

•
sk+1∑
q=1

nmk
q for partial co-boundary relation R∗k,k+1 re-

stricted to non-manifold k-simplex τ on the bound-
ary of a top (k + 1)-simplex;

• 2st
1 for partial co-boundary relation R∗0,1;

•
s0∑
j=1

ck
q for partial co-boundary relation R∗0,k, k > 1;

where nmk
q ∈ {0, 1, . . . , k+2} denotes the number of non-

manifold k-faces in top (k+1)-simplexσq and ck
q denotes

the number of (k − 2)-connected components of Lk(vq)
consisting only of top (k− 1)-simplices in Lk(vq). Thus,
the total cost of the topological relations in the IA∗ data
structure is equal to:

2
d∑

j=1

(j + 1)st
j +

d−1∑
k=1

sk+1∑
q=1

nmk
q +

d∑
k=2

s0∑
q=1

ck
q,

where each item is an integer value. Substituting Ck for

∑s0
j=1 ck

q and NM1 for
∑s2

k=1 nm1
k , we can determine the

storage cost for IA∗(2D) to be: 6s2 + 4st
1 + NM1 + C2,

and that of IA∗(3D) to be: 8s3+6st
2+4st

1+NM1+C2+C3.

5. Retrieving topological relations

In this section, we show how to retrieve the topolog-
ical relations from the IA∗ data structure encoding a d-
dimensional simplicial complex Σ embedded in the n-
dimensional Euclidean space. These form the basis for
navigating and manipulating the complex.

5.1. Retrieving boundary relations

All boundary relations Rp,0 are explicitly encoded.
Boundary relation Rp,q(σ) for a top p-simplex σ, with
0 < q < p, can be simply retrieved by generating all
(q + 1)-tuples of vertices forming the q-faces of σ. The
time complexity is therefore O

((
p+1
q+1

))
.

Boundary relation Rp,q(σ) for a non-top p-simplex p-
simplex σ, with q < p, can be retrieved only when σ is
specified as a p-face of a top h-simplex τ, with h > p.
In this case, the q-simplices which are faces of σ can be
simply retrieved as above.

5.2. Retrieving co-boundary relations

We consider first co-boundary relations based on the
vertices, which allow us to retrieve the simplices inci-
dent in any given vertex v. Relation R0,d(v), i.e. all
d-simplices incident in v, is retrieved by starting from
the d-simplices in R∗0,d(v) and navigating the complex
by using the explicitly stored Rd,d relation. R∗0,d(v) gives
us one d-simplex for each (d − 1)-connected cluster of
d-simplices incident in vertex v. Specifically, given the
d-simplex σ encoded in R∗0,d(v), we initialize the cluster
with σ and retrieve all d-simplices in the same cluster
as σ by a breadth-first traversal using relation Rd,d.

Relation R0,d−1(v), i.e., the collection of all (d − 1)-
simplices incident in v, is retrieved in two stages. First,
we retrieve R0,d(v) as above, and, for each d-simplex σ
in R0,d(v), we extract its (d − 1)-faces through bound-
ary relation Rd,d−1(σ). We then apply a breadth-first
traversal of the elements in R∗0,d−1(v) using a similar al-
gorithm as above for R∗0,d(v). Thus, the retrieval of any
R0,p(v) can be performed by retrieving relations R0, j(v)
and R j,p(σ), with j > p, for every j-simplex σ in R0, j(v),
for j = d, d−1, . . . , p. The time complexity can be easily
shown to be linear in the total number of top simplices
of dimension p, p + 1, ..d incident in v.

Relation Rp,q(σ), with p < q, for a p-simplex σ is
specified by describing σ as a (p+1)-tuple [v0, v1, ..., vp]
of vertices. We then retrieve R0,q(v0) and we select all

5

the q-simplices τ in R0,q(v0) such that all the other ver-
tices (v1, ..., vp) in the (p + 1)-tuple are in Rq,0(τ) as
well. For instance, for retrieving R1,3(e) of an edge
e = (v0, v1), we need to retrieve all tetrahedra incident
in v0 through R0,3(v0) and then we select only those
tetrahedra containing vertex v1 in their boundary. The
time complexity of the algorithm for retrieving Rp,q(σ)
is dominated by the complexity of retrieving relation
R0,q(v0), which is linear in the number of top simplices
incident in v0 of dimension from q to d.

