CMSC 330: Organization of Programming Languages

Theory of Regular Expressions
Switching gears

• That’s it for the basics of Ruby
 – If you need other material for your project, come to office hours or check out the documentation

• Next up: How do regular expressions work?
 – Mixture of a very practical tool (string matching) and some nice theory
 – A great computer science result
A Few Questions about Regular Expressions

• What does a regular expression represent?
 – Just a set of strings

• What are the basic components of r.e.'s?
 – Is there a minimal set of constructs?
 – E.g., we saw that e^+ is the same as ee^*

• How are r.e.'s implemented?
 – We’ll see how to build a structure to parse r.e.’s

• First, some definitions...
Definition: Alphabet

• An alphabet is a finite set of symbols
 – Usually denoted Σ

• Example alphabets:
 – Binary: $\Sigma = \{0, 1\}$
 – Decimal: $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 – Alphanumeric: $\Sigma = \{0-9, a-z, A-Z\}$
Definition: String

• A *string* is a finite sequence of symbols from Σ
 – ε is the empty string ("" in Ruby)
 – $|s|$ is the length of string s
 • $|\text{Hello}| = 5$, $|\varepsilon| = 0$
 – Note: \emptyset is the empty set (with 0 elements)
 • $\emptyset = \{}\}$
 • $\emptyset \neq \{\varepsilon\}$
Definition: Concatenation

- **Concatenation** is indicated by juxtaposition
 - If $s_1 = \text{super}$ and $s_2 = \text{hero}$, then $s_1s_2 = \text{superhero}$
 - Sometimes also written $s_1 \cdot s_2$
 - For any string s, we have $s\varepsilon = \varepsilon s = s$
 - You *can* concatenate strings from different alphabets, then the new alphabet is the union of the originals:
 - If $s_1 = \text{super} \in \Sigma_1 = \{s,u,p,e,r\}$ and $s_2 = \text{hero} \in \Sigma_2 = \{h,e,r,o\}$, then $s_1s_2 = \text{superhero} \in \Sigma_3 = \{e,h,o,p,r,s,u\}$
Definition: Language

• A language is a set of strings over an alphabet

• Example: The set of all strings over Σ
 – Often written Σ^*

• Example: The set of phone numbers over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\}$
 – Give an example element of this language (123) 456–7890
 – Are all strings over the alphabet in the language? No
 – Is there a Ruby regular expression for this language? /
 \((\d{3,3})\)\d{3,3}–\d{4,4}/
Languages (cont’d)

• Example: The set of strings of length 0 over the alphabet $\Sigma = \{a, b, c\}$
 $\{-s | s \in \Sigma^* \text{ and } |s| = 0\} = \{\varepsilon\} \neq \emptyset$

• Example: The set of all valid Ruby programs
 Is there a regular expression for this language?

 No. Matching (an arbitrary number of) brackets so that they are balanced is impossible. { { { … } } }

• Can r.e.'s represent all possible languages?
 The answer turns out to be no!
 The languages represented by regular expressions are called, appropriately, the regular languages
Operations on Languages

- Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ
- Concatenation L_1L_2 is defined as
 - $L_1L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$
 - Example: $L_1 = \{"hi", "bye"\}$, $L_2 = \{"1", "2"\}$
 - $L_1L_2 = \{"hi1", "hi2", "bye1", "bye2"\}$
- Union is defined as
 - $L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\}$
 - Example: $L_1 = \{"hi", "bye"\}$, $L_2 = \{"1", "2"\}$
 - $L_1 \cup L_2 = \{"hi", "bye", "1", "2"\}$
Operations on Languages (cont’d)

• Define L^n inductively as
 - $L^0 = \{\varepsilon\}$
 - $L^n = LL^{n-1}$ for $n > 0$

• In other words,
 - $L^1 = LL^0 = L\{\varepsilon\} = L$
 - $L^2 = LL^1 = LL$
 - $L^3 = LL^2 =LLL$
 - $...$
Examples of L^n

• Let $L = \{a, b, c\}$

• Then

 – $L^0 = \{\varepsilon\}$
 – $L^1 = \{a, b, c\}$
 – $L^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$
Operations on Languages (cont’d)

• Kleene closure is defined as

\[L^* = \bigcup_{i \in [0..\infty]} L^i \]

• In other words...

\(L^* \) is the language (set of all strings) formed by concatenating together zero or more strings from \(L \).
Definition of Regexps

- Given an alphabet Σ, the *regular expressions* over Σ are defined inductively as

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>ε</td>
<td>${\varepsilon}$</td>
</tr>
<tr>
<td>each element $\sigma \in \Sigma$</td>
<td>${\sigma}$</td>
</tr>
</tbody>
</table>

- ...
Definition of Regexps (cont’d)

• Let \(A \) and \(B \) be regular expressions denoting languages \(L_A \) and \(L_B \), respectively.

\[
\begin{array}{|c|c|}
\hline
\text{regular expression} & \text{denotes language} \\
\hline
AB & L_A L_B \\
(A|B) & L_A \cup L_B \\
A^* & L_A^* \\
\hline
\end{array}
\]

• There are no other regular expressions over \(\Sigma \).
• We use (\()\)’s as needed for grouping.
Regexp Precedence

• Operation precedence (high to low):
 – Kleene closure: "*"
 – Concatenation
 – Union: "|
 – Grouping: " (" and ")"
The Language Denoted by an r.e.