5.3. Retrieving adjacency relations

Adjacency relation Rd,d(σ) is stored in the IA∗ data
structure for each d-simplex σ in Σ. Partial relation
R∗p,p(τ), p > 1, is stored for every top p-simplex τ and
is restricted to the top p-simplices (p− 1)-adjacent to τ.

Adjacency relation Rp,p(σ), p>0, for a top p-simplex
σ is extracted by considering R∗p,p(σ), which gives us
top p-simplices (p − 1)-adjacent to σ. The other p-
simplices, which are not top simplices, are retrieved by
combining boundary relation Rp,p−1 and co-boundary
relation Rp−1,p. Boundary relation Rp,p−1(σ) consists of
(p+1) p-tuples of vertices formed by σ’s vertices. For
each of them, we retrieve Rp−1,p as above. Note that R∗1,1
does not need to be encoded in the IA∗data structure.

If σ is not a top simplex, then σ must be specified as
a p-face of a top h-simplex τ, with h > p. In this case,
R∗p,p(σ) is empty and thus all p-simplices in Rp,p(σ)
need to be retrieved by combining boundary relation
Rp,p−1(σ) with co-boundary relation Rp−1,p.

Adjacency relation R0,0(v) for a vertex v can be re-
trieved in exactly the same way as R0,1(v), since the
edges in R0,1(v) are expressed as pairs of vertices.

The time complexity for retrieving adjacency relation
Rp,p(σ), p > 0, is dominated by the time required for
retrieving Rp−1,p(σ), which is linear in the number of
top simplices incident in one of the vertices of σ.

6. Analysis and comparisons

Recall that there are dimension-independent and
dimension-specific data structures for simplicial com-
plexes. Dimension-independent data structures for
simplicial complexes are incidence-based, namely the
Incidence Graph (IG) [10] and its specialized instances,
the Simplified Incidence Graph (SIG) [4] and the
Incidence Simplicial (IS) [7] data structures. In the
following, we will restrict our dimension-independent
comparisons to the IS which has been shown to be the
most compact [7]. Regarding dimension-specific data
structures, it has been shown that the TS and the NMIA

data structures are respectively the most compact 2D
and 3D representations for simplicial complexes and,
thus, we will restrict our dimension-specific compar-
isons of the IA∗ data structure to these data structures.
For brevity, we refer the reader to [7, 8, 5] for details on
these data structures.

Incidence-based data structures. Given a d-simplicial
complex Σ embedded in En (with d ≤ n), the IS
data structure [7] stores all simplices of Σ, the full
boundary relations Rp,p−1 and the partial co-boundary
relations R∗p,p+1, i.e. one (p + 1)-simplex for each
connected component in the link of each p-simplex.
Let hp

q be the number of connected components in
the link of a p-simplex σq, then the IS requires∑

0<p≤d(p + 1) · sp+
∑d−1

p=0
∑sp

q=1 hp
q integers. In the link

of a simplex σ, we can identify connected components
related to top simplices and components related to non
top-simplices, indicated as Ki =

∑sp

q=1 hi
q. Thus, the

IS requires 6s2 + 2s1 + 2st
1 + K0 integers in 2D, and

8s3 + 3s2 + 2s1 + 3st
2 + 2st

1 + K0 + K1 integers in 3D.

Adjacency-based structures. The primary difference
between the dimension-specific TS and NMIA data
structures from the IA∗(2D) and IA∗(3D) data struc-
tures is that the former exploit their embedding in E3

in their encodings of the topological relations. Specifi-
cally, whereas the IA∗(2D) encodes non-manifold edges
of triangles in R∗2,2 using a pointer to the shared infor-
mation in R∗1,2, the TS data structure encodes R∗2,2 as
a doubly-linked list around the non-manifold edges of
its triangles. That is, each triangle along non-manifold
edge e stores a pointer to the previous triangle and the
next triangle surrounding e in a clockwise orientation.
Over the entire data structure, R∗2,2 requires 3s2 + 2NM1

integers, giving the TS data structure a total cost of:
6s2 + 4st

1 + C2 + 2NM1 integers.
The NMIA encodes its boundary relations similarly

to the IA∗(3D), its vertex co-boundary relations simi-
larly to the IS data structure, i.e. one element per con-
nected component, and orients the simplices in the link
of non-manifold edges in clockwise order similarly to
the TS data structure. It encodes for each cluster (a
dangling face or a fan of tetrahedra) incident to non-
manifold e, the preceding and following cluster sur-
rounding e. Letting NM1,3 be the total number of such
fans of tetrahedra and NM1,2 be the total number of dan-
gling faces in the mesh (which is equivalent to NM1

for the IA∗(3D)), the cost of the NMIA data structure is
8s3 + 6st

2 + 4st
1 + K0 + 2NM1 + 2NM1,3 integers.

Since the most common applications of these meshes

6

Table 1: Statistics for representative manifold (top), non-manifold regular (middle) and non-manifold non-regular (bottom) simplicial 2-complexes
Σ in E3 and their storage requirements for the IS(2D), TS and IA∗(2D) data structures. Statistics are: the total number of i-simplices (si), and
the subset that are top simplices (st

i) and non-manifold simplices (sn
i). C2 = K0 is the sum of connected components in the link of the vertices

consisting of edges, while NM1 is the sum of non-manifold edges on the boundary of triangles in Σ.
Model s0 s1 s2 st

1 sn
0 sn

1 C2 NM1 IS (2D) TS IA∗2D

Football 1.2 K 3.7 K 2.5 K – – – 1.2 K – 23.4 K 16.0 K 16.0 K
2D torus 10.4 K 30.7 K 20.5 K – – – 10.4 K – 195 K 133 K 133 K

Pinched torus 1.8 K 5.5 K 3.7 K – 1 – .3 K – 35 K 24 K 24 K
Armchair 5.3 K 15.9 K 10.6 K – 57 56 5.3 K .2 K 101 K 69.4 K 69.2 K
Robot 3.2 K 10.0 K 6.7 K – 508 480 3.2 K 1.4 K 63.5 K 46.4 K 45 K

Balance 4.1 K 12.0 K 8.0 K 34 8 – 4 K – 75.9 K 51.9 K 51.9 K
Chandelier 9.2 K 27.6 K 18.3 K 136 352 264 9.2 K .8 K 175 K 121 K 120 K
Tower-wire 8.3 K 24.6 K 15.9 K 896 1.3 K 795 7.9 K 2.4 K 154 K 112 K 109 K

Table 2: Statistics for representative manifold (top), non-manifold regular (middle) and non-manifold non-regular (bottom) simplicial 3-complexes
Σ in E3 and their storage requirements for the IS(3D), NMIA and IA∗(3D) data structures. si are the total number of i-simplices, while st

i and sn
i

are the subset that are top simplices and non-manifold simplices. C2 and C3 are the sum of 0-connected and 1-connected components in the link of
the vertices that consist of edges and triangles, respectively. K0 and K1 are the sum of connected components in the links of the vertices and edges
of the mesh, respectively. NM1 = NM1,2 and NM1,3 are the sums of non-manifold edges on the boundary of top triangles and tetrahedra in Σ.

Model s0 s1 s2 s3 st
1 st

2 sn
0 sn

1 C2 C3 K0 K1 NM1 NM1,3 IS (3D) NMIA IA∗(3D)

Rings 1.2 K 6.4 K 9.2 K 4.0 K – – – – – 1.2 K 1.2 K 6.4 K – – 80.2 K 33.2 K 33.2 K
Gargoyle 2.7 K 14.7 K 22.0 K 10.0 K – – – – – 2.7 K 2.7 K 14.7 K – – 193 K 82.7 K 82.7 K

Pinched torus .3 K 1.3 K 1.9 K 853 – – 10 9 – 262 253 1.3 K – 18 16.7 K 7.1 K 7.1 K

Wheel .4 K 2.1 K 2.7 K 1.1 K 96 32 112 24 48 402 402 1.9 K 32 80 24.2 K 10.3 L 10.2 K
Balloon 1.1 K 3.9 K 3.6 K .9 K 64 1632 48 – 818 274 1.1 K 1.4 K – – 33.0 K 18.0 K 18.0 K
Flasks 1.3 K 6.3 K 8.5 K 3.5 K – 469 40 36 242 1.1 K 1.3 K 5.6 K 68 72 74.0 K 32.0 K 31.8 K
Pot 4.7 K 17.9 K 17.0 K 5.7 K 2.9 K 3.9 K 1.1 K 70 2.1 K 1.7 K 3.7 K 9.1 K 75 94 163 K 84.7 K 84.5 K

are for simplicial 2- and 3-complexes embedded in E3,
we compare the IA∗(2D) against the IS(2D) and TS
data structures, and the IA∗(3D) against the IS(3D) and
NMIA data structures. We summarize the storage costs
of the different data structures in terms of common pa-
rameters, and compare them experimentally against a
testbed of 62 simplicial 2- and 3-complexes of varying
domains (manifold, regular, non-manifold) and com-
plexity. We highlight a representational subset of the
2D datasets in Table 1 and of the 3D datasets in Table 2.