• For a regular expression e, we will write $[[e]]$ to mean the language denoted by e
 - $[[a]] = \{a\}$
 - $[((a|b))] = \{a, b\}$

• If $s \in [[[re]]]$, we say that re accepts, describes, or recognizes s.
Example 1

• All strings over $\Sigma = \{a, b, c\}$ such that all the a’s are first, the b’s are next, and the c’s last
 – Example: $aaabbbccc$ but not $abcb$

• Regexp: $a^*b^*c^*$
 – This is a valid regexp because:
 • a is a regexp ($[[a]] = \{a\}$)
 • a^* is a regexp ($[[a^*]] = \{\epsilon, a, aa, ...\}$)
 • Similarly for b^* and c^*
 • So $a^*b^*c^*$ is a regular expression
 (Remember that we need to check this way because regular expressions are defined inductively.)
Which Strings Does $a^*b^*c^*$ Recognize?

- $aabbcc$
 - Yes; $aa \in [a^*]$, $bbb \in [b^*]$, and $cc \in [c^*]$, so entire string is in $[a^*b^*c^*]$.

- abb
 - Yes, $abb = abb\varepsilon$, and $\varepsilon \in [c^*]$

- ac
 - Yes

- ε
 - Yes

- $aacbc$
 - No

- $abcd$
 - No -- outside the language
Example 2

• All strings over $\Sigma = \{a, b, c\}$
• Regexp: $(a|b|c)^*$
• Other regular expressions for the same language?
 – $(c|b|a)^*$
 – $(a^*|b^*|c^*)^*$
 – $(a^*b^*c^*)^*$
 – $((a|b|c)^*|abc)$
 – etc.
Example 3

- All whole numbers containing the substring 330
- Regular expression: \((0|1|...|9)*330(0|1|...|9)*\)
- What if we want to get rid of leading 0’s?
 \(((1|...|9)(0|1|...|9)*330(0|1|...|9)* | 330(0|1|...|9)*)\)
- Any other solutions?

- Challenge: What about all whole numbers not containing the substring 330?
 - Is it recognized by a regexp? Yes. We’ll see how to find it later…
Example 4

• What language does this regular expression recognize?

\[
((1|\varepsilon)(0|1|...|9) \mid (2(0|1|2|3))) : (0|1|...|5)(0|1|...|9)
\]

• All valid times written in 24-hour format

- 10:17
- 23:59
- 0:45
- 8:30
Two More Examples

- \((000|00|1)^*\)
 - Any string of 0's and 1's with no single 0's
- \((00|0000)^*\)
 - Strings with an even number of 0's
 - Notice that some strings can be accepted more than one way
 * \(000000 = 00\cdot00\cdot00 = 00\cdot0000 = 0000\cdot00\)
 - How else could we express this language?
 * \((00)^*\)
 * \((00|000000)^*\)
 * \((00|0000|000000)^*\)
 * etc…
Regular Languages

• The languages that can be described using regular expressions are the *regular languages* or *regular sets*

• Not all languages are regular
 – Examples (without proof):
 • The set of palindromes over Σ
 – reads the same backward or forward
 • $\{a^n b^n \mid n > 0\}$ ($a^n = \text{sequence of } n \text{ a’s}$)

• Almost all programming languages are not regular
 – But aspects of them sometimes are (e.g., identifiers)
 – Regular expressions are commonly used in parsing tools
Ruby Regular Expressions

- Almost all of the features we’ve seen for Ruby r.e.'s can be reduced to this formal definition
 - `/Ruby/` – concatenation of single-character r.e.'s
 - `/(Ruby|Regular)/` – union
 - `/(Ruby)^*/` – Kleene closure
 - `/(Ruby)+/` – same as `(Ruby)(Ruby)^*`
 - `/(Ruby)?/` – same as `(ε|(Ruby))` (// is ε)
 - `/[a-z]/` – same as `(a|b|c|...|z)`
 - `/[^0-9]/` – same as `(a|b|c|...)` for `a,b,c,... ∈ Σ - {0..9}`
 - `^, $` – correspond to extra characters in alphabet
Practice

Give the regular expressions for the following languages:

• All valid DNA strings (including only ACGT and appearing in multiples of 3)
• All binary strings containing an even length substring of all 1’s
• All binary strings containing exactly two 1’s
• All binary strings that start and end with the same number