In 2D, it is evident that the IA∗(2D) is more com-
pact than the TS by the term NM1. The key difference
between the IS(2D) and the IA∗(2D) relates to the total
number of edges in the mesh compared to the number of
wire edges and non-manifold edges, i.e. 2s1 in the for-
mer vs. 2st

1 + NM1 in the latter. Since the total number
of edges in the complex is generally significantly higher
than the number of non-manifold and/or wire-edges, we
expect the IA∗(2D) and TS data structures to be sig-
nificantly more compact than the IS(2D) data structure,
and for the IA∗(2D) to be slightly more compact than
the TS . Empirically, we found the IS(2D) to require
approximately 45% more space than the IA∗(2D) in all
cases and the TS to require 0-5% more space that the
IA∗(2D) on a testbed of 43 simplicial 2-complexes that

were manifold (8), non-manifold regular (20) and non-
manifold non-regular (15). Table 1 highlights a repre-
sentative sample of these results.

Similarly, in 3D, the primary difference between the
IS(3D) and the IA∗(3D) and NMIA data structures re-
lates to the total number of triangles s2 and edges s1
compared to the number of top triangles st

2 and top
edges st

1, while the IA∗(3D) and NMIA differ in terms
of the number of top simplices compared to the num-
ber of non-manifold edges, i.e. NM1 + C2 + C3 vs.
2NM1 + 2NM1,3 + K0. To better understand the conse-
quences of these different encodings, we analyze prop-
erties of 19 simplicial 3-manifolds in E3 that are man-
ifold (6), regular non-manifolds (3) and non-manifold
non-regular (10) complexes, and present representative
samples in Table 2. We observe that C2 + C3 in the
IA∗(3D) encoding is approximately equal to K0 for
NMIA, although K0 can be smaller. Additionally, in the
tested datasets, the NM1 and NM1,3 are generally quite
small and do not impose a significant overhead.

The IA∗(3D) is the most compact data structure in
all tested datasets: In the manifold case, the IA∗(3D)
and NMIA require the same storage, and are both about
1.5 times smaller than the IS(3D) data structure. In
all other cases, NMIA requires approximately 3% more

7

storage than IA∗(3D). In the regular case, the IS(3D)
requires about three times the space as IA∗(3D), while
it requires 2.2 times the space when dealing with non-
regular datasets.

7. Concluding remarks

We have introduced the Generalized Indexed data
structure with Adjacencies (IA∗ data structure), a new
dimension-independent data structure for encoding non-
manifold and non regular objects in arbitrary dimen-
sions discretized as d-dimensional simplicial com-
plexes. We feel that the IA∗ data structure is the nat-
ural generalization of the Indexed data structure with
Adjacencies (IA data structure) [18] to the domain of
non-manifold and non-regular simplicial shapes, since
it is agnostic about its embedding space, and reverts
to the IA data structure when presented with mani-
fold simplicial shapes. We compared the IA∗ data
structure with other dimension-specific and dimension-
independent representations, in terms of storage costs
and of efficiency in retrieving topological relations. In
terms of storage costs the IA∗ data structure is more
compact than all state of the art dimension-specific and
dimension-independent representations, even those that
take the embedding space into account. This behavior
is even more evident when the number of non-manifold
singularities and of non-maximal top simplices is not
too high, as is common in most non-manifold shapes.

We have developed a C++ library, the IA∗ library
containing a dimension-independent implementation of
the IA∗ data structure. The current version supports the
construction of the data structure as well as the naviga-
tion queries described in Section 5. The construction
(which we omit for brevity) is performed from a soup
of simplices. Currently, we are enhancing the library by
developing topological manipulation operators, in par-
ticular the vertex-pair contraction operator, to enable
simplifications and repair on general simplicial com-
plexes. The IA∗ library is part of a set of tools for nav-
igating and manipulating simplicial complexes in arbi-
trary dimensions, and contains implementations of the
IS [7], IG (Incidence graph) [10] and SIG (Simplified
Incidence Graph) [4] data structures.

We have performed some experimental comparisons
between the IG, the IS, and the IA∗ data structures in
terms of efficiency of the topological queries. Our initial
results indicate that the IA∗ data structure is the most
efficient when extracting boundary relations, requiring
approximately half the time to extract the boundary of
a simplex. Extracting the co-boundary of a vertex from
the IA∗data structure also requires about half the time

as the IG and the IS data structures. Interestingly, the
extraction times for non-vertex simplices in the IA∗ are
within 5% of those for the IS data structure, despite the
need to extract the co-boundary of a vertex incident in
that simplex and filter the results in the former case.

References

[1] Brisson, E., 1989. Representing geometric structures in d di-
mensions: topology and order. In: Proc. of the 5th ACM Symp.
on Computational Geometry. ACM Press, pp. 218–227.

[2] Campagna, S., Kobbelt, L., Seidel, H.-P., 1998. Directed Edges -
a scalable representation for triangle meshes. Journal of Graph-
ics Tools 3 (4), 1–12.

[3] Cazier, D., Kraemer, P., 2010. X-Maps: an efficient model for
non-manifold modeling. In: Proceedings IEEE Shape Modeling
International. IEEE Computer Society, pp. 226–230.

[4] De Floriani, L., Greenfieldboyce, D., Hui, A., 2004. A data
structure for non-manifold simplicial d-complexes. In: Proc. Eu-
rographics/ACM Symp. on Geom. Proces. ACM, pp. 83–92.

[5] De Floriani, L., Hui, A., 2003. A scalable data structure for
three-dimensional non-manifold objects. In: Proceedings Euro-
graphics Symposium on Geometry Processing. pp. 72–82.

[6] De Floriani, L., Hui, A., 2005. Data structures for simplicial
complexes: an analysis and a comparison. In: Proc. of the 3rd

Eurographics Symp. on Geometry Processing. pp. 119–128.
[7] De Floriani, L., Hui, A., Panozzo, D., Canino, D., 2010. A

dimension-independent data structure for simplicial complexes.
In: Proceedings of the IMR. Springer, pp. 403–420.

[8] De Floriani, L., Magillo, P., Puppo, E., Sobrero, D., 2004.
A multi-resolution topological representation for non-manifold
meshes. CAD Journal 36 (2), 141–159.

[9] Dobkin, D., Laszlo, M., 1989. Primitives for the manipulation
of three-dimensional subdivisions. Algorithmica 5 (4), 3–32.

[10] Edelsbrunner, H., 1987. Algorithms in Combinatorial Geome-
try. Springer.

[11] Gurung, T., Rossignac, J., 2009. SOT: a compact representation
for tetrahedral meshes. In: Proc. of the SIAM/ACM Geometric
and Physical Modeling. San Francisco, USA, pp. 79–88.

[12] Lage, M., Lewiner, T., Lopes, H., Velho, L., 2005. CHF: A scal-
able topological data structure for tetrahedral meshes. In: Pro-
ceedings SIBGRAPI. pp. 349–356.

[13] Lee, S. H., Lee, K., 2001. Partial-entity structure: a fast and
compact non-manifold boundary representation based on partial
topological entities. In: Proc. ACM Symp. on Solid Modeling
and Applications. pp. 159–170.

[14] Lienhardt, P., 1991. Topological models for boundary repre-
sentation: a comparison with n-dimensional generalized maps.
CAD Journal 23 (1), 59–82.

[15] Lopes, H., Tavares, G., May 1997. Structural operators for mod-
eling 3-manifolds. In: Proc. of the 4th ACM Symp. on Solid
Modeling and Applications. ACM Press, pp. 10–18.

[16] Mantyla, M., 1987. An Introduction to Solid Modeling. Com-
puter Science Press.

[17] McMains, S., 2000. Geometric Algorithms and Data Represen-
tation for Solid Freeform Fabrication. Ph.D. thesis, University
of California at Berkeley.

[18] Paoluzzi, A., Bernardini, F., Cattani, C., Ferrucci, V., 1993.
Dimension-independent modeling with simplicial complexes.
ACM Transactions on Graphics 12 (1), 56–102.

[19] Rossignac, J., Safonova, A., Szymczak, A., 2001. 3D compres-
sion made simple: Edgebreaker with zip & wrap on a corner-
table. In: Proc. Shape Modeling International. pp. 278–283.

8

